

FINAL JEE-MAIN EXAMINATION - JANUARY, 2024

(Held On Tuesday 30th January, 2024)

SECTION-A

- **61.** Which among the following purification methods is based on the principle of "Solubility" in two different solvents?
 - (1) Column Chromatography
 - (2) Sublimation
 - (3) Distillation
 - (4) Differential Extraction

Ans. (4)

Sol. Different Extraction

Different layers are formed which can be separated in funnel. (Theory based).

62. Salicylaldehyde is synthesized from phenol, when reacted with

- (2) CO,, NaOH
- (3) CCl₄, NaOH
- (4) HCCl,, NaOH

Ans. (4)

63. Given below are two statements:

Statement – **I:** High concentration of strong nucleophilic reagent with secondary alkyl halides which do not have bulky substituents will follow $S_n 2$ mechanism.

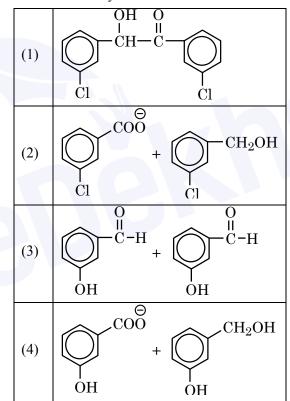
Statement – II: A secondary alkyl halide when treated with a large excess of ethanol follows $S_{\scriptscriptstyle N}1$ mechanism.

In the he light of the above statements, choose the most appropriate from the questions given below:

- (1) Statement I is true but Statement II is false.
- (3) Statement I is false but Statement II is true.
- (3) Both statement I and Statement II are false.
- (4) Both statement I and Statement II are true.

Ans. (4)

Sol. Statement – I: Rate of $S_N 2 \propto [R-X][Nu^-]$


 $\rm S_{\scriptscriptstyle N}2$ reaction is favoured by high concentration of nucleophile (Nu $^-$) & less crowding in the substrate molecule.

TIME: 3:00 PM to 6:00 PM

Statement – II: Solvolysis follows S_N1 path.

Both are correct Statements.

64. m–chlorobenzaldehyde on treatment with 50% KOH solution yields

Ans. (2)

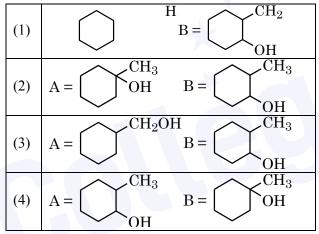
Sol. Meta–chlorobenzaldehyde will undergo Cannizzaro reaction with 50% KOH to give m– chlorobenzoate ion and m–chlorobenzyl alcohol.

$$2 \bigcirc \begin{array}{c} CHO \\ \hline \\ Cl \\ \hline \\ Cl \\ \hline \\ OH \\ \end{array} + \bigcirc \begin{array}{c} \bigcirc \\ CH_2OH \\ OH \\ \end{array}$$

65. Given below are two statements: One is labelled as Assertion A and the other is labelled as Reason R.

Assertion A: H₂Te is more acidic than H₂S.

Reason R: Bond dissociation enthalpy of H₂Te is lower than H₂S.


In the light of the above statements. Choose the most appropriate from the options given below.

- (1) Both A and R are true but R is NOT the correct explanation of A.
- (2) Both A and R are true and R is the correct explanation of A.
- (3) A is false but R is true.
- (4) A is true but R is false.

Ans. (2)

- **Sol.** Due to lower Bond dissociation enthalpy of H₂Te it ionizes to give H⁺ more easily than H₂S.
- **66.** Product A and B formed in the following set of reactions are:

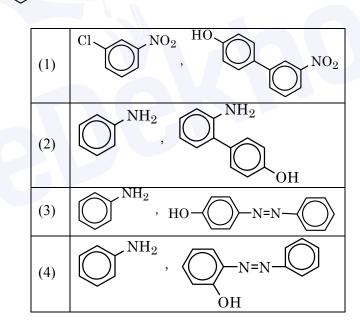
$$B \xrightarrow{H_2O_2, NaOH(aq.)} CH_3 \xrightarrow{H^+/H_2O} A$$

Ans. (2)

Sol.
$$CH_3$$
 B_2H_6 CH_3 OH $H_2O_2,NaOH$ H^+/H_2O CH_3

67. IUPAC name of following compound is

$$CH_3$$
— CH — CH_2 — CN
 NH_2


- (1) 2-Aminopentanenitrile
- (2) 2-Aminobutanenitrile
- (3) 3–Aminobutanenitrile
- (4) 3–Aminopropanenitrile

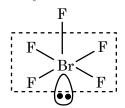
Ans. (3)

Sol.
$$4 \ 3 \ 2 \ 1$$

 $|CH_3-CH-CH_2-CN|$
 $|CH_3-CH-CH_2-CN|$

- 3-Aminobutanenitrile
- **68.** The products A and B formed in the following reaction scheme are respectively

(i) conc.HNO₃/conc.H₂SO₄ 323-333 K(i) NaNO₂, HCl, 273–278 K $(\text{ii) Sn/HCl} \longrightarrow A \xrightarrow{\text{(iii) Phenol}} B$



Ans. (3)

- The molecule/ion with square pyramidal shape is: 69.
 - (1) [Ni(CN)₄]²⁻
- (2) PCl₅
- (3) BrF₅
- (4) PF.

Ans. (3)

Sol. BrF.

Square Pyramidal.

- **70.** The orange colour of K₂Cr₂O₂ and purple colour of KMnO₄ is due to
 - (1) Charge transfer transition in both.
 - (2) d→d transition in KMnO₄ and charge transfer transitions in K₂Cr₂O₂.
 - (3) $d \rightarrow d$ transition in K₂Cr₂O₂ and charge transfer transitions in KMnO₄.
 - (4) $d\rightarrow d$ transition in both.

Ans. (1)

 $\begin{array}{l} {\rm K_2Cr_2O_7 \to Cr^{+6} \to No~d-d~transition} \\ {\rm KMnO_4 \to Mn^{7+} \to No~d-d~transition} \end{array} \\ \begin{array}{l} {\rm Charge~transfer} \end{array}$

- Alkaline oxidative fusion of MnO, gives "A" 71. which on electrolytic oxidation in alkaline solution produces B. A and B respectively are:
 - (1) Mn₂O₂ and MnO₄
 - (2) MnO_4^{2-} and MnO_4^{-}
 - (3) Mn₂O₂ and MnO₄²⁻
 - (4) MnO_4^{2-} and Mn_5O_7

Ans. (2)

Sol. Alkaline oxidative fusion of MnO₂:

$$2 \rm MnO_2 + 4OH^- + O_2 \rightarrow 2 \rm MnO_4^{2-} + 2 \rm H_2O$$

Electrolytic oxidation of MnO₄²⁻ in alkaline medium.

$$MnO_4^{2-} \rightarrow MnO_4^- + e^-$$

If a substance 'A' dissolves in solution of a mixture 72. of 'B' and 'C' with their respective number of moles as n_A, n_B and n_C, mole fraction of C in the solution is:

- (1) $\frac{n_C}{n_A \times n_B \times n_C}$ (2) $\frac{n_C}{n_A + n_B + n_C}$
- (3) $\frac{n_C}{n_A n_B n_C}$ (4) $\frac{n_B}{n_A + n_R}$

Ans. (2)

Sol. Mole fraction of C = $\frac{n_C}{n_A + n_B + n_C}$

73. Given below are two statements:

> **Statement – I:** Along the period, the chemical reactivity of the element gradually increases from group 1 to group 18.

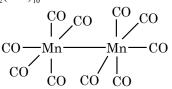
> **Statement – II:** The nature of oxides formed by group 1 element is basic while that of group 17 elements is acidic.

> In the the light above statements, choose the most appropriate from the questions given below:

- (1) Both statement I and Statement II are true.
- (2) Statement I is true but Statement II is False.
- (3) Statement I is false but Statement II is true.
- (4) Both Statement I and Statement II is false.

Ans. (3)

Sol. Chemical reactivity of elements decreases along the period therefore statement – I is false.


> **Group** – 1 elements from basic nature oxides while group – 17 elements form acidic oxides therefore statement – II is true.

74. The coordination geometry around the manganese in decacarbonyldimanganese(0)

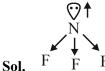
- (1) Octahedral
- (2) Trigonal bipyramidal
- (3) Square pyramidal
- (4) Square planar

Ans. (1)

Sol. $Mn_2(CO)_{10}$

Octahedral around Mn

75. Given below are two statements:


Statement-I: Since fluorine is more electronegative than nitrogen, the net dipole moment of NF₃ is greater than NH₃.

Statement-II: In NH₃, the orbital dipole due to lone pair and the dipole moment of NH bonds are in opposite direction, but in NF₃ the orbital dipole due to lone pair and dipole moments of N-F bonds are in same direction.

In the light of the above statements. Choose the most appropriate from the options given below.

- (1) Statement I is true but Statement II is false.
- (2) Both Statement I and Statement II are false.
- (3) Both statement I and Statement II is are true.
- (4) Statement I is false but Statement II is are true.

Ans. (2)

501.

76. The correct stability order of carbocations is

(1)
$$(CH_3)_3C^+ > CH_3 - \overset{+}{C}H_2 > (CH_3)_2\overset{+}{C}H > \overset{+}{C}H_3$$

(2)
$$\overset{+}{C}H_3 > (CH_3)_2 \overset{+}{C}H > CH_3 - \overset{+}{C}H_2 > (CH_3)_3 \overset{+}{C}$$

(3)
$$(CH_3)_3 \overset{+}{C} > (CH_3)_2 \overset{+}{C} H > CH_3 - \overset{+}{C} H_2 > \overset{+}{C} H_3$$

(4)
$$\overset{+}{C}H_3 > CH_3 - \overset{+}{C}H_2 > CH_3 - \overset{+}{C}H > (CH_3)C^+$$

 $\overset{+}{C}H_3$

Ans. (3)

Sol. More no. of hyperconjugable Hydrogens, more stable is the carbocations.

77. The solution from the following with highest depression in freezing point/lowest freezing point is

- (1) 180 g of acetic acid dissolved in water
- (2) 180 g of acetic acid dissolved in benzene
- (3) 180 g of benzoic acid dissolved in benzene
- (4) 180 g of glucose dissolved in water

Ans. (1)

Sol. ΔT_i is maximum when $i \times m$ is maximum.

1)
$$m_1 = \frac{180}{60} = 3$$
, $i = 1 + \alpha$

Hence

$$\Delta T_f = (1 + \alpha) \cdot k_f = 3 \times 1.86 = 5.58 \,^{\circ}\text{C} \, (\alpha << 1)$$

2)
$$m_2 = \frac{180}{60} = 3$$
, $i = 0.5$, $\Delta T_f = \frac{3}{2} \times k_f' = 7.68$ °C

3)
$$m_3 = \frac{180}{122} = 1.48, i = 0.5, \Delta T_f = \frac{1.48}{2} \times k_f' = 3.8$$
°C

4)
$$m_4 = \frac{180}{180} = 1$$
, $i = 1$, $\Delta T_f = 1 \cdot k_f' = 1.86$ °C

As per NCERT, $k_f'(H_2O) = 1.86 \text{ k} \cdot \text{kg mol}^{-1}$

$$k_f'$$
 (Benzene) = 5.12 k·kg mol⁻¹

78. A and B formed in the following reactions are:

$$CrO_2Cl_2 + 4NaOH \rightarrow A + 2NaCl + 2H_2O$$

A + 2HCl + 2H₂O₂ \rightarrow B + 3H₂O

(1)
$$A = Na_{2}CrO_{4}$$
, $B = CrO_{5}$

(2)
$$A = Na_{2}Cr_{2}O_{4}$$
, $B = CrO_{4}$

(3)
$$A = Na_{2}Cr_{2}O_{2}$$
, $B = CrO_{3}$

(4)
$$A = Na_2Cr_2O_7$$
, $B = CrO_5$

Ans. (1)

Sol.
$$CrO_2Cl_2 + 4NaOH \rightarrow Na_2CrO_4 + 2NaCl + 2H_2O$$

79. Choose the correct statements about the hydrides of group 15 elements.

A. The stability of the hydrides decreases in the order NH₃ > PH₃ > AsH₃ > SbH₃ > BiH₃

B. The reducing ability of the hydrides increases in the order NH₃ < PH₃ < AsH₃ < SbH₃ < BiH₃

C. Among the hydrides, NH₃ is strong reducing agent while BiH₃ is mild reducing agent.

D. The basicity of the hydrides increases in the order NH₃ < PH₃ < AsH₃ < SbH₃ < BiH₃

Choose the most appropriate from the option given below:

(1) B and C only

(2) C and D only

(3) A and B only

(4) A and D only

Ans. (3)

Sol. On moving down the group, bond strength of M–H bond decreases, which reduces the thermal stability but increases reducing nature of hydrides, hence A and B are correct statements.

80. Reduction potential of ions are given below:

$$ClO_{4}^{-}$$
 IO_{4}^{-} BrO_{4}^{-}
 $E^{\circ}=1.19V$ $E^{\circ}=1.65V$ $E^{\circ}=1.74V$

The correct order of their oxidising power is:

(1)
$$ClO_4^- > IO_4^- > BrO_4^-$$

(2)
$$BrO_4^- > IO_4^- > ClO_4^-$$

(3)
$$BrO_4^- > ClO_4^- > IO_4^-$$

(4)
$$IO_4^- > BrO_4^- > ClO_4^-$$

Ans. (2)

Sol. Higher the value of ⊕ve SRP (Std. reduction potential) more is tendency to undergo reduction, so better is oxidising power of reactant.

Hence, ox. Power:-
$$BrO_4^- > IO_4^- > ClO_4^-$$

SECTION-B

81. Number of complexes which show optical isomerism among the following is ______.

$$cis - [Cr(ox)_2Cl_2]^{3-}, [Co(en)_3]^{3+},$$

$$cis - [Pt(en)_2Cl_2]^{2+}, cis - [Co(en)_2Cl_2]^{+},$$

$$trans - [Pt(en)_2Cl_2]^{2+}, trans - [Cr(ox)_2Cl_2]^{3-}$$

Ans. (4)

Sol. $\operatorname{cis} - [\operatorname{Cr}(\operatorname{ox})_2 \operatorname{Cl}_2]^{3-} \to \operatorname{can}$ show optical isomerism (no POS & COS)

 $[Co(en)_3]^{3+} \rightarrow can show (no POS & COS)$

$$\operatorname{cis} - [\operatorname{Pt}(\operatorname{en})_2 \operatorname{Cl}_2]^{2+} \to \operatorname{can} \operatorname{show} (\operatorname{no} \operatorname{POS} \& \operatorname{COS})$$

$$cis - [Co(en)_2 Cl_2]^+ \rightarrow can show (no POS & COS)$$

→ can't show (contains POS

& COS)

trans
$$-[Cr(ox)_2Cl_2]^{3-} \rightarrow can't$$
 show (contains POS & COS)

82. NO_2 required for a reaction is produced by decomposition of N_2O_5 in CCl_4 as by equation $2N_2O_{5(g)} \rightarrow 4NO_{2(g)} + O_{2(g)}$

The initial concentration of N_2O_5 is 3 mol L^{-1} and it is 2.75 mol L^{-1} after 30 minutes.

The rate of formation of NO_2 is $x \times 10^{-3}$ mol L^{-1} min⁻¹, value of x is _____.

Ans. (17)

Sol. Rate of reaction (ROR)

$$=-\frac{1}{2}\frac{\Delta[\mathrm{N_2O_5}]}{\Delta t}=\frac{1}{4}\frac{[\mathrm{NO_2}]}{\Delta t}=\frac{\Delta[\mathrm{O_2}]}{\Delta t}$$

$$ROR = -\frac{1}{2} \frac{\Delta[N_2O_5]}{\Delta t} = -\frac{1}{2} \frac{(2.75-3)}{30} \, mol \, L^{-1} \, min^{-1}$$

$$ROR = -\frac{1}{2} \frac{(-0.25)}{30} \, mol \, L^{-1} \, min^{-1}$$

$$ROR = \frac{1}{240} \, mol \, L^{-1} \, min^{-1}$$

Rate of formation of NO₂ = $\frac{\Delta[NO_2]}{\Delta t}$ = 4 × ROR

$$= \frac{4}{240} = 16.66 \times 10^{-3} \text{ molL}^{-1} \text{ min}^{-1} \simeq 17 \times 10^{-3}.$$

83. Two reactions are given below:

$$2Fe_{(s)} + \frac{3}{2}O_{2(g)} \longrightarrow Fe_2O_{3(s)}, \Delta H^o = -822\,kJ \ / \ mol$$

$$C_{(s)} + \frac{1}{2}O_{2(g)} \rightarrow CO_{(g)}, \Delta H^o = -110 \,\text{kJ} \,/\,\text{mol}$$

Then enthalpy change for following reaction $3C_{(s)} + Fe_2O_{3(s)} \rightarrow 2Fe_{(s)} + 3CO_{(g)}$

Sol.
$$2Fe_{(s)} + \frac{3}{2}O_{2(g)} \rightarrow Fe_2O_{3(s)}, \Delta H^o = -822 \,\text{kJ} \,/\,\text{mol}$$

....(1)

$$C_{(s)}^{} + \frac{1}{2} O_{2(g)}^{} \rightarrow CO_{(g)}^{}, \Delta H^o = -110\,\mathrm{kJ}\,/\,\mathrm{mol}$$

.....(2)

$$3C_{(s)} + Fe_2O_{3(s)} \rightarrow 2Fe_{(s)} + 3CO_{(g)}, \ \Delta H_3 = ?$$

$$(3) = 3 \times (2) - (1)$$

$$\Delta H_3 = 3 \times \Delta H_2 - \Delta H_1$$

= 3(-110) + 822
= 492 kJ/mole

- **84.** The total number of correct statements, regarding the nucleic acids is
 - A. RNA is regarded as the reserve of genetic information.
 - B. DNA molecule self-duplicates during cell division
 - C. DNA synthesizes proteins in the cell.
 - D. The message for the synthesis of particular proteins is present in DNA
 - E. Identical DNA strands are transferred to daughter cells.

Ans. (3)

- **Sol.** A. RNA is regarded as the reserve of genetic information. (False)
 - B. DNA molecule self-duplicates during cell division. (True)
 - C. DNA synthesizes proteins in the cell. (False)
 - D. The message for the synthesis of particular proteins is present in DNA. (True)
 - E. Identical DNA strands are transferred to daughter cells. (True)
- 85. The pH of an aqueous solution containing 1M benzoic acid (pK $_a$ = 4.20) and 1M sodium benzoate is 4.5. The volume of benzoic acid solution in 300 mL of this buffer solution is

Ans. (100)

Sol.

1M Benzoic acid + 1M Sodium Benzoate $(V_a ml)$ $(V_s ml)$ $V_s \times 1$ $V_s \times 1$

Millimole

$$pH = 4.5$$

$$pH = pka + log \frac{[salt]}{[acid]}$$

$$4.5 = 4.2 + \log\left(\frac{V_s}{V_a}\right)$$

$$\frac{V_s}{V_a} = 2 \qquad \dots (1)$$

$$V_s + V_a = 300$$
 (2)

$$V_{a} = 100 \text{ ml}$$

86. Number of geometrical isomers possible for the given structure is/are

Ans. (4)

Sol. 3 stereocenteres, symmetrical
 Total Geometrical isomers → 4. EE, ZZ, EZ (two isomers)

$$H \xrightarrow{*} H$$

87. Total number of species from the following which can undergo disproportionation reaction ______.

 H_2O_2 , ClO_3^- , P_4 , Cl_2 , Ag, Cu^{+1} , F_2 , NO_2 , K^+

Ans. (6)

Sol. Intermediate oxidation state of element can undergo disproportionation.

$$\mathrm{H_2O_2},\mathrm{ClO_3^-},\mathrm{P_4},\mathrm{Cl_2},\mathrm{Cu^{+1}},\mathrm{NO_2}$$

88. Number of metal ions characterized by flame test among the following is _____.

Ans. (4)

Sol. All the following metal ions will respond to flame test.

$$Sr^{2+}, Ba^{2+}, Ca^{2+}, Cu^{2+}$$

89. 2-chlorobutane $+ Cl_2 \rightarrow C_4H_8Cl_2$ (isomers)

Total number of optically active isomers shown by $C_4H_8Cl_2$, obtained in the above reaction is_____.

Ans. (6)

Sol.

90. Number of spectral lines obtained in He⁺ spectra, when an electron makes transition from fifth excited state to first excited state will be

Ans. (10)

Sol. 5^{th} excited state $\Rightarrow n_1 = 6$

 1^{st} excited state $\Rightarrow n_2 = 2$

$$\Delta n = n_1 - n_2 = 6 - 2 = 4$$

Maximum number of spectral lines

$$=\frac{\Delta n(\Delta n+1)}{2}=\frac{4(4+1)}{2}=10$$