GS2025 Exam, School of Mathematics, TIFR

NOTATION AND CONVENTIONS

- N denotes the set of natural numbers $\{0, 1, \dots\}$, \mathbb{Z} the set of integers, \mathbb{Q} the set of rational numbers, \mathbb{R} the set of real numbers, and \mathbb{C} the set of complex numbers. These sets are assumed to carry the usual algebraic and metric structures.
- \mathbb{R}^n denotes the Euclidean space of dimension n. Subsets of \mathbb{R}^n are viewed as metric spaces using the standard Euclidean distance on \mathbb{R}^n . For $x \in \mathbb{R}^n$, ||x|| denotes the standard Euclidean norm of x, i.e., the distance from x to 0.
- All rings are associative, with a multiplicative identity. Ring homomorphisms are assumed to respect multiplicative identities.
- For any ring R, $M_n(R)$ denotes the ring of $n \times n$ matrices with entries in R. The identity matrix in $M_n(R)$ will be denoted by Id or by Id_n . For a matrix $A \in M_n(R)$, A^t will stand for its tranpose, trace(A) for its trace, and det(A) for its determinant.
- $M_n(\mathbb{R})$ will also be viewed as a real vector space, and $M_n(\mathbb{C})$ as a complex vector space. $M_n(\mathbb{R})$ is given the topology such that any \mathbb{R} -linear isomorphism $M_n(\mathbb{R}) \to \mathbb{R}^{n^2}$ is a homeomorphism. Subsets of $M_n(\mathbb{R})$ are given the subspace topology.
- For a ring R, $R[x_1, \ldots, x_n]$ denotes the polynomial ring in n variables x_1, \ldots, x_n over R.
- If A is a set, #A stands for the cardinality of A, and equals ∞ if A is infinite.
- If B is a subset of a set A, we write $A \setminus B$ for the set $\{a \in A \mid a \notin B\}$.
- Let G be a group, and let $S \subset G$. The subgroup of G generated by S is defined to be the smallest subgroup of G that contains S.

(1) For a positive integer m, let d(m) denote the number of divisors of m, including 1 and m. Define a sequence $\{a_n\}_{n=1}^{\infty}$ by

$$a_n = \#\{1 \leqslant m \leqslant n \mid d(m) \text{ is odd}\}.$$

Find

$$\lim_{n\to\infty}\frac{a_n}{n}.$$

- ✓ (a) 0
 - (b) 1
 - (c) 1/2
 - (d) None of the remaining three options
- (2) Let S_3 be the symmetric group on 3 letters. Consider the real vector space

$$V = \{ f : S_3 \to \mathbb{R} \mid f(g) = f(g^3), \forall g \in S_3 \}.$$

What is the dimension of this space?

- (a) 1
- (b) 2
- (c) 3
- \checkmark (d) Greater than 3
- (3) Consider the set

$$S = \{(x, y) \in \mathbb{R}^2 \mid (x^3 + 1)^3 = (y^5 + 1)^5\}.$$

How many connected components does S have?

- ✓ (a) 1
 - (b) 3
 - (c) Greater than 3, but finite
 - (d) Infinite
- (4) Define a set S of real polynomials as follows:

$$S = \{ p \in \mathbb{R}[x] \mid p \text{ is not constant}, |p(0)| < 1 \}.$$

For p in S, define

$$U_p = \{ x \in \mathbb{R} \mid |p(x)| < 1 \}.$$

Which of the following statements is correct?

- (a) There exists $p \in S$ such that U_p is a union of infinitely many disjoint open intervals.
- (b) For each $p \in S$, U_p is a union of infinitely many disjoint open intervals.
- ✓ (c) For each $p \in S$, U_p is a union of finitely many open intervals.
 - (d) There exists $p \in S$ such that U_p is an unbounded set.
- (5) What is the number of functions $f: \mathbb{R}\setminus\{0,1\} \to \mathbb{R}\setminus\{0,1\}$ such that |f(x) f(y)| = |x y| for all $x, y \in \mathbb{R}\setminus\{0,1\}$?
 - (a) 1
 - ✓ (b) 2
 - (c) Greater than 2, but finite
 - (d) Infinite
- (6) Let $x_n = \left(1 \frac{1}{\sqrt{n}}\right)^n \exp(n^{\frac{1}{4}})$. Which of the following statements is correct?

(a)
$$\lim_{n\to\infty} x_n = 0$$
 and $\sum_{n=1}^{\infty} x_n$ converges.

- (b) $\lim_{n \to \infty} x_n = 0$ but $\sum_{n=1}^{\infty} x_n$ diverges. (c) $\lim_{n \to \infty} x_n$ exists but is non-zero.
- (d) $\lim_{n\to\infty} x_n$ does not exist.
- (7) Let $f:[0,1] \to \mathbb{R}$ be such that

$$f(x) = \begin{cases} \frac{1}{2^n}, & \text{if } x = \frac{p}{2^n}, \text{ where } p \text{ is an odd integer, and } \\ 0, & \text{otherwise.} \end{cases}$$

Which of the following statements is correct?

- (a) f is continuous at $x \in [0,1]$ if and only if x is rational.
- (b) f is continuous at $x \in [0,1]$ if and only if x is irrational.
- (c) f is not continuous at x, for any $x \in [0,1]$.
- \checkmark (d) None of the remaining three statements is true.
- (8) Let $\{q_n\}_{n=1}^{\infty}$ be an enumeration of the rationals. In other words, $\mathbb{Q} = \{q_n \mid n \in \mathbb{N} \setminus \{0\}\}, \text{ and } q_m \neq q_n \text{ if } m \neq n. \text{ Set}$

$$X = \bigcup_{n=1}^{\infty} \left(q_n - \frac{1}{n^2}, q_n + \frac{1}{n^2} \right).$$

Which of the following statements is correct?

- \checkmark (a) X is dense in \mathbb{R} , but not equal to \mathbb{R} .
 - (b) $X = \mathbb{R}$.
 - (c) X contains an open interval of length 10.
 - (d) None of the remaining three statements is correct.
- (9) Consider the linear map $T: \mathbb{R}[x] \to \mathbb{R}[x]$ defined by T(p(x)) = $\frac{d}{dx}(xp(x))$. Which of the following statements is correct?
 - (a) T is injective but not surjective.
 - (b) T is surjective but not injective.
- \checkmark (c) T is bijective.
 - (d) T is neither injective nor surjective.
- (10) Let

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 2 \\ 1 & 2 & 1 \end{pmatrix}$$

Consider the following statements:

- (i) A has a positive eigenvalue.
- (ii) A has a negative eigenvalue.

Which of the following statements is correct?

- \checkmark (a) (i) and (ii) are true.
 - (b) (i) and (ii) are false.
 - (c) (i) is true and (ii) is false.
 - (d) (ii) is true and (i) is false.
- (11) Let A be a nonzero $n \times n$ matrix with real entries, where n > 1. Consider the following statements.
 - (i) If $A^2 = 0$ then rank $(A) \leq \lfloor \frac{n}{2} \rfloor$.
 - (ii) If $\operatorname{rank}(A) \leq \lfloor \frac{n}{2} \rfloor$ then $A^2 = 0$.

Which of the following statements is correct?

- (a) (i) and (ii) are true.
- (b) (i) and (ii) are false.

- \checkmark (c) (i) is true and (ii) is false.
 - (d) (ii) is true and (i) is false.
- (12) Consider the following subset of \mathbb{R}^2 :

$$S = \Big\{ \Big(x, \sin\frac{1}{x}\Big) \Big| x > 0 \Big\} \cup \Big\{ \Big(0, \pm\frac{1}{n}\Big) \mid n \geqslant 1 \Big\}.$$

Which of the following statements is correct?

- (a) S is path connected.
- \checkmark (b) S is connected, but not path connected.
 - (c) S is not connected, but has finitely many connected components.
 - (d) S has infinitely many connected components.
- (13) Consider the following statements:
 - (i) Any linear map $\mathbb{R}^3 \to \mathbb{R}^3$ has a one-dimensional invariant subspace.
 - (ii) Any linear map $\mathbb{R}^3 \to \mathbb{R}^3$ has a two-dimensional invariant subspace.

Which of the following statements is correct?

- (a) (i) and (ii) are both true.
 - (b) (i) and (ii) are both false.
 - (c) (i) is true and (ii) is false.
 - (d) (i) is false and (ii) is true.
- (14) Consider the following statements:
 - (i) For any linear map $T: \mathbb{R}^3 \to \mathbb{R}^3$ with a two-dimensional kernel, the trace of T is an eigenvalue of T.
 - (ii) For any linear map $T: \mathbb{R}^3 \to \mathbb{R}^3$ with a two-dimensional kernel, X^2 divides the characteristic polynomial of T.

Which of the following statements is correct?

- \checkmark (a) (i) and (ii) are both true.
 - (b) (i) and (ii) are both false.
 - (c) (i) is true and (ii) is false.
 - (d) (i) is false and (ii) is true.
- (15) For a positive integer n, define the function $f_n : \mathbb{R} \to \mathbb{R}$ by $f_n(x) = \sin\left(\frac{x}{n}\right)$. Consider the sequences $\{f_n\}_{n=1}^{\infty}$ and $\{f'_n\}_{n=1}^{\infty}$ of functions from \mathbb{R} to \mathbb{R} . Which of the following statements is correct?
 - (a) The sequences $\{f_n\}_{n=1}^{\infty}$ and $\{f'_n\}_{n=1}^{\infty}$ both converge uniformly on
 - (b) Neither of the sequences $\{f_n\}_{n=1}^{\infty}$ and $\{f'_n\}_{n=1}^{\infty}$ converges uniformly on \mathbb{R} .
 - (c) The sequence $\{f_n\}_{n=1}^{\infty}$ converges uniformly on \mathbb{R} , but the sequence $\{f'_n\}_{n=1}^{\infty}$ does not.
 - (d) The sequence $\{f'_n\}_{n=1}^{\infty}$ converges uniformly on \mathbb{R} , but the sequence $\{f_n\}_{n=1}^{\infty}$ does not.
- (16) Let n > 1 be a positive integer. Let $A = [a_{ij}]_{1 \le i,j \le n}$ be an $n \times n$ matrix, such that $a_{i,i+1} = c_i$ for $i = 1, \ldots, (n-1)$, and $a_{n,1} = c_n$, where c_1, \ldots, c_n are real numbers and all the other entries are 0. Which of the following sentences is correct regardless of n?
 - (a) $\det(\operatorname{Id} A^n) = 0$ if $\prod_{i=1}^n c_i = 1$.

- (b) $\det(\operatorname{Id} A^n) > 0$ if $\prod_{i=1}^n c_i > 0$. (c) $\det(\operatorname{Id} A^n) < 0$ if $\prod_{i=1}^n c_i > 1$. (d) $\det(\operatorname{Id} A^n) > 0$ if $\prod_{i=1}^n c_i > 1$.
- (17) Let $n \ge 1$. Consider non-zero $n \times n$ real matrices A such that $\operatorname{trace}(AX) = 0$, for every real matrix X with $\operatorname{trace}(X) = 0$. Consider the following assertions.
 - (i) For every such matrix A, $\operatorname{trace}(A)^n = n^n \cdot \det(A)$.
 - (ii) For every such matrix A, the rank of A is n.

Which of the following sentences is correct?

- (a) (i) is correct and (ii) is incorrect.
- (b) (ii) is correct and (i) is incorrect.
- \checkmark (c) (i) and (ii) are correct.
 - (d) (i) and (ii) are incorrect.
- (18) Let S be the set of functions $f:(0,1)\to\mathbb{R}$ with the property that there is a sequence $\{f_n\}_{n=1}^{\infty}$ of functions that converges uniformly to f, where each $f_n:(0,1)\to\mathbb{R}$ is a twice continuously differentiable function (i.e., f_n'' exists and is continuous). Which of the following statements is correct?
 - \checkmark (a) Any $f \in S$ is continuous, but there exists $f \in S$ such that f is not differentiable.
 - (b) Any $f \in S$ is differentiable, but there exists $f \in S$ such that f'is not continuous.
 - (c) Any $f \in S$ is continuously differentiable, but there exists $f \in S$ such that f'' does not exist.
 - (d) Any $f \in S$ is twice continuously differentiable.
- (19) For a real valued function $f:[0,1] \mapsto \mathbb{R}$, let $\omega_f:[0,1] \mapsto \mathbb{R}$ be the oscillation of f defined by

$$\omega_f(t) := \sup_{|x-y| \leqslant t} |f(x) - f(y)|.$$

Which one of the following statements is correct for every $f:[0,1] \rightarrow$

- (a) f is continuous if and only if $\lim_{t\to 0+} \omega_f(t) = 0$.

 - (b) If f is continuous then $\lim_{t\to 0+} \omega_f(t) = 0$, but not conversely. (c) If $\lim_{t\to 0+} \omega_f(t) = 0$ then f is continuous, but not conversely.
 - (d) None of the remaining three statements is correct.
- (20) The number of real cubic polynomials of the form $x^3 + ax + b$, each of whose complex roots lies on the unit circle $S^1 = \{z \in \mathbb{C} \mid z\bar{z} = 1\},\$ equals
 - (a) 0
 - ✓ (b) 2
 - (c) ∞
 - (d) None of the remaining three options
- (1) There exists a linear polynomial $p(x) \in \mathbb{R}[x]$, for which there exist exactly two subsets $S \subset \mathbb{R}$ such that p(S) = S and such that #S = 2.

- (2) There are exactly 10 abelian groups of order 2025, up to isomorphism.
- T (3) If $A \subset \mathbb{R}$ is an uncountable subset, then there exist uncountably many elements $x \in A$ such that x is a limit point of $A \setminus \{x\}$.
- $oxed{F}$ (4) There exists an open subset of $\mathbb R$ with uncountably many connected components.
- (5) Let (X, d) be a nonempty complete metric space, and let $T: X \to X$ be a continuous map such that T^2 is a contraction, i.e., there exists a < 1 such that for all distinct $x, y \in X$, we have $d(T^2(x), T^2(y)) < ad(x, y)$. Then there exists a unique element $x \in X$ such that T(x) = x.
- T (6) Let

$$S^{2} = \{(x, y, z) \in \mathbb{R}^{3} \mid x^{2} + y^{2} + z^{2} = 1\},$$

and let $d: S^2 \times S^2 \to \mathbb{R}$ be the restriction of the Euclidean metric on \mathbb{R}^3 . If $f: S^2 \to S^2$ is a map such that d(f(x), f(y)) = d(x, y) for all $x, y \in S^2$, then f is surjective.

F (7) Let $C([0,1],\mathbb{R})$ be the set of continuous functions from [0,1] to \mathbb{R} , equipped with the metric d given by

$$d(f_1, f_2) = \sup_{x \in [0,1]} |f_1(x) - f_2(x)|.$$

Let $X \subset C([0,1],\mathbb{R})$ be defined by

$$X := \left\{ f \in C([0,1], \mathbb{R}) \mid \int_0^1 f(t) \ dt \neq 0 \right\}.$$

Then, with the induced metric, X is connected.

- F (8) Let $SO_4 = \{A \in M_4(\mathbb{R}) \mid AA^t = \text{Id}, \text{ and } \det(A) > 0\}$. Then every matrix in SO_4 has 1 or -1 as an eigenvalue.
- (9) Let T be an endomorphism of a finite dimensional real vector space V, and let W denote the image of T. Let T' denote the restriction of T to W. Then T and T' have the same trace.
- F (10) Every subgroup of $S^1 = \{z \in \mathbb{C} \mid z\bar{z} = 1\}$, viewed as a group under multiplication, is finite.
- F (11) If $f: F \to F$ is a homomorphism of fields, then f is surjective.
- T (12) Given any linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$, there exist linear transformations $T_1, T_2: \mathbb{R}^2 \to \mathbb{R}^2$ such that (1,0) belongs to the kernel of T_1 , (0,1) belongs to the image of T_2 , and $T = T_1 + T_2$.
- T (13) For any positive integer d, the set

$$\{10^a - 10^b \mid a, b \text{ are distinct positive integers}\}$$

contains a multiple of d.

| F | (14) There exists $\theta \in (0, \pi/2)$ such that

$$\sin \theta + \sec \theta + \cot \theta = 3.$$

F (15) Let m be a positive integer, and S_m the symmetric group on m letters. Let n be a positive integer such that for every group G of order n, there exists an injective group homomorphism $G \hookrightarrow S_m$. Then $m \ge n$.

- T (16) Let ℓ_1 be the line in \mathbb{R}^2 joining (0,0) and $(\frac{1}{2},\frac{\sqrt{3}}{2})$, and ℓ_2 the line in \mathbb{R}^2 joining (0,0) and $(\frac{\sqrt{3}}{2},\frac{1}{2})$. Consider the group of bijections $\mathbb{R}^2 \to \mathbb{R}^2$ under composition, and its subgroup G generated by the reflections about ℓ_1 and ℓ_2 . Then G has exactly 12 elements.
- F (17) There are only finitely many subsets $I \subset \mathbb{N}$ with the property that

$$\left\{ f(x) = \sum_{i=0}^{n} a_i x^i \in \mathbb{R}[x] \middle| n \in \mathbb{N}, a_i \in \mathbb{Q} \text{ for all } i \in I \right\}$$

is a subring of $\mathbb{R}[x]$.

- T (18) There are uncountably many continuous functions $\mathbb{Q} \to \{0, 1\}$.
- F (19) Let $f: \mathbb{R} \to \mathbb{R}$ be a continuously differentiable function. Suppose there exists $C \in \mathbb{R}$ such that f is injective on (C, ∞) . Then there exists $D \in \mathbb{R}$ such that f' is injective on (D, ∞) .
- T (20) If $f, g : [0, 1] \to \mathbb{R}$ are continuous and $f \cdot g = 0$, then one of f or g is zero on an open subset of [0, 1].