

GOVERNMENT OF KARNATAKA KARNATAKA SCHOOL EXAMINATION AND ASSESSMENT BOARD WEIGHTAGE FRAMEWORK FOR MQP 3: II PU MATHEMATICS (35):2024-25

Chapter	CONTENT	Number of Teaching hours	PART A 1 mark		PART B 2 mark	PART C 3 mark	PART D 5 mark	PART E		Total
			мсq	FB				6 mark	4 mark	
1	RELATIONS AND FUNCTIONS	9	1			1	1			9
2	INVERSE TRIGONOMETRIC FUNCTIONS	6	2		2					6
3	MATRICES	9	1	1	1		1			9
4	DETERMINANTS	12	1		1		1		1	12
5	CONTINUITY AND DIFFERENTIABILITY	20	2	1	1	1	1		1	17
6	APPLICATION OF DERIVATIVES	10	2	1	1	1				8
7	INTEGRALS	22	1	1	1	1	1	1		18
8	APPLICATION OF INTEGRALS	5					1			5
9	DIFFERENTIAL EQUATIONS	10	1		1		1			8
10	VECTOR ALGEBRA	11	2			2				8
11	THREE D GEOMETRY	8	1		1	1				6
12	LINEAR ROGRAMMING	7						1		6
13	PROBABILITY	11	1	1		2				8
	TOTAL	140	15	5	9	9	7	2	2	120

GOVERNMENT OF KARNATAKA KARNATAKA SCHOOL EXAMINATION AND ASSESSMENT BOARD **Model Question Paper -3**

II P.U.C MATHEMATICS (35):2024-25

Time : 3 hours

Max. Marks : 80

Instructions :

- 1) The question paper has five parts namely A, B, C, D and E. Answer all the parts.
- 2) PART A has 15 MCQ's ,5 Fill in the blanks of 1 mark each.
- 3) Use the graph sheet for question on linear programming in PART E.

PART A

I. Answer ALL the Multiple Choice Questions $15 \times 1 = 15$

1. The element needed to be added to the relation $R=\{(1,1), (1,3), (2,2), (3,3)\}$ on

A = $\{1, 2, 3\}$ so that the relation is neither symmetric nor transitive

- A) (2, 3) B) (3, 1) C) (1, 2) D) (3, 2)
- 2. The graph of the function y = cos⁻¹ x is the mirror image of the graph of the function y = cosx along the line
 A) x = 0
 B) y = x
 C) y = 1
 D) y = 0

3. The value of $\tan^{-1}(\sqrt{3}) + \sec^{-1}(-2)$ is equal to *A*) π B) $\frac{2\pi}{3}$ C) $-\frac{\pi}{3}$ D) $\frac{\pi}{3}$

4. If A and B are matrices of order 3 × 2 and 2 × 2 respectively, then which of the following are defined

A) AB B) BA C) A^2 D) A + B 5. A square matrix A is invertible if A is A) Null matrix B) Singular matrix C) skew symmetric matrix of order 3 D) Non-Singular matrix 6. If $y = \sin^{-1}(x\sqrt{x})$, then $\frac{dy}{dx} =$ A) $\frac{1}{\sqrt{1-x^3}}$ B) $\frac{2\sqrt{x}}{3\sqrt{1-x^3}}$ C) $\frac{3\sqrt{x}}{2\sqrt{1-x^3}}$ D) $\frac{-3\sqrt{x}}{2\sqrt{1-x^3}}$.

7. If $y = x^a + a^x + a^a$ for some fixed a > 0 and x > 0, then $\frac{dy}{dx} =$

(A) $ax^{a-1} + a^{x}\log a + aa^{a-1}$ (A) $ax^{a-1} + a^{x}\log a + aa^{a-1}$ (A) $ax^{a-1} + xa^{x-1} + aa^{a-1}$ (B) $ax^{a-1} + a^{x}\log a + a^{a}$.

- 8. Consider the following statements for the given function y=f(x) defined on an interval I and c∈ I, at x = c
 - I. f'(c) = 0 and $f''(c) < 0 \implies$ f attains local maxima
 - II. f'(c) = 0 and $f''(c) > 0 \implies$ f attains local minima
 - III. f'(c) = 0 and $f''(c) = 0 \implies f$ attains both maxima and minima
 - A) I and II are true B) I and III are true
 - C) II and III are true D) all are false
- **9**. If each side of a cube is x units, then the rate of change of its surface area

with respect to side is

A) 12x B) 6x C) $6x^2$ D) $3x^2$

10. Statement 1: The anti-derivative of $\left(\frac{1}{\sqrt{1+x^2}}\right)$ with respect to x is

$$\frac{x}{2}\sqrt{1+x^2} + \frac{1}{2}\log|x+\sqrt{1+x^2}| + C.$$

Statement 2: The derivative of $\frac{x}{2}\sqrt{1+x^2} + \frac{1}{2}\log|x+\sqrt{1+x^2}| + C$ with respect to x is $\frac{1}{\sqrt{1+x^2}}$.

- A) Statement 1 is true, and Statement 2 is false.
- B) Statement 1 is true, and Statement 2 is true, Statement 2 is correct explanation for Statement 1
- C) Statement 1 is true, and Statement 2 is true, Statement 2 is not a correct explanation for Statement 1
- D) Both statements are false.

11. The degree of the differential equation $\left(\frac{d^2y}{dx^2}\right)^3 + \left(\frac{dy}{dx}\right)^2 + \sin\left(\frac{dy}{dx}\right) + 1 = 0$ is A) 2 B) 3 C) 5 D) not defined

12. The position vector of a point which divides the join of points with position vectors $3\vec{a} - 2\vec{b}$ and $\vec{a} + \vec{b}$ externally in the ratio 2 : 1 is

A)
$$\frac{5a}{3}$$
 B) $4\vec{a} - \vec{b}$ C) $4\vec{b} - \vec{a}$ D) $2\vec{a} + \vec{b}$

13. If a vector \vec{a} makes angles with $\frac{\pi}{3}$ with \hat{i} and $\frac{\pi}{4}$ with \hat{j} and an acute angle θ with \hat{k} , then θ is A) $\frac{\pi}{6}$ B) $\frac{\pi}{4}$ C) $\frac{\pi}{3}$ D) $\frac{\pi}{2}$

14. Find the angle between the lines whose direction ratios are a, b, c and b-c, c-a, a-b is
A) 45⁰ B) 30⁰ C) 60⁰ D) 90⁰

15. If A and B are two independent events such that $P(A) = \frac{1}{4}$ and $P(B) = \frac{1}{2}$ then P(neither A nor B) A) $\frac{1}{3}$ B) $\frac{3}{8}$ C) $\frac{7}{8}$ D) $\frac{1}{2}$.

- II. Fill in the blanks by choosing the appropriate answer from those given in the bracket (-2, $\frac{5}{2}$, 0, 1, 2, $\frac{3}{2}$) $5 \times 1 = 5$
- **16**. The number of all possible orders of matrices with 13 elements is _____
- **17**. If $y = 5 \cos x 3 \sin x$, then $\frac{d^2 y}{dx^2} + y =$ _____
- **18**. If the function f given by $f(x) = x^2 + ax + 1$ is increasing on [1, 2], then the value of 'a' is greater than ______

19. $\int |x| dx =$ _____

20. If A and B are any two events such that P(A) + P(B) - P(A and B) = P(A), then P(A | B) is_____

PART B

Answer any SIX questions

21. Write the simplest form of $\tan^{-1}\left(\sqrt{\frac{1-\cos x}{1+\cos x}}\right)$, $0 < x < \pi$.

22. Prove that $2\sin^{-1}\frac{3}{5} = \tan^{-1}\frac{24}{7}$. **23.** If $F(x) = \begin{bmatrix} \cos x & -\sin x & 0\\ \sin x & \cos x & 0\\ 0 & 0 & 1 \end{bmatrix}$, then show that F(x) F(y) = F(x + y).

24. Find the equation of line joining (1, 2) and (3, 6) using determinants.

25. Differentiate $x^{\sin x}$, x > 0 with respect to x.

26. Find the intervals in which the function f given by $f(x) = x^2 e^{-x}$ is increasing.

27. Find $\int (x^2 + 1) \log x \, dx$.

28.Verify the function y = mx is the solution of $\frac{dy}{dx} - y = 0$, $x \neq 0$.

29. Find the distance between the lines $\vec{r} = \hat{i} + 2\hat{j} - 4\hat{k} + \lambda(2\hat{i} + 3\hat{j} + 6\hat{k})$ and $\vec{r} = 3\hat{i} + 3\hat{j} - 5\hat{k} + \mu(2\hat{i} + 3\hat{j} + 6\hat{k})$.

6×2=12

Answer any SIX questions

- **30**. Let $f: X \to Y$ be a function. Define a relation R in X given by R = {(a, b): f(a) = f(b)}. Examine whether R is an equivalence relation or not.
- **31.** If $x^3 + x^2y + xy^2 + y^3 = 81$, then find $\frac{dy}{dx}$.
- **32**. The length x of a rectangle is decreasing at the rate of 3 cm/min and the

width *y* is increasing at the rate of 2 cm/min. When x = 10 cm and y = 6 cm, find the rate of change of the perimeter of the rectangle.

- **33**. Find the integral of $\frac{1}{a^2 + x^2}$ with respect to x.
- **34**. If the vertices A, B and C of a triangle are (1, 2, 3), (-1, 0, 0) and (0, 1, 2) respectively, then find the angle $\angle ABC$.
- **35.** Find the area of the rectangle, whose vertices are $A\left(-\hat{i}+\frac{1}{2}\hat{j}+4k\right)$, $B\left(\hat{i}+\frac{1}{2}j+4k\right)$,

$$C\left(\hat{i}-\frac{1}{2}j+4k\right)$$
 and $D\left(-\hat{i}-\frac{1}{2}j+4k\right)$.

- **36.** Find the vector equation of the line passing through the point (1, 2, -4) and perpendicular to the two lines: $\frac{x-8}{3} = \frac{y+19}{-16} = \frac{z-10}{7}$ and $\frac{x-15}{3} = \frac{y-29}{8} = \frac{z-5}{-5}$.
- **37**. An urn contains 5 red and 5 black balls. A ball is drawn at random, its colour is noted and is returned to the urn. Moreover, 2 additional balls of the colour drawn are put in the urn and then a ball is drawn at random. What is the probability that the second ball is red.
- 38. Three coins are tossed simultaneously. Consider the Event E 'three heads or three tails', F 'at least two heads and G 'at most two heads'. Of the pairs (E,F), (E, G) and (F, G), which are independent? Which are dependent?

PART D

Answer any FOUR questions

$4 \times 5 = 20$

39. Let $f: \mathbb{N} \to \mathbb{Y}$ be a function defined as f(x) = 4x + 3, where,

Y = {*y* ∈ N: *y* = 4*x* + 3 for some *x* ∈ N}. Show that *f* is invertible. Find the inverse of f.

40. If
$$A = \begin{bmatrix} 0 & 6 & 7 \\ -6 & 0 & 8 \\ 7 & -8 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 2 & 0 \end{bmatrix}$ and $C = \begin{bmatrix} 2 \\ -2 \\ 3 \end{bmatrix}$,

calculate AB, AC and A(B + C). Verify that A(B+C) = AB + AC.

6×**3= 18**

41. Solve the following system of linear equations by matrix method:

$$2x + y + z = 1$$
, $x - 2y - z = \frac{3}{2}$ and $3y - 5z = 9$.

42. If
$$x = a (\cos t + t \sin t)$$
 and $y = a (\sin t - t \cos t)$, find $\frac{d^2y}{dx^2}$

43. Find
$$\int \frac{x^4}{(x-1)(x^2+1)} dx$$

- **44**. Find the area of the region bounded by the line y = 3x + 2, the *x*-axis and the ordinates x = -1 and x = 1 by integration method.
- **45.** Find the equation of a curve passing through the origin given that the slope of the tangent to the curve at any point (*x*, *y*) is equal to the sum of the ordinates of the point.

PART E

Answer the following questions:

46. (a) Prove that
$$\int_{-a}^{a} f(x) dx = \begin{cases} 2\int_{0}^{a} f(x) dx, & \text{if } f(x) \text{ is even} \\ 0, & \text{if } f(x) \text{ is odd} \end{cases}$$

and evaluate
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^7 x \, dx$$

OR

Solve the following linear programming problem graphically: Minimize and maximize Z = x + 2y, subject to constraints $x + 2y \ge 100$, $2x - y \le 0$, $2x + y \le 200$ and $x, y \ge 0$.

47. If matrix
$$A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$
 satisfying A³-6A²+9A-4I=O, then evaluate A⁻¹.

If
$$f(x) = \begin{cases} \frac{k \cos x}{\pi - 2x} , & \text{if } x \neq \frac{\pi}{2} \\ 3, & \text{if } x = \frac{\pi}{2} \end{cases}$$
 is continuous at $x = \frac{\pi}{2}$, find k.

OR

6
