FINAL JEE-MAIN EXAMINATION - APRIL, 2024

(Held On Monday 08th April, 2024)

TIME: 9:00 AM to 12:00 NOON

SECTION-A

- **31.** Three bodies A, B and C have equal kinetic energies and their masses are 400 g, 1.2 kg and 1.6 kg respectively. The ratio of their linear momenta is :
 - (1) 1: $\sqrt{3}$: 2
- (2) $1:\sqrt{3}:\sqrt{2}$
- (3) $\sqrt{2}:\sqrt{3}:1$
- (4) $\sqrt{3}:\sqrt{2}:1$

Ans. (1)

- **Sol.** KE = $\frac{P^2}{2m}$
 - $P \propto \sqrt{m}$

Hence, $P_A: P_B: P_C$

 $=\sqrt{400}:\sqrt{1200}:\sqrt{1600}=1:\sqrt{3}:2$

- 32. Average force exerted on a non-reflecting surface at normal incidence is 2.4×10^{-4} N. If 360 W/cm² is the light energy flux during span of 1 hour 30 minutes. Then the area of the surface is:
 - $(1) 0.2 \text{ m}^2$
- (2) 0.02 m²
- $(3) 20 \text{ m}^2$
- $(4) 0.1 \text{ m}^2$

Ans. (2)

Sol. Pressure = $\frac{}{C} \frac{}{A}$

$$\Rightarrow \frac{360}{10^{-4} \times 3 \times 10^8} = \frac{2.4 \times 10^{-4}}{A}$$

$$\Rightarrow$$
 A = 2 × 10⁻² m² = 0.02 m²

33. A proton and an electron are associated with same de-Broglie wavelength. The ratio of their kinetic energies is:

(Assume h = $6.63 \times 10^{-34} \text{ J s}, m_e = 9.0 \times 10^{-31} \text{ kg}$ and $m_p = 1836 \text{ times } m_e$)

- (1) 1 : 1836
- (2) 1: $\frac{1}{1836}$
- (3) 1: $\frac{1}{\sqrt{1836}}$
- (4) 1 : $\sqrt{1836}$

Ans. (1)

Sol. λ is same for both

 $P = \frac{h}{\lambda}$ same for both

 $P = \sqrt{2mK}$

Hence,

 $K \propto \frac{1}{m}$

 $\Rightarrow \frac{\mathrm{KE}_{\mathrm{p}}}{\mathrm{KE}_{\mathrm{e}}} = \frac{\mathrm{m}_{\mathrm{e}}}{\mathrm{m}_{\mathrm{p}}} = \frac{1}{1836}$

- **34.** A mixture of one mole of monoatomic gas and one mole of a diatomic gas (rigid) are kept at room temperature (27°C). The ratio of specific heat of gases at constant volume respectively is:
 - (1) $\frac{7}{5}$

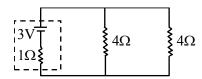
(2) $\frac{3}{2}$

(3) $\frac{3}{5}$

 $(4) \frac{5}{3}$

Ans. (3)

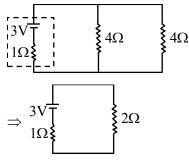
- **Sol.** $\frac{(C_v)_{mono}}{(C_v)_{dia}} = \frac{\frac{3}{2}R}{\frac{5}{2}R} = \frac{3}{5}$
- **35.** In an expression $a \times 10^b$:
 - (1) a is order of magnitude for $b \leq 5\,$
 - (2) b is order of magnitude for $a \le 5$
 - (3) b is order of magnitude for $5 < a \le 10$
 - (4) b is order of magnitude for $a \ge 5$


Ans. (2)

Sol. $a \times 10^b$

if $a \le 5$ order is b

a > 5 order is b + 1


36. In the given circuit, the terminal potential difference of the cell is:

- (1) 2 V
- (2) 4 V
- (3) 1.5 V
- (4) 3 V

Ans. (1)

Sol.

$$i = \frac{3}{1+2} = 1A$$

$$v = E - ir$$

$$= 3 - 1 \times 1 = 2V$$

- 37. Binding energy of a certain nucleus is 18×10^8 J. How much is the difference between total mass of all the nucleons and nuclear mass of the given nucleus:
 - $(1) 0.2 \mu g$
- $(2) 20 \mu g$
- $(3) 2 \mu g$
- $(4)\ 10\ \mu g$

Ans. (2)

Sol.
$$\Delta mc^2 = 18 \times 10^8$$

$$\Delta m \times 9 \times 10^{16} = 18 \times 10^8$$

$$\Delta m = 2 \times 10^{-8} \, \text{kg} = 20 \, \mu \text{g}$$

- **38.** Paramagnetic substances:
 - A. align themselves along the directions of external magnetic field.
 - B. attract strongly towards external magnetic field.
 - C. has susceptibility little more than zero.
 - D. move from a region of strong magnetic field to weak magnetic field.

Choose the **most appropriate** answer from the options given below:

- (1) A, B, C, D
- (2) B, D Only
- (3) A, B, C Only
- (4) A, C Only

Ans. (4)

Sol. A, C only

- 39. A clock has 75 cm, 60 cm long second hand and minute hand respectively. In 30 minutes duration the tip of second hand will travel x distance more than the tip of minute hand. The value of x in meter is nearly (Take $\pi = 3.14$):
 - (1) 139.4
- (2) 140.5
- (3) 220.0
- (4) 118.9

Ans. (1)

Sol.
$$x_{min} = \pi \times r_{min}$$

$$= \pi \times \frac{60}{100} \text{m}.$$

$$x_{second} = 30 \times 2\pi \times r_{second}$$

$$=30\times2\pi\times\frac{75}{100}$$

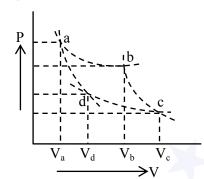
$$\mathbf{x} = \mathbf{x}_{\text{second}} - \mathbf{x}_{\text{min}}$$

$$= 139.4 \text{ m}$$

40. Young's modulus is determined by the equation given by $Y = 49000 \frac{m}{\ell} \frac{dyne}{cm^2}$ where M is the mass

and ℓ is the extension of wire used in the experiment. Now error in Young modules(Y) is estimated by taking data from M- ℓ plot in graph paper. The smallest scale divisions are 5 g and 0.02 cm along load axis and extension axis respectively. If the value of M and ℓ are 500 g and 2 cm respectively then percentage error of Y is:

- (1) 0.2 %
- (2) 0.02 %
- (3) 2 %
- (4) 0.5 %


Ans. (3)

Sol.
$$\frac{\Delta Y}{Y} = \frac{\Delta m}{m} + \frac{\Delta \ell}{\ell}$$

= $\frac{5}{500} + \frac{0.02}{2} = 0.01 + 0.01$

$$\frac{\Delta Y}{Y} = 0.02 \implies \% \frac{\Delta Y}{Y} = 2\%$$

Two different adiabatic paths for the same gas intersect two isothermal curves as shown in P-V diagram. The relation between the ratio $\frac{V_a}{V}$ and the

ratio $\frac{V_b}{V}$ is:

- $(1) \frac{V_a}{V_a} = \left(\frac{V_b}{V_a}\right)^{-1}$
- $(2) \frac{V_a}{V_a} \neq \frac{V_b}{V_a}$
- $(3) \frac{}{V_d} \frac{}{V_c}$
- (4) $\frac{V_a}{V_b} = \left(\frac{V_b}{V}\right)^2$

Ans. (3)

Sol. For adiabatic process

$$TV^{\gamma-1} = constant$$

$$T_a\cdot V_a^{\gamma-1}=T_d\cdot V_d^{\gamma-1}$$

$$\left(\frac{V_a}{V_d}\right)^{\!\gamma-1} = \! \frac{T_d}{T_a}$$

$$\left(\frac{V_b}{V_c}\right)^{\!\gamma-1} = \! \frac{T_c}{T_b}$$

$$\frac{V_a}{V_d} = \frac{V_b}{V_c} \qquad \left(\begin{array}{c} \because T_d = T_c \\ T_a = T_b \end{array} \right)$$

- Two planets A and B having masses m₁ and m₂ move **42.** around the sun in circular orbits of r₁ and r₂ radii respectively. If angular momentum of A is L and that of B is 3L, the ratio of time period $\left(\frac{T_A}{T_D}\right)$ is:
 - $(1)\left(\frac{\mathbf{r}_2}{\mathbf{r}_1}\right)^{\frac{3}{2}}$
- $(2)\left(\frac{\mathbf{r}_1}{\mathbf{r}_2}\right)^3$
- (3) $\frac{1}{27} \left(\frac{m_2}{m_1}\right)^3$ (4) $27 \left(\frac{m_1}{m_2}\right)^3$

Ans. (3)

Sol.
$$\frac{\pi r_1^2}{T_A} = \frac{L}{2m_1}$$
(1)

$$\frac{\pi r_2^2}{T_B} = \frac{3L}{2m_2} \quad(2)$$

$$\Rightarrow \frac{T_A}{T_B} = 3. \frac{m_1}{m_2} \cdot \left(\frac{r_1}{r_2}\right)^2$$

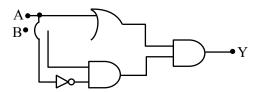
$$\left(\frac{T_{A}}{T_{B}}\right)^{2} = \left(\frac{r_{l}}{r_{2}}\right)^{3} \Longrightarrow \left(\frac{r_{l}}{r_{2}}\right)^{2} = \left(\frac{T_{A}}{T_{B}}\right)^{\frac{4}{3}}$$

$$\Rightarrow \frac{1}{27} \cdot \left(\frac{m_2}{m_1}\right)^3 = \left(\frac{T_A}{T_B}\right)$$

- A LCR circuit is at resonance for a capacitor C, 43. inductance L and resistance R. Now the value of resistance is halved keeping all other parameters same. The current amplitude at resonance will be now:
 - (1) Zero
- (2) double
- (3) same
- (4) halved

Ans. (2)

Sol. In resonance Z = R


$$I = \frac{V}{R}$$

 $R \rightarrow halved$

$$\Rightarrow I \rightarrow 2I$$

I becomes doubled.

44. The output Y of following circuit for given inputs is:

- (1) $A \cdot B(A + B)$
- (2) A B

(3) 0

(4) •B

- Ans. (3)
- **Sol.** By truth table

A	В	Y
0	0	0
0	1	0
1	0	0
1	1	0

- **45.** Two charged conducting spheres of radii a and b are connected to each other by a conducting wire. The ratio of charges of the two spheres respectively is:
 - $(1) \sqrt{ab}$
- (2) ab

 $(3) \frac{a}{b}$

(4) $\frac{b}{a}$

Ans. (3)

Sol. Potential at surface will be same

$$\frac{Kq_1}{a} = \frac{Kq_2}{b}$$

$$\frac{q_1}{q_2} = \frac{a}{b}$$

- **46.** Correct Bernoulli's equation is (symbols have their usual meaning):
 - (1) P + mgh + $\frac{1}{2}$ mv² = constant
 - (2) $P + \rho gh + \frac{1}{2}\rho v^2 = constant$
 - (3) $P + \rho gh + \rho v^2 = constant$
 - (4) P + $\frac{1}{2} \rho gh + \frac{1}{2} \rho v^2 = constant$

Ans. (2)

Sol. $P + \rho gh + \frac{1}{2}\rho V^2 = constant$

- **47.** A player caught a cricket ball of mass 150 g moving at a speed of 20 m/s. If the catching process is completed in 0.1 s, the magnitude of force exerted by the ball on the hand of the player is:
 - (1) 150 N
- (2) 3 N
- (3) 30 N
- (4) 300 N

Ans. (3)

Sol.
$$F = \frac{\Delta P}{\Delta t} = \frac{mv - 0}{0.1}$$

$$=\frac{150\times10^{-3}\times20}{0.1}=30\,\mathrm{N}$$

- **48.** A stationary particle breaks into two parts of masses m_A and m_B which move with velocities v_A and v_B respectively. The ratio of their kinetic energies $(K_B:K_A)$ is:
 - $(1) v_B : v_A$
- (2) $m_B : m_A$
- (3) m_B v_B: m_A v_A
- (4) 1 : 1

- Ans. (1)
- **Sol.** Initial momentum is zero.

Hence $|P_A| = |P_B|$

$$\Rightarrow m_A v_B = m_B V_B$$

$$\frac{(KE)_{A}}{(KE)_{B}} = \frac{\frac{1}{2}m_{A}v_{A}^{2}}{\frac{1}{2}m_{B}v_{B}^{2}} = \frac{v_{A}}{v_{B}}$$

$$\frac{(KE)_{B}}{(KE)_{A}} = \frac{v_{B}}{v_{A}}$$

- **49.** Critical angle of incidence for a pair of optical media is 45°. The refractive indices of first and second media are in the ratio:
 - (1) $\sqrt{2}$:1
- (2) 1 : 2
- (3) $1:\sqrt{2}$
- (4) 2 : 1

Ans. (1)

Sol.
$$\sin \theta_c = \frac{\mu_R}{\mu_d} = \frac{\mu_2}{\mu_1}$$

$$\sin 45^\circ = \frac{\mu_2}{\mu_1}$$

$$\Rightarrow \frac{1}{\sqrt{2}} = \frac{\mu_2}{\mu_1}$$

$$\Rightarrow \frac{\mu_1}{\mu_2} = \frac{\sqrt{2}}{1}$$

50. The diameter of a sphere is measured using a vernier caliper whose 9 divisions of main scale are equal to 10 divisions of vernier scale. The shortest division on the main scale is equal to 1 mm. The main scale reading is 2 cm and second division of vernier scale coincides with a division on main scale. If mass of the sphere is 8.635 g, the density of the sphere is:

$$(1) 2.5 \text{ g/cm}^3$$

$$(2) 1.7 \text{ g/cm}^3$$

$$(3) 2.2 \text{ g/cm}^3$$

$$(4) 2.0 \text{ g/cm}^3$$

Ans. (4)

Sol. Given
$$9MSD = 10VSD$$

$$mass = 8.635 g$$

$$LC = 1 MSD - 1 VSD$$

$$LC = 1 MSD - \frac{9}{10} MSD$$

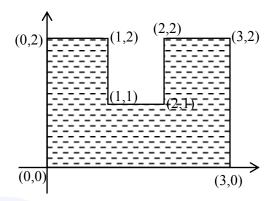
$$LC = \frac{1}{10}MSD$$

$$LC = 0.01 \text{ cm}$$

Reading of diameter = $MSR + LC \times VSR$

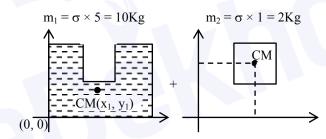
$$= 2 \text{ cm} + (0.01) \times (2)$$

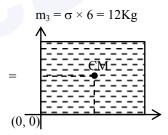
$$= 2.02 \text{ cm}$$


Volume of sphere = $\frac{4}{3}\pi \left(\frac{d}{2}\right)^3 = \frac{4}{3}\pi \left(\frac{2.02}{2}\right)^3$

$$= 4.32 \text{ cm}^3$$

Density =
$$\frac{\text{mass}}{\text{volume}} = \frac{8.635}{4.32} = 1.998 \sim 2.00 \,\text{g}$$


SECTION-B


51. A uniform thin metal plate of mass 10 kg with dimensions is shown. The ratio of x and y coordinates of center of mass of plate in $\frac{n}{9}$. The value of n is

Ans. (15)

Sol.
$$m_1 = \sigma \times 5 = 10 \text{ Kg}$$

$$\Rightarrow$$
 m₁ x₁ + m₂ x₂ = m₃ x₃
10x₁ + 2(1.5) = 12(1.5) \Rightarrow x₁ = 1.5 cm

$$\Rightarrow$$
 m₁ y₁ + m₂ y₂ = m₃ y₃
10y₁ + 2(1.5) = 12 × 1 \Rightarrow y₁ = 0.9 cm

$$\frac{x_1}{y_1} = \frac{1.5}{0.9} = \frac{15}{9}$$

$$n = 15$$

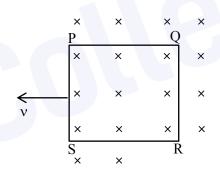
52. An electron with kinetic energy 5 eV enters a region of uniform magnetic field of 3 μ T perpendicular to its direction. An electric field E is applied perpendicular to the direction of velocity and magnetic field. The value of E, so that electron moves along the same path, is NC⁻¹.

(Given, mass of electron = 9 × 10⁻³¹ kg, electric charge = 1.6 × 10⁻¹⁹C)

Ans. (4)

Sol. For the given condition of moving undeflected, net force should be zero.

$$qE = qVB$$


$$E = VB$$

$$= \sqrt{\frac{2 \times KE}{m}} \times B$$

$$= \sqrt{\frac{2 \times 5 \times 1.6 \times 10^{-19}}{9 \times 10^{-31}}} \times 3 \times 10^{-6}$$

$$= 4 \text{ N/C}$$

53. A square loop PQRS having 10 turns, area 3.6×10^{-3} m² and resistance 100 Ω is slowly and uniformly being pulled out of a uniform magnetic field of magnitude B = 0.5 T as shown. Work done in pulling the loop out of the field in 1.0 s is $\times 10^{-6}$ J.

Ans. (3)

Sol.
$$\in = NB\ell v$$

$$i = \frac{\in}{R} = \frac{NB\ell v}{R}$$

$$F = N(i\ell B) = \frac{N^2 B^2 \ell^2 v}{R}$$

$$W = F \times \ell = \frac{N^2 B^2 \ell^3}{R} \left(\frac{\ell}{t}\right)$$

$$\mathbf{A} = \ell^2$$

$$W = \frac{(10 \times 10)(0.5)^2 \times (3.6 \times 10^{-3})^2}{100 \times 1}$$

$$W = 3.24 \times 10^{-6} \text{ J}$$

54. Resistance of a wire at 0 °C, 100 °C and t °C is found to be 10Ω , 10.2Ω and 10.95Ω respectively. The temperature t in Kelvin scale is

Ans. (748)

Sol.
$$R = R_0(1 + \alpha \Delta T)$$

$$\frac{\Delta R}{R_0} = \alpha \Delta T$$

Case-I

$$0 \, ^{\circ}\text{C} \rightarrow 100 \, ^{\circ}\text{C}$$

$$\frac{10.2 - 10}{10} = \alpha(100 - 0) \qquad \dots (1)$$

Case-II

$$0 \, {}^{\circ}\text{C} \rightarrow t \, {}^{\circ}\text{C}$$

$$\frac{10.95-10}{10} = \alpha(t-0) \qquad \dots (2)$$

$$\Rightarrow \frac{t}{100} = \frac{0.95}{0.2} = 475$$
°C

$$t = 475 + 273 = 748 \text{ K}$$

55. An electric field, $\vec{E} = \frac{2\hat{i} + 6\hat{j} + 8\hat{k}}{\sqrt{6}}$ passes through the surface of 4 m² area having unit vector $\hat{n} = \left(\frac{2\hat{i} + \hat{j} + \hat{k}}{\sqrt{6}}\right)$. The electric flux for that surface is ______ V m.

Ans. (12)

Sol.
$$\phi = \vec{E} \cdot \vec{A}$$

$$= \left(\frac{2\hat{\mathbf{i}} + 6\hat{\mathbf{j}} + 8\hat{\mathbf{k}}}{\sqrt{6}}\right) \cdot 4\left(\frac{2\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}}{\sqrt{6}}\right)$$

$$=\frac{4}{6}\times(4+6+8)=12\,\mathrm{Vm}$$

56. A liquid column of height 0.04 cm balances excess pressure of soap bubble of certain radius. If density of liquid is 8×10^3 kg m⁻³ and surface tension of soap solution is 0.28 Nm⁻¹, then diameter of the soap bubble is _____ cm.

$$(if g = 10 ms^{-2})$$

Ans. (7)

Sol. $\rho gh = \frac{4S}{R}$

$$\Rightarrow R = \frac{4 \times 0.28}{8 \times 10^3 \times 10 \times 4 \times 10^{-4}}$$
$$\Rightarrow \frac{0.28}{8} \text{ m} = \frac{28}{8} \text{ cm}$$

$$\Rightarrow$$
 R = 3.5 cm

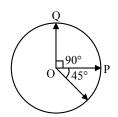
Diameter = 7 cm

57. A closed and an open organ pipe have same lengths. If the ratio of frequencies of their seventh overtones is $\left(\frac{a-1}{a}\right)$ then the value of a is _____.

Ans. (16)

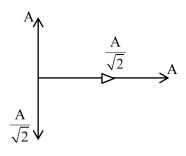
Sol. For closed organ pipe

$$f_c = (2n+1)\frac{v}{4\ell} = \frac{15v}{4\ell}$$


For open organ pipe

$$f_o = (n+1)\frac{v}{2\ell} = \frac{8v}{2\ell}$$

$$\frac{f_c}{f_o} = \frac{15}{16} = \frac{a-1}{a}$$


$$\Rightarrow$$
 a = 16

58. Three vectors \overrightarrow{OP} , \overrightarrow{OQ} and \overrightarrow{OR} each of magnitude A are acting as shown in figure. The resultant of the three vectors is $A\sqrt{x}$. The value of x is

Ans. (3)

Sol.

$$\vec{R} = \left(A + \frac{A}{\sqrt{2}}\right)\hat{i} + \left(A - \frac{A}{\sqrt{2}}\right)\hat{j}$$

$$|\vec{R}| = \sqrt{\left(A + \frac{A}{\sqrt{2}}\right)^2 + \left(A - \frac{A}{\sqrt{2}}\right)^2} = \sqrt{3}A$$

59. A parallel beam of monochromatic light of wavelength 600 nm passes through single slit of 0.4 mm width. Angular divergence corresponding to second order minima would be ×10⁻³ rad.

Ans. (6)

Sol.
$$\sin \theta \simeq \theta \simeq \frac{2\lambda}{b}$$

$$= \frac{2 \times 600 \times 10^{-9}}{4 \times 10^{-4}} = 3 \times 10^{-3} \text{ rad}$$

Total divergence = $(3 + 3) \times 10^{-3} = 6 \times 10^{-3}$ rad

60. In an alpha particle scattering experiment distance of closest approach for the α particle is 4.5×10^{-14} m. If target nucleus has atomic number 80, then maximum velocity of α -particle is _____× 10^5 m/s approximately.

$$(\frac{1}{4\pi \epsilon_0} = 9 \times 10^9 \text{ SI unit, mass of } \alpha \text{ particle} = 6.72 \times 10^{-27} \text{ kg})$$

Ans. (156)

Sol.
$$v = \sqrt{\frac{4KZe^2}{mr_{min}}}$$

$$= \sqrt{\frac{4 \times 9 \times 10^9 \times 80}{6.72 \times 10^{-27} \times 4.5 \times 10^{-14}}} \times 1.6 \times 10^{-19}$$

$$= 9.759 \times 10^{25} \times 1.6 \times 10^{-19}$$

$$= 156 \times 10^5 \text{ m/s}$$