

FINAL JEE-MAIN EXAMINATION - APRIL, 2024

(Held On Tuseday 09th April, 2024)

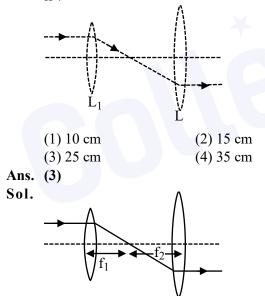
TIME: 3:00 PM to 6:00 PM

SECTION-A

- **31.** A nucleus at rest disintegrates into two smaller nuclei with their masses in the ratio of 2:1. After disintegration they will move :-
 - In opposite directions with speed in the ratio of 1:2 respectively
 - (2) In opposite directions with speed in the ratio of 2:1 respectively
 - (3) In the same direction with same speed.
 - (4) In opposite directions with the same speed.

Ans. (1)

Sol. By conservation of momentum


$$p_{i} = p_{f}$$

$$O = m_{1}u_{1+}m_{2}u_{2}$$

$$\frac{u_{1}}{u_{2}} = -\left[\frac{1}{2}\right] \text{ as } \frac{m_{1}}{m_{2}} = \frac{2}{1}$$

move in opposite direction with speed ratio 1 : 2

32. The following figure represents two biconvex lenses L_1 and L_2 having focal length 10 cm and 15 cm respectively. The distance between $L_1 \& L_2$ is :

 $D = f_1 + f_2 = 25 \text{ cm}$

Paraxial parallel rays pass through focus and ray from focus of convex lens will become parallel

33. The temperature of a gas is -78° C and the average translational kinetic energy of its molecules is K. The temperature at which the average translational kinetic energy of the molecules of the same gas becomes 2K is :

(1) –39°C	(2) 117°C
(3) 127°C	(4) –78°C

Ans. (2)

Sol. K.E =
$$\frac{nf_1RT}{2}$$

 $T_i = -78^{\circ}C \rightarrow 273 + [-78^{\circ}C] = 195K$

 $K.E \; \alpha \; T$

To double the K.E energy temp also become double

$$T_{f} = 390 \text{ K}$$

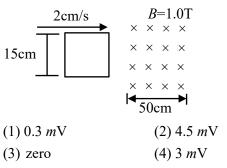
$$T_{e} = 117^{\circ}C$$

- 34. A hydrogen atom in ground state is given an energy of 10.2 eV. How many spectral lines will be emitted due to transition of electrons ?
 (1) 6 (2) 3
 - (1) 0 (2) 3 (3) 10 (4) 1

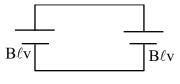
Ans. (4)

- **Sol.** Hydrogen will be in first excited state therefore it will emit one spectral line corresponding to transition b/w energy level 2 to 1
- 35. The magnetic field in a plane electromagnetic wave is $B_y = (3.5 \times 10^{-7}) \sin (1.5 \times 10^3 x + 0.5 \times 10^{11} t)T$. The corresponding electric field will be (1) $E_y = 1.17 \sin (1.5 \times 10^3 x + 0.5 \times 10^{11} t)Vm^{-1}$ (2) $E_z = 105 \sin (1.5 \times 10^3 x + 0.5 \times 10^{11} t)Vm^{-1}$ (3) $E_z = 1.17 \sin (1.5 \times 10^3 x + 0.5 \times 10^{11} t)Vm^{-1}$ (4) $E_y = 10.5 \sin (1.5 \times 10^3 x + 0.5 \times 10^{11} t)Vm^{-1}$

Ans. (2)


Sol. $E_0 = B_0 C$

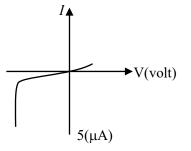
 $E_0 = 3 \times 10^8 \times (3.5 \times 10^{-7}) \sin (1.5 \times 10^3 x + 0.5 \times 10^{11} t)$ $E_0 = 105 \sin (1.5 \times 10^3 x + 0.5 \times 10^{11} t) Vm^{-1}$


Data inconsistent while calculating speed of wave. You can challenge for data.

36. A square loop of side 15 cm being moved towards right at a constant speed of 2 cm/s as shown in figure. The front edge enters the 50 cm wide magnetic field at t = 0. The value of induced emf in the loop at t = 10 s will be :

- Ans. (3)
- Sol. At t = 10 sec complete loop is in magnetic field therefore no change in flux

- $e = \frac{d\phi}{dt} = 0$
- e = 0 for complete loop
- 37. Two cars are travelling towards each other at speed of 20 m s⁻¹ each. When the cars are 300 m apart, both the drivers apply brakes and the cars retard at the rate of 2 m s⁻². The distance between them when they come to rest is :


(1) 200 m	(2) 50 m
(3) 100 m	(4) 25 m

Ans. (3)

Sol.

$$A \xrightarrow{20 \text{ m/s}} 300 \text{ m}^{-1} \text{B}$$

 $| | /s$
 $| \vec{a}_{BA} | = 4 \text{ m/s}$
Apply $(v^2 = u^2 + 2as)_{relative}$
 $O = (40)^2 + 2(-4)(S)$
 $S = 200 \text{ m}$
Remaining distance = $300 - 200 = 100 \text{ m}$

38. The *I-V* characteristics of an electronic device shown in the figure. The device is :

(1) a solar cell

(2) a transistor which can be used as an amplifier

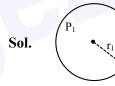
(3) a zener diode which can be used as voltage regulator

(4) a diode which can be used as a rectifier

Ans. (3)

Sol. Theory

Zener diode used as voltage regulator


39. The excess pressure inside a soap bubble is thrice the excess pressure inside a second soap bubble. The ratio between the volume of the first and the second bubble is :

(3) 1:81

(4) 1 : 27

(2) 1 : 3

Ans. (4)

 $-P_0 = \frac{4T}{r_2}$

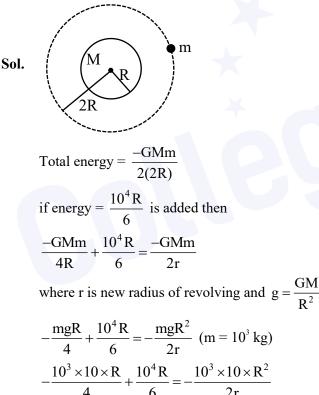
$$P_1 - P_0 = \frac{4T}{r_1}$$
 P_2
 $P_1 - P_0 = 3(P_2 - P_0)$

$$\frac{4T}{2} = 3\frac{4T}{2}$$

r.

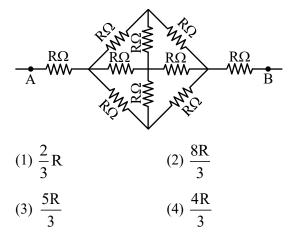
$$\mathbf{r}_1 = \mathbf{3}\mathbf{r}_1$$

$$\frac{V_1}{V_2} = \frac{\frac{4}{3}\pi r_1^3}{\frac{4}{3}\pi r_2^3} = \frac{1}{27}$$



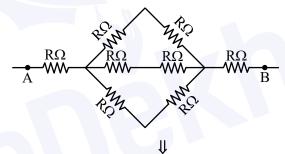
- 40. The de-Broglie wavelength associated with a particle of mass *m* and energy *E* is $h / \sqrt{2mE}$. The dimensional formula for Planck's constant is : (1) [ML⁻¹T⁻²] (2) [ML²T⁻¹] (3) [MLT⁻²] (4) [M²L²T⁻²] Ans. (2) Sol. $\lambda = \frac{h}{\sqrt{2mE}}$ or E = hv[ML²T⁻²] = h[T⁻¹]
 - $h = [ML^2T^{-1}]$

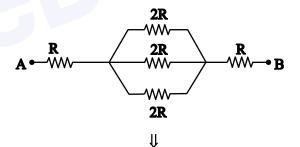
41. A satellite of 10^3 kg mass is revolving in circular orbit of radius 2R. If $\frac{10^4 \text{ R}}{6}J$ energy is supplied to the satellite, it would revolve in a new circular orbit of radius :

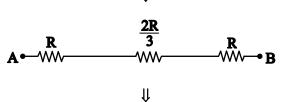

(use $g = 10m/s^2$, R = radius of earth) (1) 2.5 R (2) 3 R (3) 4 R (4) 6 R

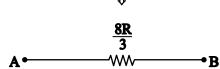
Ans. (4)

$$4$$
$$-\frac{1}{4} + \frac{1}{6} = -\frac{R}{2r}$$
$$r = 6R$$

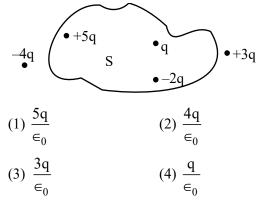

42. The effective resistance between *A* and *B*, if resistance of each resistor is *R*, will be




Ans. (2)


Sol. From symmetry we can remove two middle resistance.

New circuit is



43. Five charges +q, +5q, -2q, +3q and -4q are situated as shown in the figure. The electric flux due to this configuration through the surface S is :

Ans. (2)

Sol. As per gauss theorem,

$$\phi = \frac{q_{in}}{\epsilon_0} = \frac{q + (-2q) + 5q}{\epsilon_0}$$
$$\frac{4q}{\epsilon_0}$$

44. A proton and a deutron (q= +e, m = 2.0u) having same kinetic energies enter a region of uniform magnetic field \vec{B} , moving perpendicular to \vec{B} . The ratio of the radius r_d of deutron path to the radius r_p of the proton path is :

(1) 1 : 1
(2) 1:
$$\sqrt{2}$$

(3) $\sqrt{2}$: 1
(4) 1: 2

Ans. (3)

Sol. In uniform magnetic field,

$$R = \frac{mv}{qB} = \frac{\sqrt{2m(K.E)}}{qB}$$

Since same K.E
$$R \propto \frac{\sqrt{m}}{q}$$
$$\therefore \frac{R_{deutron}}{R_{proton}} = \sqrt{\frac{m_d}{m_p}} \times \frac{q_p}{q_d}$$
$$= \sqrt{2} \times 1$$

$$\therefore \gamma_{\rm d}: \gamma_{\rm p} = \sqrt{2}: 1$$

45. UV light of 4.13 eV is incident on a photosensitive metal surface having work function 3.13 eV. The maximum kinetic energy of ejected photoelectrons will be :

Ans. (2)

- Sol. $E_{photon} = (work function) + K.E_{max}$ $\therefore 4.13 = 3.13 + K.E_{max}$ $\therefore K.E_{max} = 1 \text{ eV}$
- 46. The energy released in the fusion of 2 kg of hydrogen deep in the sun is $E_{\rm H}$ and the energy released in the fission of 2 kg of 235 U is E_U. The ratio $\frac{E_{H}}{E_{II}}$ is approximately : (Consider fusion reaction the as $4_1^1 \text{H} + 2e^- \rightarrow 2^4 \text{He} + 2v + 6\gamma + 26.7 \text{ MeV}$, energy released in the fission reaction of ²³⁵U is 200 MeV per fission nucleus and $N_A = 6.023 \times 10^{23}$) (1) 9.13(2) 15.04 (4) 25.6(3) 7.62

Ans. (3)

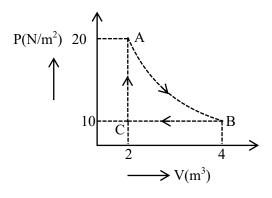
Sol. In each fusion reaction, $4 {}^{1}_{1}$ H nucleus are used.

Energy released per Nuclei of ${}_{1}^{1}H = \frac{26.7}{4} \text{ MeV}$

 \therefore Energy released by 2 kg hydrogen (E_H)

$$=\frac{2000}{1}\times N_{A}\times\frac{26.7}{4}MeV$$

 \therefore Energy released by 2 kg Vranium (E_v)

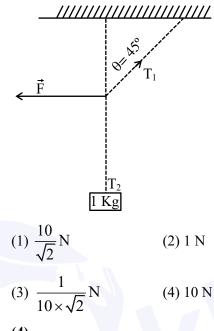

$$=\frac{2000}{235}\times N_{A}\times 200 \text{MeV}$$

So,

$$\frac{E_{\rm H}}{E_{\rm V}} = 235 \times \frac{26.7}{4 \times 200} = 7.84$$

: Approximately close to 7.62

47. A real gas within a closed chamber at 27°C undergoes the cyclic process as shown in figure. The gas obeys $PV^3 = RT$ equation for the path A to B. The net work done in the complete cycle is (assuming R = 8J/molK):


 (1) 225 J (2) 205 J

 (3) 20 J (4) -20 J

Ans. (2)

- **Sol.** $W_{AB} = \int P dV$ (Assuming T to be constant)
 - $= \int \frac{RTdV}{V^{3}}$ $= RT \int_{2}^{4} V^{-3} dV$ $= 8 \times 300 \times \left(-\frac{1}{2} \left[\frac{1}{4^{2}} \frac{1}{2^{2}} \right] \right)$ = 225 J $W_{BC} = P \int_{4}^{2} dV = 10(2 4) = -20J$ $W_{CA} = 0$ $\therefore W_{cycle} = 205 J$ Nuclear Data is in the side of the second secon

Note : Data is inconsistent in process AB. So needs to be challenged. **48.** A 1 kg mass is suspended from the ceiling by a rope of length 4m. A horizontal force 'F' is applied at the mid point of the rope so that the rope makes an angle of 45° with respect to the vertical axis as shown in figure. The magnitude of F is :

Ans. (4) Sol. $T_1 \sin 45^\circ = F$

$$T_1 \cos 45^\circ = T_2 = 1 \times g$$

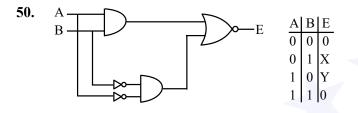
$$\therefore \tan 45^\circ = \frac{F}{g}$$

$$\therefore$$
 F = 10N

49. A spherical ball of radius 1×10^{-4} m and density 10^{5} kg/m³ falls freely under gravity through a distance *h* before entering a tank of water, If after entering in water the velocity of the ball does not change, then the value of *h* is approximately :

(The coefficient of viscosity of water is 9.8×10^{-6} N s/m²)

(1) 2296 m	(2) 2249 m
(3) 2518 m	(4) 2396 m

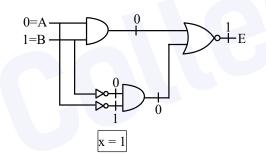

Ans. (3)

Sol.
$$V_{T} = \frac{2g}{9} \frac{R^{2} [\rho_{B} - \rho_{L}]}{\eta}$$

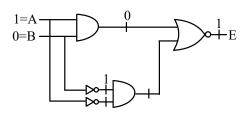
 $\Rightarrow V_{T} = \frac{2}{9} \times \frac{10 \times (10^{-4})^{2}}{9.8 \times 10^{-6}} [10^{5} - 10^{3}]$
 $\Rightarrow V_{T} = 224.5$

when ball fall from height (h)

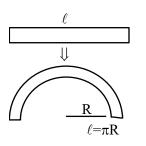
$$V = \sqrt{2gh}$$
$$h = \left(\frac{V^2}{2g}\right) = 2518m$$



In the truth table of the above circuit the value of X and Y are :


(1) 1, 1	(2) 1, 0
(3) 0, 1	(4) 0, 0

Ans. (1)


SECTION-B

51. A straight magnetic strip has a magnetic moment of 44 Am². If the strip is bent in a semicircular shape, its magnetic moment will be Am²

(Given
$$\pi = \frac{22}{7}$$

Ans. (28)

Sol. Magnetic moment of straight wire = $mx\ell = 44$

Magnetic moment of arc $= m \times 2 r$

$$= \frac{2\ell}{\pi}$$
$$= \frac{44 \times 2}{\pi} = \frac{88}{\pi} = 28$$

52. A particle of mass 0.50 kg executes simple harmonic motion under force $F = -50(Nm^{-1})x$. The time period of oscillation is $\frac{x}{35}s$. The value of x is

(Given
$$\pi = \frac{22}{7}$$
)

Ans. (22)

Sol.
$$m = 0.5 \text{ kg}$$

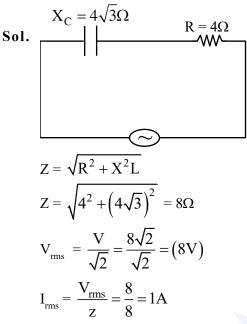
$$F = -50 \text{ (x)}$$

$$ma = (-50x)$$

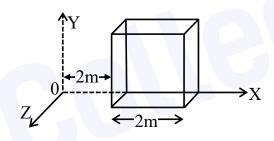
$$0.5 \text{ a} = -50x$$

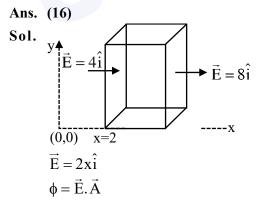
$$a = (-100x)$$

$$W^{2} = 100 \Rightarrow (w = 10)$$


$$T = \frac{2\pi}{10} = \left(\frac{\pi}{5}\right) = \frac{22}{7 \times 15} = \left(\frac{22}{35}\right)$$

$$\frac{\pi}{35} = \frac{22}{35} \Rightarrow \boxed{x = 22}$$




53. A capacitor of reactance $4\sqrt{3}\Omega$ and a resistor of resistance 4Ω are connected in series with an ac source of peak value $8\sqrt{2}V$. The power dissipation in the circuit isW.

Ans. (4)

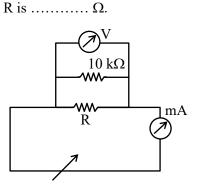
Power dissipated = $I_{rms}^2 \times R = 1 \times 4 = (4W)$

 $\phi_{in} = -4 \times 4 = -16 \text{ Nm}^2 / \text{c}$ $\phi_{out} = 8 \times 4 = 32 \text{ Nm}^2 / \text{c}$ $d_{net} = \phi_{in+} \phi_{out} = -16 + 32 = 16 \text{ Nm}^2 / \text{c}$ $\phi_{out} = 4 \text{ circular disc reaches from top to}$

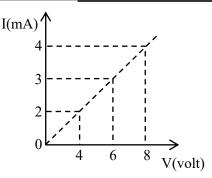
55. A circular disc reaches from top to bottom of an inclined plane of length *l*. When it slips down the plane, if takes t s. When it rolls down the plane

then it takes $\left(\frac{\alpha}{2}\right)^{1/2}$ t s, where α is

Ans. (3)

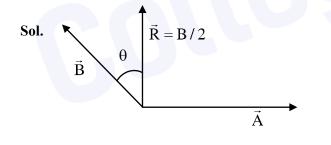

Sol. For slipping

$$a = gsin\theta$$
$$\ell = \frac{1}{2} at^{2} \implies t = \sqrt{\frac{2\ell}{gsin\theta}}$$


For rolling

$$a' = \frac{g\sin\theta}{1 + \frac{k^2}{R^2}} \left[k = \frac{R}{\sqrt{2}} \right]$$
$$\Rightarrow a' = \frac{2g\sin\theta}{3}$$
$$\ell = \frac{1}{2}a'(t')^2$$
$$\Rightarrow t' = \sqrt{\frac{6\ell}{2}} = \sqrt{\frac{\alpha}{2}} \sqrt{\frac{1}{2}}$$

- $\Rightarrow t' = \sqrt{\frac{6t}{2g\sin\theta}} = \sqrt{\frac{\alpha}{2}} \sqrt{\frac{2t}{g\sin\theta}}$ $\Rightarrow \alpha = 3$
- **56.** To determine the resistance (R) of a wire, a circuit is designed below, The V-I characteristic curve for this circuit is plotted for the voltmeter and the ammeter readings as shown in figure. The value of



Sol. $\operatorname{Req} = \frac{10^{4} \mathrm{R}}{10^{4} + \mathrm{R}}$ $\operatorname{E} = 4\mathrm{V}, \mathrm{I} = 2\mathrm{mA}$ $\mathrm{I} = \frac{\mathrm{E}}{\mathrm{Req}} \Longrightarrow 2 \times 10^{-3} = \frac{4\left(10^{4} + \mathrm{R}\right)}{10^{4} \mathrm{R}}$ $\Longrightarrow 20\mathrm{R} = 40000 + 4\mathrm{R}$ $16\mathrm{R} = 40000$ $\mathrm{R} = 2500\Omega$

57. The resultant of two vectors \vec{A} and \vec{B} is perpendicular to \vec{A} and its magnitude is half that of \vec{B} . The angle between vectors \vec{A} and \vec{B} is

 $B\cos\theta = \frac{B}{2}$ $\Rightarrow \theta = 60^{\circ}$

So, angle between $\vec{A} \& \vec{B}$ is $90^\circ + 60^\circ = 150^\circ$

Ans. (4)

Sol.
$$(\mu - 1) t = n\lambda$$

(1.5 - 1) $t = 4 \times 500 \times 10^{-9} m$
 $t = 4000 \times 10^{-9} m$
 $t = 4\mu m$

59. A force $(3x^2 + 2x - 5)$ N displaces a body from x = 2 m to x = 4m. Work done by this force isJ.

Ans. (58)

Sol.
$$W = \int_{x_1}^{x_2} F dx$$
$$W = \int_{2}^{4} (3x^2 + 2x - 5) dx$$
$$W = \left[x^3 + x^2 - 5x \right]_{2}^{4}$$
$$W = \left[60 - 2 \right] J = 58J$$

- 60. At room temperature (27°C), the resistance of a heating element is 50 Ω . The temperature coefficient of the material is 2.4×10^{-4} °C⁻¹. The temperature of the element, when its resistance is 62 Ω , is°C.
- Ans. (1027)

Sol.
$$R = R_0(1 + \alpha \Delta T)$$

 $62 = 50 [1 + 2.4 \times 10^{-4} \Delta T]$
 $\Delta T = 1000^{\circ}C$
 $\Rightarrow T - 27^{\circ} = 1000^{\circ}C$