MARKING SCHEME SAMPLE PAPER (2024 -25)

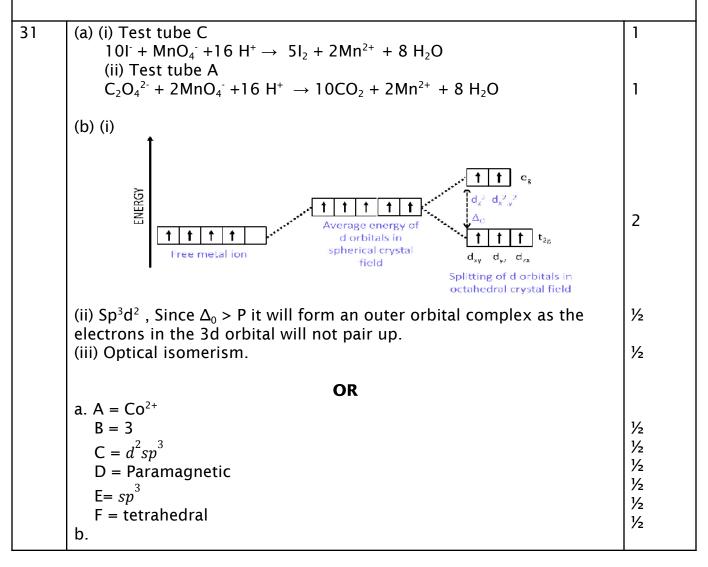
CHEMISTRY THEORY (043)

	SECTION A	
1	(c) reacts with Benzenesulphonyl chloride to form a product that is insoluble in alkali	1
2	(b)CH ₃ Cl The order followed is this CH ₃ I <ch<sub>3Br<ch<sub>3F< CH₃Cl, though F is most electronegative, the bond length is small as compared to C-Cl. Dipole moment is the product of the charge and the bond length.</ch<sub></ch<sub>	1
3	(a) (i)-(C), (ii)-(B), (iii)-(A)	1
4	(d) 1 =Bromomethane, 2= 2-Bromo-2-methylpropane, 3=2-Bromobutane, 4= 1-Bromobutane	1
	(for visually challenged learners) d. 1-Bromobutane	1
5	(c) the order of reaction is zero as the unit of k is $molL^{-1}s^{-1}$. Thus half life = $[R]_o$ / $2k$ = 4.62×10^{-2} /2 x 2.31×10^{-2}	1
6	(b) Benzoic acid and ethanoic acid $C_6H_5COOCOCH_3\underline{H_2Q}C_6H_5COOH + CH_3COOH$	1
7	(b) $X=[Co(NH_3)_4CI_2]^+CI^-$, $Y=1:3$	1
8	(b) Cellulose Starch contains only α glucose, sucrose contains α -D-glucose and β -D-fructose glucose, maltose contains α -D-glucose and cellulose is a polymer of β -D-glucose.	1
9	(d) Ti^{3+} < Cr^{3+} < Fe^{2+} < Mn^{2+} No. of unpaired electrons : Ti^{3+} (1), Cr^{3+} (3), Fe^{2+} (4) and Mn^{2+} (5) Paramagnetism depends on the number of unpaired electrons	1
10	(d) It never goes to completion First order reaction $[R] = [Ro] e^{-kt}$ If $[R]=0$ then	1

	$e^{-kt} = 0$, which is not possible for any finite value of t. Here, t is ∞ .	
11	(a) Nitrobenzene	1
	$ \begin{array}{cccc} & & & \\ & & & \\ \hline & & & \\$	
12	(a)CH ₃ COCH ₃ Aldehyde and ketones give nucleophilic addition reactions. Other carbonyl compounds do not give nucleophilic addition reactions.	1
13	(a) Both A and R are true and R is the correct explanation of A	1
14	(d) A is false but R is true.	1
	$\Lambda_m^\circ = \Lambda_m - A c^{\frac{1}{2}}$ is an incorrect equation, the correct equation is	
	$\Lambda_m = \Lambda_m^{\circ} - A c^{\frac{1}{2}}$	
15	(b) Both A and R are true but R is not the correct explanation of A. Due to the absence of a free aldehydic group, it does not give a reaction with $NaHSO_3$.	1
16	(d)A is false but R is true. The half- life for a zero order reaction $t_{1/2} = [Ro]/2k$ where [Ro] is the initial concentration of the reactant.	1
	SECTION B	
17	(a) Solubility of gas is inversely proportional to the value of Henry's constant K _H . On increasing temperature nitrogen gas becomes less soluble because its K _H value increases. (b) (ii)64.5 °C Chloroform and acetone mixture show negative deviation from	1/2 1/2 1/2 1/2
	Raoult's law therefore, they form maximum boiling azeotrope at a specific composition. The boiling point of the mixture so obtained will be higher than the individual components.	/
	OR	
	(a) At higher altitudes i.e. in Srinagar the atmospheric pressure is	1

	lower. The solubility of a gas in a liquid is directly proportional to the partial pressure of the gas over the solution, therefore, the carbon dioxide dissolved in water will be lesser at Srinagar making the soda go flat faster. (b)Preservation of fruits by adding sugar/salt protects against bacterial action. Through osmosis, a bacterium on canned fruit loses water, shrivels and dies.	1
18	(a) Potassium diaquadioxalatochromate(III) hydrate (b) (i) Haemoglobin: Iron (ii) Vitamin B-12: Cobalt	1
19	(a) $Y(s) Y^{2+(aq)} X^{+(aq)} X(s)$ (b) ions are carrier of current in salt bridge (c) $Y(s) \rightarrow Y^{2+(aq)} + 2e^{-}$	1 ½ ½
	(for visually challenged learners) a. Cathode: silver, Anode: Magnesium b. Mg + 2Ag ⁺ □ Mg ²⁺ + 2Ag	
20	(a)CH ₃ CH ₂ CN (major), CH ₃ CH ₂ NC (minor) (b) CH ₃ CH ₂ CHBrCH ₃ (major) CH ₃ CH ₂ CH ₂ CH ₂ Br (minor) (c) (CH ₃) ₂ C=CHCH ₃ (major) (CH ₃) ₂ CHCHCH ₂ (minor)	1/2+1/2 1/2+1/2 1/2+1/2
21	The carbonyl group present in glucose is aldehyde and the C_1 atom . Glucose gets oxidised to six-carbon carboxylic acid (gluconic acid) with COOH group at the C1 atom on reaction with a mild oxidising agent like bromine water. This indicates that the carbonyl group is present as an aldehydic group	½ ,½
	SECTION C	
22	(a) Product of electrolysis of Copper Chloride Cathode(-) Cu ²⁺ + 2e ⁻ → Cu(s) anode(+) 2Cl ⁻ → Cl ₂ + 2e ⁻	1
	Product of electrolysis of concentrated Copper Sulphate Anode(+) $SO_4^{2-} \rightarrow S_2O_8 + 2e^-$ Cathode (-) $Cu^{2+} + 2e^- \rightarrow Cu(s)$	1
	(b) $\Lambda_{m}^{0}[AI_{2}(SO_{4})_{3}] = 2 \Lambda_{m}^{0} (AI^{3+}) + 3 \Lambda_{m}^{0} (SO_{4}^{2-})$	1
23	(a) In the case of a lower oxide of a transition metal, the metal atom has some electrons present in the valence shell of the metal atom that are not involved in bonding. As a result, it can donate electrons and behave as a base whereas in higher oxide of a transition metal,	1

	the metal atom does not have an electron in the valence shell for donation. As a result, it can accept electrons and behave as an acid. (b) Chromium has unpaired electrons which result in strong metallic bonding which results in it being a hard solid and the absence of unpaired electrons in Hg results in it being a liquid. (c) The increase in effective nuclear charge responsible for steady increase in ionisation energy is counterbalanced by shielding effect of (n-1)d electrons					
24	(a) $\frac{\operatorname{CrO_2Cl_2}/\operatorname{H_3O^+}}{\operatorname{NO_2}}$	1				
	(b) Benzoic acid undergoes extensive intermolecular hydrogen bonding , leading to the formation of dimer .	1				
	(c) Benzoic acid does not undergo reaction with CH3Cl i.e Friedel Craft reaction because the carboxyl group is deactivating and the catalyst aluminium chloride (Lewis acid) gets bonded to the carboxyl group					
	OR					
	Compound 'X' = Benzaldehyde , Compound Y = Acetophenone	1/2,1/2				
	CHO CH3 CH3 CH3 CH3 CH3 CH3 CH3	1				
	Chemical test to distinguish between X and Y is the Tollen Test. Benzaldehyde undergoes SIlver mirror test with Tollen reagent and forms silver mirror. However Acetophenone does not react with Tollen Reagent.	1				


25	(a)	
	$H_2N-CH_2-COOH+H_2N-CH-COOH\xrightarrow{-H_2O}H_2N-CH_2$ CH_3 (Glycine) (Alanine)	1
	H_2N — CH — $COOH$ + H_2N - CH_2 — $COOH$: H_2N - CH_2 — CH_3 CH_3 CH_3	1
	(Alanine) (Glycine) (b) (i) Keratin is a fibrous protein. fibre- like structure is formed. Such proteins are generally insoluble in water.	1/2
	(ii)Insulin is a globular protein . This structure results when the chains of polypeptides coil around to give a spherical shape. These are usually soluble in water.	1/2
26	(a) Ethanol undergoes a dehydration reaction. At 140°C, diethyl ether is formed. The formation of ether is a nucleophilic $S_{\rm N}2$ substitution bimolecular reaction	1+1/2
	(b) When the temperature exceeds 170°C, ethene is the major product. Elimination, E1 reaction	1+½
	$CH_3CH_2OH \longrightarrow \begin{array}{c} H_2SO_4 \\ \hline 443 \text{ K} \\ \hline \\ H_2SO_4 \\ \hline \\ 413 \text{ K} \\ \end{array} C_2H_5OC_2H_5$	
27	"A" is (CH ₃) ₃ CCl, the carbocation intermediate obtained in tertiary alkyl halide is most stable, making A most reactive of all possible isomers.	½ +½
	$(CH_3)_3C$ CI $\xrightarrow{\text{step I}}$ H_3C CH_3 CH_3 CH_3	1
	H_3C CH_3 COH	1

2.2		T I
28	$E_{Cell} = E^{o}_{Cell} - \frac{2.303RT}{n F} \cdot \log Kc$	
	At 298 K	
	$E_{Cell} = E^{o}_{Cell} - \frac{0.0591}{n} \log Kc$	1/2
	At equilibrium Ecell =0, n= 6	1/2
	$E^{\circ}_{Cell} = \frac{0.0591}{n} log Kc$	
	$=0.059/6 \log 4.617 \times 10^{184}$	1/2
	= 0.00983 x 184.6644 = 1.8152	1/2
	(ii) $E^{o}_{cell} = E^{o}_{Sn4+/Sn2+} - E^{o}_{Al3+/Al}$ $1.81 = -0.15 - E^{o}_{Al3+/Al}$	1/2
	$E^{0}_{Al3+/Al} = -1.66 \text{ V}$	<i>Y</i> ₂
	SECTION D	
29	a. Rate = $k [H_2] [Br_2]^{1/2}$ order = $3/2$	1/2 1/2
	units of $k = \frac{\text{mol} L^{-1} s^{-1}}{\text{mol}^{3/2} L^{-3/2}} = \text{mol}^{-1/2} L^{1/2} s^{-1}$	1
	b. Rate = k [H ₂] [Br ₂] ^{1/2} If conc of Br ₂ is tripled Rate' = k [H ₂] [3Br ₂] ^{1/2} Rate' = $\sqrt{3}$ k [H ₂] [Br ₂] ^{1/2}	
	Rate' = √3 Rate	1
		1
	Rate' = √3 Rate	1

	iii tiic cicctioii	egativity of	i the substit	aciic			l
-	(for visually The pKb increasubstituent, the interior of the contraction of the contrac	ases with a erefore the	n increase in e basic stren	n the elect gth decre			se 1
	(iii) 10.15						1
	OR						
	c. (i) 3.5						1
	b. (iv) 9.1						1
	Is the line The pKb increa substituent, th in the electron	erefore the	n increase ir e basic stren	gth decre			se ½
		0	25 Electr	3 ronegativity	35	ч	
		0					
		3 3	9**				
	pkb	35	طو				1½
		45					
		5					
	a						

CH ₂	2.55	CH ₃ CH ₂ CH ₂ NH ₂	10.67	3.33	
NH	3.12	NH ₂ CH ₂ CH ₂ NH ₂	10.08	3.2	1
0	3.44	HOCH ₂ CH ₂ NH ₂	9.45	4.55	
CH₃CON	3.6	CH ₃ CONHCH ₂ CH ₂ NH ₂	9.28	4.72	
b. (iv) 9.1					1
c. (i) 3.5					
OR					
(iii) 10.15					
(111) 10.13					1
	_			_	

SECTION E

(i) Cr ₂ O ₂ ²⁻ + 8 H ⁺	+ 3 $H_2S \rightarrow 2 Cr^{3+} + 3S + 7 H_2O$	1
(::)	+ 6 $Fe^{2+} \rightarrow 2 Cr^{3+} + 6 Fe^{3+} + 7 H_2O$	1
presence of pyridine .	thanol with acetyl chloride is carried out in the Pyridine is a strong organic base .The function ve HCl formed in the reaction.	1
do not favour the form	ing groups, such as alkyl groups, in general, nation of phenoxide ion resulting in decrease in , for example, are less acidic than phenol.	1
b. C₂H₅Br and CH₃CH ethoxy-3-methylpenta	H ₂ CH(CH ₃)CH ₂ CH ₂ ONa yields 2- ne	1
C. (i) CH ₃ KMnO ₄ /O	Benzoic acid COOH HNO ₃ H ₂ SO ₄ m - nitro benzoic acid	1
l (ii)	belizoic acid	
Benzene nitr	NO2 $\begin{array}{c c} \hline & O \\ \hline & CH_3 - C - Cl \\ \hline & AlCl_3 \end{array}$ $\begin{array}{c c} \hline & NO2 \\ \hline & AlCl_3 \end{array}$ $\begin{array}{c c} \hline & CH_3 \\ \hline & O \\ \hline & m-nitroacetophenone \end{array}$	1
	OR	
	g an α-hydrogen are halogenated at the	1/2
I	nt with chlorine or bromine in the presence of a hosphorus to give α-halo carboxylic acids.	1
CH₃COOH Br₂/red I	P CH₂BrCOOH	1/2
b. Isomers of butanol Butan-1-ol , butan-2-ol	are: , 2-methylpropanol , 2-methylpropan-2-ol .	
Acidic strength in ison	neric alcohols varies as follows	
	R R	

		1
		1/2
	The acidic character of alcohols is due to the polar nature of O-H bond. An electron-releasing group ($-CH_3$, $-C_2H_5$) increases electron density on oxygen tending to decrease the polarity of O-H bond 2-methylpropan-2-ol< 2-methylpropanol < butan-2-ol <butan-1-ol :="" a="" an="" b="" c.="" compound="" grignard="" is="" ketone="" organic="" rcor'<="" reagent="" rmgx="" td=""><td>⅓2</td></butan-1-ol>	⅓ 2
	A + B \square CH ₃ —C—CH ₂ —CH ₃ CH ₂ (2-methylbutan-2-ol)	
	Ketones lead to the formation of tertiary alcohol ,so the compound B is a ketone B - Butan-2-one and A $^{\circ}$ is CH ₃ MgBr	½ + ½
	O OMgBr CH ₃ —C—CH ₂ —CH ₃ + CH ₃ MgBr —— CH ₃ —C—CH ₂ —CH ₃ Butanone Methyl CH ₃ CH ₃ CH ₂	1
33	 a. Depression in the freezing point is a colligative property. In dilute solutions the depression of freezing point (ΔTf) is directly proportional to the molal concentration of the solute in a solution. From the graph it is interpreted that Solution 2 shows more depression in freezing point 1 M Al(NO)₃ has higher i value (i=3) than 1 M glucose (i=1) 1 M Al(NO)₃ will have higher depression, hence solution 2 is Al(NO)₃ solution and solution 1 is glucose solution. 	1 ½ ½
	(for visually challenged learners) a. 1 M Al(NO) ₃ shows greater depression in freezing point 1 M Al(NO) ₃ has higher i value (i=3) than 1 M glucose (i=1) and we know that $\Delta T_f = iK_f$ m	1
	b. $\pi = (n_2/V) RT$ Given $\pi = 2.64 atm$	1/2

Let $V_1 = V$ $V_2 = 5V$ (On dilution	by 5 times)		
$\frac{\pi 1}{\pi 2} = \frac{(n/V_1)}{(n/V_2)}$			1
$\frac{2.64}{\pi 2} = \frac{(n/V)}{(n/5V)}$			
π 2 =0.528 atm Osmotic pressure is di	rectly proportio	onal to temperature.	1/2 1/2
The osmotic pressure the temperature.	of cane sugar c	an be decreased by decreasing	1/2
	C	OR .	
concentration of the so same concentration as If the solution become the blood it will lead to start flowing out becau If concentration is less	olution is to be that of blood of s more concent o the shrinking use of endosmo concentrated t elling of blood	trated than the concentration of of blood cells and fluid will	1
b.	2C ₆ H ₅ OH>	(C ₆ H ₅ OH) ₂	
Initial concentration :	С	0	
Final concentration association . Experimentally, pheno	C (1-α) I is 73 % associ	$C\alpha/n$, where α is degree of ated .	1/2
Hence $\alpha = 0.73$. Relation between i (var $\alpha = (1-i)/(1-n)$, where r association is taking p	for phenol = 3	and α is given as : ½ as phenol acts as dimer ,	1/2
Substituting the 0.73=(1-i)/(-0.5)	values :		

i=1-0.73/2 i= 0.635	1/2
Depression in freezing point can be calculated as: $ \Delta T_f = i K_f \ m \\ = i K_f \ (w_b \ / \ M_b \ x \ w_a \) \\ K_f = 5.12 \ K \ Kg/mol, \ w_b = 2 \ x \ 10^{-2} \ kg = 20 \ g, \ w_a = 1 \ kg \ M_b = 94 \\ \Delta T_f = (0.635 \ X \ 5.12 \ X \ 20 \ / \ (94) \\ = 0.691 \ K $	1 ½