

FINAL JEE-MAIN EXAMINATION - APRIL, 2024

(Held On Thursday 04th April, 2024)

TIME: 3:00 PM to 6:00 PM

SECTION-A

31. The translational degrees of freedom (f,) and rotational degrees of freedom (f_r) of CH_4 molecule are :

(1) f = 2 and f = 2

(1)
$$f_t = 2$$
 and $f_r = 2$
(2) $f_t = 3$ and $f_r = 3$
(3) $f_t = 3$ and $f_r = 2$
(4) $f_t = 2$ and $f_r = 3$

Ans. (2)
$$(1)^{-1}$$

Since CH₄ is polyatomic Non-Linear Sol. D.O.F of CH₄ T. DOF = 3

- R DOF = 3
- 32. A cyclist starts from the point P of a circular ground of radius 2 km and travels along its circumference to the point S. The displacement of a cyclist is :

 \therefore Displacement = $R\sqrt{2} = 2\sqrt{2} = \sqrt{8}$ km

33. The magnetic moment of a bar magnet is 0.5 Am^2 . It is suspended in a uniform magnetic field of 8×10^{-2} T. The work done in rotating it from its most stable to most unstable position is :

(1)
$$16 \times 10^{-2}$$
 J (2) 8×10^{-2} J
(3) 4×10^{-2} J (4) Zero

Ans. (2)

Sol. At stable equilibrium $U = -mB \cos 0^\circ = -mB$ At unstable equilibrium $U = -mB \cos 180^\circ = + mB$ $W = \Delta U$

$$W.D. = 2 mB$$

$$= 2 (0.5) 8 \times 10^{-2} = 8 \times 10^{-2} \text{ J}$$

34. Which of the diode circuit shows correct biasing used for the measurement of dynamic resistance of p-n junction diode :

- **Sol.** Diode should be in forward biased to calculate dynamic resistance Hence correct answer would be 2.
- **35.** Arrange the following in the ascending order of wavelength :
 - (A) Gamma rays (λ_1) (B) x-ray (λ_2)
 - (C) Infrared waves (λ_3) (D) Microwaves (λ_4)

Choose the most appropriate answer from the options given below :

Ans. (3)

- **Sol.** $\lambda_1 < \lambda_2 < \lambda_3 < \lambda_4$
- **36.** Identify the logic gate given in the circuit :

- (1) NAND gate(2) OR gate(3) AND gate(4) NOR gate
- Ans. (2)
- **Sol.** $Y = \overline{\overline{A}.\overline{B}}$

By De-Morgan Law

- $Y = \overline{A + B}$
- $\mathbf{Y} = \mathbf{A} + \mathbf{B}$
- Hence OR gate
- **37.** The width of one of the two slits in a Young's double slit experiment is 4 times that of the other slit. The ratio of the maximum of the minimum intensity in the interference pattern is :
 - (1) 9 :1 (2) 16 : 1
 - (3) 1 : 1 (4) 4 : 1

Ans. (1)

Sol. Since, Intensity ∞ width of slit (ω) so, I₁ = I, I₂ = 4I

$$I_{min} = \left(\sqrt{I_1} - \sqrt{I_2}\right)^2 = I$$
$$I_{max} = \left(\sqrt{I_1} + \sqrt{I_2}\right)^2 = 9I$$
$$\frac{I_{max}}{I_{min}} = \frac{9I}{I} = \frac{9}{1}$$

38. Correct formula for height of a satellite from earths

surface is :

$$(1)\left(\frac{T^{2}R^{2}g}{4\pi}\right)^{1/2} - R \qquad (2)\left(\frac{T^{2}R^{2}g}{4\pi^{2}}\right)^{1/3} - R$$
$$(3)\left(\frac{T^{2}R^{2}}{4\pi^{2}g}\right)^{1/3} - R \qquad (4)\left(\frac{T^{2}R^{2}}{4\pi^{2}}\right)^{-1/3} + R$$

Ans. (2)

$$\Rightarrow \frac{gR^{2}}{(R+h)} = (R+h)^{2} \left(\frac{2\pi}{T}\right)^{2}$$
$$\Rightarrow \frac{T^{2}R^{2}g}{(2\pi)^{2}} = (R+h)^{3}$$
$$\Rightarrow \left[\frac{T^{2}R^{2}g}{(2\pi)^{2}}\right]^{1/3} - R = h$$

39. Match List I with List II

	List–I		List–II
А.	Purely capacitive circuit	I.	I^{1} $90^{\circ} \rightarrow V$
B.	Purely inductive circuit	II.	
C.	LCR series at resonance	III.	$\theta \rightarrow I$
D.	LCR series circuit	IV.	V^{\uparrow}

Choose the correct answer from the options given below :

- (1) A-I, B-IV, C-III, D-II
- (2) A-IV, B-I, C-III, D-II
- (3) A-IV, B-I, C-II, D-III
- (4) A-I, B-IV, C-II, D-III

Ans. (4)

- Sol. A V lags by 90° from I hence option (I) is correct.
 - B V lead by 90° from I hence option (IV) is correct
 - C In LCR resonance $X_L = X_c$. Hence circuit is purely resistive so option (II) is correct
 - D In LCR series V is at some angle from I hence(III) is correct

Hence option (4) is correct.

40. Given below are two statements :

Statement I : The contact angle between a solid and a liquid is a property of the material of the solid and liquid as well.

Statement II : The rise of a liquid in a capillary tube does not depend on the inner radius of the tube.

In the light of the above statements, choose the correct answer from the options given below :

- (1) Both Statement I and Statement II are false
- (2) Statement I is false but Statement II is true.
- (3) Statement I is true but Statement II is false.
- (4) Both Statement I and Statement II are true.

Ans. (3)

Sol. Statement I is correct as we know contact angle depends on cohesine and adhesive forces.

Statement II is incorrect because height of liquid is

given by $h = = \frac{2T\cos\theta_c}{\rho gr}$ where r is radius of

Tube (assuming length of capillary is sufficient) Hence option (3) is correct.

41. A body of m kg slides from rest along the curve of vertical circle from point A to B in friction less path. The velocity of the body at B is :

(given, $R = 14 \text{ m}, g = 1$	$0 \text{ m/s}^2 \text{ and } \sqrt{2} = 1.4)$
(1) 19.8 m/s	(2) 21.9 m/s
(3) 16.7 m/s	(4) 10.6 m/s

Ans. (2)

Apply W.E.T. from A to B

$$\Rightarrow W_{mg} = K_{B} - K_{A}$$

$$\Rightarrow mg \times \left(\frac{R}{\sqrt{2}} + R\right) = \frac{1}{2}mv_{B}^{2} - 0 \quad \{v_{A} = 0 \text{ rest}\}$$

$$\Rightarrow mgR \frac{(\sqrt{2} + 1)}{\sqrt{2}} = \frac{1}{2}mv_{B}^{2}$$

$$\Rightarrow \sqrt{\frac{-1}{\sqrt{2}}} = v_{B}$$

$$\Rightarrow \sqrt{\frac{10 \times 14 \times 2(2.4)}{1.4}} = v_{B}$$

$$\Rightarrow 21.9 = v_{B}$$

Hence option (2) is correct

An electric bulb rated 50 W – 200 V is connected across a 100 V supply. The power dissipation of the bulb is :

(1) 12.5 W	(2) 25 W
(3) 50 W	(4) 100 W

Ans. (1)

Sol. Rated power & voltage gives resistance

$$R = \frac{V^{2}}{P} = \frac{(200)^{2}}{50} = \frac{40000}{50}$$
$$R = 800$$
$$P = \frac{(V_{applied})^{2}}{R} = \frac{(100)^{2}}{800}$$
$$P = 12.5 \text{ watt}$$

Hence option 1 is correct.

43. A 2 kg brick begins to slide over a surface which is inclined at an angle of 45° with respect to horizontal axis. The co-efficient of static friction between their surfaces is :

(4) 1.7

(1) 1 (2)
$$\frac{1}{\sqrt{3}}$$

(3) 0.5

Ans. (1)

44. In simple harmonic motion, the total mechanical energy of given system is E. If mass of oscillating particle P is doubled then the new energy of the system for same amplitude is :

Ans. (2)

Sol. T.E.
$$=\frac{1}{2}kA^2$$

since A is same T.E. will be same correct option (2)

45. Given below are two statements : one is labelled as Assertion A and the other is labelled as Reason R. Assertion A : Number of photons increases with increase in frequency of light.

Reason R : Maximum kinetic energy of emitted electrons increases with the frequency of incident radiation.

In the light of the above statements, choose the **most appropriate** answer from the options given below :

- Both A and R are correct and R is NOT the correct explanation of A.
- (2) \mathbf{A} is correct but \mathbf{R} is not correct.
- (3) Both A and R are correct and R is the correct explanation of A.
- (4) A is not correct but **R** is correct.

Ans. (4)

Sol. Intensity of light I = $\frac{nhv}{A}$

Here n is no. of photons per unit time.

 $n = \frac{IA}{hv}$ so on increasing frequency v, n decreases

taking intensity constant.

 $k_{max} = h\nu - \phi$

So on increasing v, kinetic energy increases.

46. According to Bohr's theory, the moment of momentum of an electron revolving in 4th orbit of hydrogen atom is :

(1)
$$8\frac{h}{\pi}$$
 (2) $\frac{h}{\pi}$
(3) $2\frac{h}{\pi}$ (4) $\frac{h}{2\pi}$

Ans. (3)

Sol. Moment of momentum is $\vec{r} \times \vec{P}$

$$L = \vec{r} \times m\vec{v}$$
$$L = mvr = \frac{nh}{2\pi} = \frac{4h}{2\pi} = \frac{2}{2\pi}$$

47. A sample of gas at temperature T is adiabatically expanded to double its volume. Adiabatic constant for the gas is $\gamma = 3/2$. The work done by the gas in the process is : ($\mu = 1$ mole)

(1)
$$\operatorname{RT}\left[\sqrt{2}-2\right]$$
 (2) $\operatorname{RT}\left[1-2\sqrt{2}\right]$
(3) $\operatorname{RT}\left[2\sqrt{2}-1\right]$ (4) $\operatorname{RT}\left[2-\sqrt{2}\right]$

Ans. (4)

Sol. W =
$$\frac{nR\Delta T}{1-\gamma}$$

$$\Gamma V^{\gamma-1} = \operatorname{cons} \operatorname{tan} t = T_{f} (2V)^{\gamma-1}$$

$$T_{f} = T\left(\frac{1}{2}\right)^{1/2} = \frac{T}{\sqrt{2}}$$
$$W = \frac{R\left(\frac{T}{\sqrt{2}} - T\right)}{1 - \frac{3}{2}} = 2RT\frac{\left(\sqrt{2} - 1\right)}{\sqrt{2}}$$
$$= RT\left(2 - \sqrt{2}\right)$$

48. A charge q is placed at the center of one of the surface of a cube. The flux linked with the cube is :-

(1)
$$\frac{q}{4\epsilon_0}$$
 (2) $\frac{q}{2\epsilon_0}$

(3)
$$\frac{q}{8 \epsilon_0}$$
 (4) Zero

Ans. (2)

$$2\phi = \frac{q}{\epsilon_0}$$
$$\phi = \frac{q}{\epsilon_0}$$

49. Applying the principle of homogeneity of dimensions, determine which one is correct.where T is time period, G is gravitational constant, M is mass, r is radius of orbit.

(1)
$$T^{2} = \frac{4\pi^{2}r}{GM^{2}}$$
 (2) $T^{2} = 4\pi^{2}r^{3}$
(3) $T^{2} = \frac{4\pi^{2}r^{3}}{GM}$ (4) $T^{2} = \frac{4\pi^{2}r^{2}}{GM}$

Ans. (3)

Sol. According to principle of homogeneity dimension of LHS should be equal to dimensions of RHS so option (3) is correct.

$$T^{2} = \frac{4\pi^{2}r^{3}}{GM}$$

$$\boxed{\frac{1}{|M L T^{2}|[M]}}$$

(Dimension of G is
$$\left\lceil M^{-1}L^{3}T^{-2} \right\rceil$$

$$\begin{bmatrix} T^2 \end{bmatrix} = \frac{\begin{bmatrix} L^3 \end{bmatrix}}{\begin{bmatrix} L^3 T^{-2} \end{bmatrix}} = \begin{bmatrix} T^2 \end{bmatrix}$$

50. A 90 kg body placed at 2R distance from surface of earth experiences gravitational pull of :

(R = Radius of earth, g = 10 ms⁻²)(1) 300 N
(2) 225 N
(3) 120 N
(4) 100 N

Ans. (4)

Sol. Value of $g = g_s \left(1 + \frac{h}{R}\right)^{-2}$

$$= g_{s} (1+2)^{-2} = \frac{g_{s}}{9}$$

Here $g_s =$ gravitational acceleration at surface

Force = mg = 90 ×
$$\frac{g_s}{9}$$
 = 100 N

SECTION-B

51. The displacement of a particle executing SHM is given by $x = 10 \sin \left(\omega t + \frac{\pi}{3} \right) m$. The time period of motion is 3.14 s. The velocity of the particle at t = 0 is m/s.

Sol. Given,
$$T = 3 14 - \frac{2\pi}{3}$$

$$u = 3.14 - \frac{\pi}{\omega}$$

$$\omega = 2 \text{ rad/s}$$

$$x = 10 \sin\left(\omega t + \frac{\pi}{3}\right)$$

$$v = \frac{dx}{dt} = 10\omega \cos\left(\omega t + \frac{\pi}{3}\right)$$

at t = 0

$$w = 10\omega\cos\left(\frac{\pi}{3}\right) = 10 \times 2 \times \frac{1}{2} \text{ [using } \omega = 2 \text{ rad/s]}$$

v = 10 m/s

52. A bus moving along a straight highway with speed of 72 km/h is brought to halt within 4s after applying the brakes. The distance travelled by the bus during this time (Assume the retardation is uniform) is _____m.

Ans. (40)

Sol. Initial velocity = u = 72 km/h = 20 m/s v = u + at $\Rightarrow 0 = 20 + a \times 4$ $a = -5 m/s^2$ $v^2 - u^2 = 2as$

$$\Rightarrow 0^2 - 20^2 = 2(-5).s$$

s = 40 m

53. A parallel plate capacitor of capacitance 12.5 pF is charged by a battery connected between its plates to potential difference of 12.0 V. The battery is now disconnected and a dielectric slab ($\epsilon_r = 6$) is inserted between the plates. The change in its potential energy after inserting the dielectric slab is $\times 10^{-12}$ J.

Ans. (750)

Sol. Before inserting dielectric capacitance is given $C_0 = 12.5 \text{ pF}$ and charge on the capacitor $Q = C_0 V$ After inserting dielectric capacitance will become $\in C_0$.

Change in potential energy of the capacitor $= E_i - E_f$

$$= \frac{Q^2}{2C_i} - \frac{Q^2}{2C_f} = \frac{Q^2}{2C_0} \left[1 - \frac{1}{\epsilon_r} \right]$$
$$= \frac{\left(C_0 V\right)^2}{2C_0} \left[1 - \frac{1}{\epsilon_r} \right] = \frac{1}{2} C_0 V^2 \left[1 - \frac{1}{\epsilon_r} \right]$$
Using C₀ = 12.5 pF, V = 12 V, $\epsilon_r = 6$

$$= \frac{1}{2} (12.5) \times 12^{2} \left[1 - \frac{1}{6} \right] = \frac{1}{2} (12.5) \times 12^{2} \times \frac{5}{6}$$

= 750 pJ = 750 × 10⁻¹² J

54. In a system two particles of masses $m_1 = 3kg$ and $m_2 = 2kg$ are placed at certain distance from each other. The particle of mass m_1 is moved towards the center of mass of the system through a distance 2cm. In order to keep the center of mass of the system at the original position, the particle of mass m_2 should move towards the center of mass by the distance _____ cm.

Ans. (3)

Sol.
$$m_1 = 3kg$$
 $m_2 = 2kg$
 $2cm$ $x^{-\bullet}$
 $\Delta X_{C.O.M.} = \frac{m_1 \Delta x_1 + m_2 \Delta x_2}{m_1 + m_2}$
 $\Rightarrow 0 = \frac{3 \times 2 + 2(-x)}{3 + 2}$
 $\Rightarrow x = 3 cm$

55. The disintegration energy Q for the nuclear fission of ${}^{235}U \rightarrow {}^{140}Ce + {}^{94}Zr + n$ is _____MeV. Given atomic masses of ${}^{235}U: 235.0439u; {}^{140}Ce; 139.9054u$,

 94 Zr : 93.9063u; n : 1.0086u,

Value of $c^2 = 931 \text{ MeV/u}$.

Ans. (208)

Sol.
$$^{235}U \rightarrow ^{140}Ce + ^{94}Zr + n$$

Disintegration energy

$$Q = (m_{R} - m_{p}).c^{2}$$

$$m_{R} = 235.0439 u$$

$$m_{p} = 139.9054u + 93.9063u + 1.0086 u$$

$$= 234.8203u$$

$$Q = (235.0439u - 234.8203u)c^{2}$$

$$= 0.2236 c^{2}$$

$$= 0.2236 \times 931$$

$$Q = 208.1716$$
A light ray is incident on a glass slab of thickness

56. A light ray is incident on a glass slab of thickness 4√3 cm and refractive index √2. The angle of incidence is equal to the critical angle for the glass slab with air. The lateral displacement of ray after passing through glass slab is ____cm.

(Given $\sin 15^\circ = 0.25$)

Ans. (2)

Sol.
$$t \downarrow \mu$$
 $r \downarrow$

$$\mathbf{i} = \mathbf{\theta}_{c}$$
$$\Rightarrow \mathbf{i} = \sin^{-1} \left(\frac{1}{\mu} \right)$$

 \Rightarrow i = 45° and according to snell's law

$$1 \sin 45^\circ = \sqrt{2} \sin r$$
$$\Rightarrow r = 30^\circ$$

Lateral displacement $\Delta = \frac{t \sin(i-r)}{\cos r}$

$$\Rightarrow \Delta = \frac{4\sqrt{3} \times \sin 15^{\circ}}{\cos 30^{\circ}}$$

 $\Rightarrow \Delta = 2$ cm

57. A rod of length 60 cm rotates with a uniform angular velocity 20 rad s⁻¹ about its perpendicular bisector, in a uniform magnetic field 0.5 T. The direction of magnetic field is parallel to the axis of rotation. The potential difference between the two ends of the rod is _____V.

Ans. (0)

Sol. Sol. $V_0 - V_A = \frac{B\omega\ell^2}{2}$ $V_0 - V_B = \frac{B\omega\ell^2}{2}$ $V_0 - V_B = \frac{B\omega\ell^2}{2}$ $\therefore V_A = V_B \therefore V_A - V_B = 0$

58. Two wires A and B are made up of the same material and have the same mass. Wire A has radius of 2.0 mm and wire B has radius of 4.0 mm. The resistance of wire B is 2Ω. The resistance of wire A is ____ Ω.

Ans. (32)

Sol.
$$\therefore R = \frac{\rho \ell}{A} = \frac{\rho V}{A^2}$$
$$\therefore \frac{R_A}{R_B} = \frac{A_B^2}{A_A^2} = \frac{r_B^4}{r_A^4}$$
$$\Rightarrow \frac{R_A}{2} = \left[\frac{4 \times 10^{-3}}{2 \times 10^{-3}}\right]^4$$
$$\Rightarrow R_A = 32 \ \Omega.$$

59. Two parallel long current carrying wire separated by a distance 2r are shown in the figure. The ratio of magnetic field at A to the magnetic field produced at C is $\frac{x}{7}$. The value of x is ____.

Ans. (5)

Sol.
$$B_A = \frac{\mu_0 i}{2\pi r} + \frac{\mu_0 (2i)}{2\pi (3r)} = \frac{5\mu_0 i}{6\pi r}$$

 $B_C = \frac{\mu_0 (2i)}{2\pi r} + \frac{\mu_0 i}{2\pi (3r)} = \frac{7\mu_0 i}{6\pi r}$
 $\therefore \frac{B_A}{B_C} = \frac{5}{7}$
 $\therefore x = 5$

60. Mercury is filled in a tube of radius 2 cm up to a height of 30 cm. The force exerted by mercury on the bottom of the tube is ____N. (Given, atmospheric pressure = 10^5 Nm⁻², density of mercury = 1.36×10^4 kg m⁻³, g = 10 ms⁻², $\pi = \frac{22}{7}$)

Ans. (177) Sol. $F = P_0 A + \rho_m ghA$ $= 10^5 \times \frac{22}{7} \times (2 \times 10^{-2})^2$ $+ 1.36 \times 10^4 \times 10 \times (30 \times 10^{-2}) \left(\frac{22}{7} \times (2 \times 10^{-2})^2\right)$ F = 51.29 + 125.71 = 177 N