SECTION-A

61. Given below are two statements:

Statement-I: The gas liberated on warming a salt with dil H₂SO₄, turns a piece of paper dipped in lead acetate into black, it is a confirmatory test for sulphide ion.

Statement-II: In statement-I the colour of paper turns black because of formation of lead sulphite. In the light of the above statements, choose the most appropriate answer from the options given below:

- (1) Both Statement-I and Statement-II are false
- (2) Statement-I is false but Statement-II is true
- (3) Statement-I is true but Statement-II is false
- (4) Both Statement-I and Statement-II are true.
- Ans. (3)

Sol. $Na_2S + H_2SO_4 \rightarrow Na_2SO_4 + H_2S$ $(CH_3COO)_2Pb + H_2S \rightarrow PbS + 2CH_3COOH$ Black lead sulphide

62.

This reduction reaction is known as:

- (1) Rosenmund reduction
- (2) Wolff-Kishner reduction
- (3) Stephen reduction
- (4) Etard reduction

Ans. (1)

Sol.

$$\begin{array}{c|c} O \\ \hline \\ Cl \end{array} \xrightarrow{\begin{array}{c} Pd\text{-}B \text{ as } O_4 \end{array}} CHO$$

It is known as rosenmund reduction that is the partial reduction of acid chloride to aldehyde

- **63.** Sugar which does not give reddish brown precipitate with Fehling's reagent is:
 - (1) Sucrose
- (2) Lactose
- (3) Glucose
- (4) Maltose

Ans. (1)

Sol. Sucrose do not contain hemiacetal group.

Hence it does not give test with Fehling solution.

While all other give positive test with Fehling solution

64. Given below are the two statements: one is labeled as Assertion (A) and the other is labeled as Reason (R).

Assertion (A): There is a considerable increase in covalent radius from N to P. However from As to Bi only a small increase in covalent radius is observed.

Reason (R): covalent and ionic radii in a particular oxidation state increases down the group.

In the light of the above statement, choose the most appropriate answer from the options given below:

- (1) (A) is false but (R) is true
- (2) Both (A) and (R) are true but (R) is not the correct explanation of (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are true and (R) is the correct explanation of (A)

Ans. (2)

Sol. According to NCERT,

Statement-I: Factual data,

Statement-II is true.

But correct explanation is presence of completely filled d and f-orbitals of heavier members

CollegeDekho

65. Which of the following molecule/species is most stable?

Ans. (1)

Sol. it is aromatic species

- **66.** Diamagnetic Lanthanoid ions are:
 - (1) Nd^{3+} and Eu^{3+}
- (2) La^{3+} and Ce^{4+}
- (3) Nd^{3+} and Ce^{4+}
- (4) Lu^{3+} and Eu^{3+}

Ans. (2)

Sol. Ce: [Xe] $4f^15d^16s^2$; Ce⁴⁺ diamagnetic La: [Xe] $4f^05d^16s^2$; La³⁺ diamagnetic

- **67.** Aluminium chloride in acidified aqueous solution forms an ion having geometry
 - (1) Octahedral
 - (2) Square Planar
 - (3) Tetrahedral
 - (4) Trigonal bipyramidal

Ans. (1)

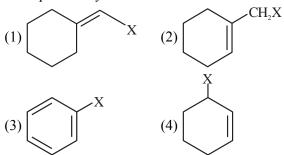
Sol. AlCl₃ in acidified aqueous solution forms octahedral geometry $[Al(H_2O)_6]^{3+}$

68. Given below are two statements:

Statement-I: The orbitals having same energy are called as degenerate orbitals.

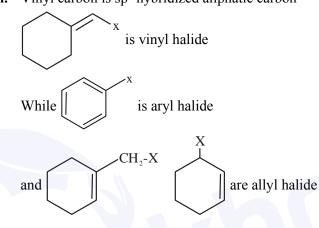
Statement-II: In hydrogen atom, 3p and 3d orbitals are not degenerate orbitals.

In the light of the above statements, choose the **most appropriate** answer from the options given


- (1) Statement-I is true but Statement-II is false
- (2) Both Statement-I and Statement-II are true.
- (3) Both Statement-I and Statement-II are false
- (4) Statement-I is false but Statement-II is true

Ans. (1)

Sol. For single electron species the energy depends upon principal quantum number 'n' only. So, statement II is false


Statement I is correct definition of degenerate orbitals.

69. Example of vinylic halide is

Ans. (1)

Sol. Vinyl carbon is sp² hybridized aliphatic carbon

70. Structure of 4-Methylpent-2-enal is

$$\begin{array}{c|cccc}
CH_3 & O & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & |$$

(2)
$$CH_3 - CH_2 - C = CH - C - H$$

$$CH_3$$

(3)
$$CH_3 - CH_2 - CH = C - C - H$$

$$CH_3$$

$$CH_3 - CH_2 - CH = C - C - H$$

(4)
$$CH_3 - CH - CH = CH - C - H$$

 CH_3

Ans. (4)

Sol.
$$CH_3 - CH - CH = CH - CH - H$$

 $CH_3 - CH_3 + CH - CH - CH - CH$
 $CH_3 - CH$

71. Match List-II with List-II

List-I	List-II
Molecule	Shape
(A) BrF_5	(I) T-shape
(B) H_2O	(II) See saw
(C) ClF ₃	(III) Bent
(D) SF ₄	(IV) Square pyramidal
(1) (A)-I, (B)-II, (C)-IV, (D)-III	
(2) (A) –II, (B)-I, (C)-III, (D)-IV	
(3) (A)-III, (B)-IV	V, (C)-I, (D)-II

Ans. (4)

(4) (A)-IV, (B)-III, (C)-I, (D)-II

72. The final product A, formed in the following multistep reaction sequence is:

(i) Mg, ether then CO₂, H⁺
(ii) NH₃,
$$\Delta$$
(iii) Br₂, NaOH

NH₂
(2)

NH₂
OH

Ans. (2)

Sol.

$$\begin{array}{c} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & \\ & & \\$$

73. In the given reactions identify the reagent A and reagent B

$$(CH_3) - (CH_3CO)_2O - (Intermediate) - (H_3O^*) - (CHO)$$

$$(B'' + CS_2) - (Intermediate) - (CHO)$$

$$(B'' + CS_2) - (Intermediate) - (CHO)$$

 $(1) A-CrO_3 B-CrO_3$

 $(2) A-CrO_3 B-CrO_2Cl_2$

(3) A-CrO₂Cl₂ B-CrO₂Cl₂

(4) A-CrO₂Cl₂ B-CrO₃

Ans. (2)

Sol.

$$\begin{array}{c|c} CH_{3} & CH(OCOCH_{3})_{2} \\ \hline \\ CrO_{2}(CH_{3}CO)_{2}O & H_{3}O^{+} \\ \hline \\ CH[OCrCl_{2}(OH)]_{2} & H_{3}O^{+} \\ \hline \end{array}$$

74. Given below are two statement one is labeled as Assertion (A) and the other is labeled as Reason (R).

Assertion (A): $CH_2 = CH - CH_2 - Cl$ is an example of allyl halide

Reason (R): Allyl halides are the compounds in which the halogen atom is attached to sp² hybridised carbon atom.

In the light of the two above statements, choose the **most appropriate** answer from the options given below:

- (1) (A) is true but (R) is false
- (2) Both (A) and (R) are true but (R) is **not** the correct explanation of (A)
- (3) (A) is false but (R) is true
- (4) Both (A) and (R) are true and (R) is the correct explanation of (A)

Ans. (1)

Sol.
$$CH_2 = CH - CH_2 - Cl$$

It is allyl carbon and sp³ hybridized

- **75.** What happens to freezing point of benzene when small quantity of napthalene is added to benzene?
 - (1) Increases
 - (2) Remains unchanged
 - (3) First decreases and then increases
 - (4) Decreases

Ans. (4)

- **Sol.** On addition of naphthalene to benzene there is depression in freezing point of benzene.
- 76. Match List-I with List-II

List-I List-II Species Electronic distribution (A) Cr^{+2} (I) $3d^8$ (B) Mn^+ (II) $3d^34s^1$ (C) Ni^{+2} (III) $3d^4$ (D) V^+ (IV) $3d^54s^1$

Choose the correct answer from the options given below:

- (1) (A)-I, (B)-II, (C)-III, (D)-IV
- (2) (A)-III, (B) IV, (C) I, (D)-II
- (3) (A)-IV, (B)-III, (C)-I, (D)-II
- (4) (A)-II, (B)-I, (C)-IV, (D)-III

Ans. (2)

Sol.
$${}_{24}\text{Cr} \rightarrow [\text{Ar}] \ 3d^5 4s^1; \ \text{Cr}^{2+} \rightarrow [\text{Ar}] \ 3d^4$$
 ${}_{25}\text{Mn} \rightarrow [\text{Ar}] \ 3d^5 4s^2; \ \text{Mn}^+ \rightarrow [\text{Ar}] \ 3d^5 4s^1$
 ${}_{28}\text{Ni} \rightarrow [\text{Ar}] \ 3d^8 4s^2; \ \text{Ni}^{2+} \rightarrow [\text{Ar}] \ 3d^8$
 ${}_{23}\text{V} \rightarrow [\text{Ar}] \ 3d^3 4s^2; \ \text{V}^+ \rightarrow [\text{Ar}] \ 3d^3 4s^1$

77. Compound A formed in the following reaction reacts with B gives the product C. Find out A and B.

$$CH_3 - C \equiv CH + Na \rightarrow A \xrightarrow{B} CH_3 - C \equiv C - CH_2 - CH_2 + NaBr$$

$$(C) \qquad |$$

$$CH_3$$

(1)
$$A=CH_3-C=\bar{C}Na_3^+$$
, $B=CH_3-CH_2-CH_2-Br$

(2)
$$A=CH_3-CH=CH_2$$
, $B=CH_3-CH_2-CH_2-Br$

(3)
$$A = CH_3 - CH_2 - CH_3$$
, $B = CH_3 - C \equiv CH$

(4)
$$A = CH_3 - C \equiv \overline{C}N_a^+, B = CH_3 - CH_2 - CH_3$$

Ans. (1)

Sol.

$$CH_3 - C \equiv CH \xrightarrow{Na} CH_3 - C \equiv C^-Na^+ \xrightarrow{CH_3CH_2CH_2 - Br}$$

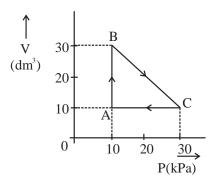
$$NaBr + CH_3 - C \equiv C - CH_2CH_2CH_3$$

78. Following is a confirmatory test for aromatic primary amines. Identify reagent (A) and (B)

$$\begin{array}{c}
 & \bigoplus_{N \neq 2} & \bigoplus_{N \neq$$

(1)
$$A = HNO_3/H_2SO_4$$
; $B = OH$
(2) $A = NaNO_2 + HCl$, $0 - 5^{\circ}C$; $B = OH$
(3) $A = NaNO_2 + HCl$, $0 - 5^{\circ}C$; $B = OH$

(4)
$$A = NaNO_2 + HCl, 0 - 5^{\circ}C;$$


Ans. (4)

CollegeDekho

83.

An ideal gas undergoes a cyclic transformation starting from the point A and coming back to the same point by tracing the path $A \to B \to C \to A$ as shown in the diagram. The total work done in the process is _____ J.

Ans. (200)

Sol. Work done is given by area enclosed in the P vs V cyclic graph or V vs P cyclic graph.

Sign of work is positive for clockwise cyclic process for V vs P graph.

$$W = \frac{1}{2} \times (30 - 10) \times (30 - 10) = 200 \text{ kPa} - \text{dm}^3$$
$$= 200 \times 1000 \text{ Pa} - \text{L} = 2 \text{ L-bar} = 200 \text{ J}$$

84. if IUPAC name of an element is "Unununnium" then the element belongs to nth group of periodic table. The value of n is

Ans. (11)

Sol. 111 belongs to 11th group

85. The total number of molecular orbitals formed from 2s and 2p atomic orbitals of a diatomic molecule

Ans. (08)

Sol. Two molecular orbitals σ 2s and σ *2s. Six molecular orbitals σ 2p_z and σ *2p_z. π 2p_x, π 2p_y and π *2p_x, π *2p_y

86. On a thin layer chromatographic plate, an organic compound moved by 3.5 cm, while the solvent moved by 5 cm. The retardation factor of the organic compound is $\times 10^{-1}$

Ans. (07)

Distance travelled by

Sol. Retardation factor = $\frac{\text{sample/organic compound}}{\text{Distance travelled by solvent}}$ = $\frac{3.5}{5} = 7 \times 10^{-1}$

87. The compound formed by the reaction of ethanal with semicarbazide contains ____number of nitrogen atoms.

Ans. (03)

Sol.

$$CH_3-C = O + H_2N - NH - C - NH_2 \longrightarrow H$$
Semicarbazide

$$CH_3 - CH = N - NH - C - NH_2$$

88. 0.05 cm thick coating of silver is deposited on a plate of 0.05 m² area. The number of silver atoms deposited on plate are $___ \times 10^{23}$. (At mass Ag = 108, d = 7.9 g cm⁻³)

Ans. (11)

Sol. Volume of silver coating = $0.05 \times 0.05 \times 10000$ = 25 cm^3

Mass of silver deposited = 25×7.9 g

Moles of silver atoms = $\frac{25 \times 7.9}{108}$

Number of silver atoms = $\frac{25 \times 7.9}{108} \times 6.023 \times 10^{23}$

 $= 11.01 \times 10^{23}$

Ans. 11

CollegeDekho

89.
$$2MnO_4^- + bI^- + cH_2O \rightarrow xI_2 + yMnO_2 + zOH^-$$

If the above equation is balanced with integer coefficients, the value of z is

Ans. (08)

Oxidation Half

$$2MnO_4^- \rightarrow 2MnO_2$$

$$2I^- \rightarrow I_2 + 2e^-$$

$$2MnO_4^- + 4H_2O + 6e^- \rightarrow 2MnO_2 + 8OH^-$$

$$6I^- \rightarrow 3I_2 + 6e^-$$

Adding oxidation half and reduction half, net reaction is

$$2MnO_4^- + 6I^- + 4H_2O \rightarrow 3I_2 + 2MnO_2 + 8OH^-$$

$$\Rightarrow$$
 z = 8

$$\Rightarrow$$
 Ans 8

90. The mass of sodium acetate (CH₃COONa) required to prepare 250 mL of 0.35 M aqueous solution is
g. (Molar mass of CH₃COONa is 82.02 g mol⁻¹)

Ans. (7)

Sol. Moles = Molarity
$$\times$$
 Volume in litres

$$= 0.35 \times 0.25$$

$$Mass = moles \times molar mass$$

$$= 0.35 \times 0.25 \times 82.02 = 7.18 \text{ g}$$