






**33.** Highest oxidation state of Mn is exhibited in  $Mn_2O_7$ . The correct statements about  $Mn_2O_7$  are

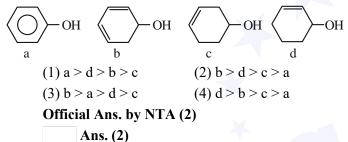
(A) Mn is tetrahedrally surrounded by oxygen atoms

(B) Mn is octahedrally surrounded by oxygen atoms

- (C) Contains Mn-O-Mn bridge
- (D) Contains Mn-Mn bond.

Choose the correct answer from the options given below

(1) A and C only (2) A and D only


(3) B and D only (4) B and C only

Official Ans. by NTA (1)

Ans. (1)

Sol.

**34.** Decreasing order of dehydration of the following alcohols is



- **Sol.** Dehydration of alcohol is directly proportional to the stability of carbocation.
- 35. Given below are two statements: One is labelled as Assertion A and the other is labelled as Reason R. Assertion A: Amongst He, Ne, Ar and Kr;

1 g of activated charcoal adsorbs more of Kr.

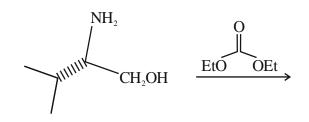
**Reason R :** The critical volume  $V_c$  (cm<sup>3</sup> mol<sup>-1</sup>) and critical pressure  $P_c$  (atm) is highest for Krypton but the compressibility factor at critical point  $Z_c$  is lowest for Krypton.

In the light of the above statements, choose the **correct** answer from the options given below.

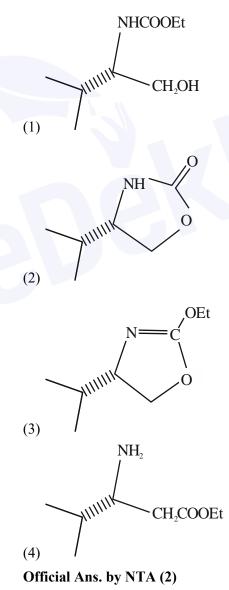
- (1) A is true but R is false
- (2) A is false but R is true

(3) Both A and R are true but R is NOT the correct explanation of A

(4) Both A and R are true and R is the correct explanation A


Official Ans. by NTA (1)

Ans. (1)

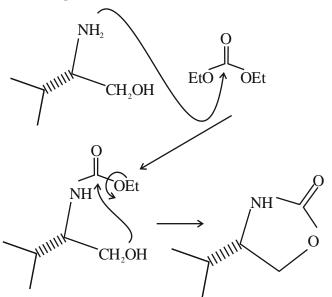

**Sol.** Adsorption  $\infty$  vanderwaal attraction forces

$$Z_c = \frac{3}{8}$$
 for all real gases

**36.** In the following reaction, 'A' is



'A' Major product.




Ans. (2)

**Sol.** Initially lone pair electron of  $-NH_2$  attack on electrophilic carbon, after then lone pair electron of



oxygen attacks leading to formation of cyclic compound.



**37.** Match List I with List II

| List-I            | List-II                    |
|-------------------|----------------------------|
| (A) Tranquilizers | (I) Anti blood clotting    |
| (B) Aspirin       | (II) Salvarsan             |
| (C) Antibiotic    | (III) Antidepressant drugs |
| (D) Antiseptic    | (IV) Soframicine           |

Choose the correct answer from the options given

below:

- (1) (A) IV, (B) II, (C) I, (D) III
- (2) (A) II, (B) I, (C) III, (D) IV
- (3) (A) III, (B) I, (C) II, (D) IV
- (4) (A) II, (B) IV, (C) I, (D) III

#### Official Ans. by NTA (3)

Ans. (3)

Sol. NCERT (Chemistry in every day life)

**38.** Given below are two statements:

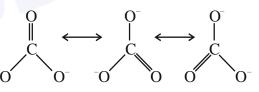
**Statement I:** Chlorine can easily combine with oxygen to from oxides: and the product has a tendency to explode.

**Statement II:** Chemical reactivity of an element can be determined by its reaction with oxygen and halogens.

In the light of the above statements, choose the **correct** answer from the options given below.

(1) Both the statements I and II are true

(2) Statement I is true but Statement II is false


(3) Statement I is false but Statement II is true

(4) Both the Statements I and II are false

### Official Ans. by NTA (1)

Ans. (1)

- **Sol.** Chlorine oxides, Cl<sub>2</sub>O, ClO<sub>2</sub>, Cl<sub>2</sub>O<sub>6</sub> and Cl<sub>2</sub>O<sub>7</sub> are highly reactive oxidising agents and tend to explode.
- **39.** Resonance in carbonate ion  $(CO_3^{2-})$  is



Which of the following is true?

 It is possible to identify each structure individually by some physical or chemical method.
 All these structures are in dynamic equilibrium with each other.

(3) Each structure exists for equal amount of time.

(4)  $CO_3^{2-}$  has a single structure i.e., resonance hybrid of the above three structures.

Official Ans. by NTA (4)

# Ans. (4)



| Sol. | Resonating structure are hypothetical and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | resonance hybrid is real structure which is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      | weighted average of all the resonating structures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 40.  | Identify the incorrect option from the following:<br>$A = A^{Br}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      | (1) $H$ + KOH(aq) $\rightarrow$ $H$ + KBr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      | Br                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      | (2) + KOH(alc) $\rightarrow$ OH +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      | KBr<br>Cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | $H_3C-C-Cl$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      | $(3) \qquad \qquad \xrightarrow{anhyd AlCl_3} \qquad \qquad$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      | CI O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | CH <sub>3</sub> +HCl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | Ch <sub>3</sub> +nCi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | A CI OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | $(4) \xrightarrow{(i) \text{ NaOH, 623 K,}} $ |
|      | Official Ans. by NTA (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      | Ans. (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Sol. | In alcoholic KOH, elimination reaction takes place.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 41.  | A solution of FeCl <sub>3</sub> when treated with K <sub>4</sub> [Fe(CN) <sub>6</sub> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|      | gives a prussiun blue precipitate due to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      | formation of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      | (1) $K[Fe_2(CN)_6]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      | $(2) \operatorname{Fe}[\operatorname{Fe}(\operatorname{CN})_6]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | (3) $Fe_3[Fe(CN)_6]_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      | $(4) \operatorname{Fe}_{4}[\operatorname{Fe}(\operatorname{CN})_{6}]_{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      | Official Ans. by NTA (4)<br>Ans. (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Sol. | Formation of Prussian blue complex takes place.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 42.  | Which of the following are the example of double                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      | salt?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|      | (A) FeSO <sub>4</sub> .(NH <sub>4</sub> ) <sub>2</sub> SO <sub>4</sub> .6H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      | (B) CuSO <sub>4</sub> .4NH <sub>3</sub> .H <sub>2</sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      | (C) $K_2SO_4.Al_2(SO_4)_3.24H_2O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      | (D) Fe(CN) <sub>2</sub> .4KCN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | Choose the correct answer.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | (1) A and C only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      | (2) A and B only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

(3) A, B and D only

(4) B and D only Official Ans. by NTA (1) Ans. (1)

- **Sol.** Double salt contain's two or more types of salts. CuSO<sub>4</sub>.4NH<sub>3</sub>.H<sub>2</sub>O and Fe(CN)<sub>2</sub>.4KCN are complex compounds.
- **43.** Which of the following complex will show largest splitting of d-orbitals?

(1)  $[Fe(C_2O_4)_3]^{3-1}$ 

(2)  $[FeF_6]^{3-}$ 

 $(3) [Fe(CN)_6]^{3-}$ 

(4)  $[Fe(NH_3)_6]^{3+}$ 

Official Ans. by NTA (3)

- Ans. (3)
- Sol.  $\overline{C}N$  is a strong field ligand so maximum splitting in d orbitals take place.

44. How can photochemical smog be controlled?

(1) By using tall chimneys

(2) By complete combustion of fuel

(3) By using catalytic converters in the automobiles/industry

(4) By using catalyst

Official Ans. by NTA (3)

Ans. (3)

Sol. NCERT (Environmental chemistry)

45. Match List I with List II

- (A) Slaked lime (I) NaOH
- (B) Dead burnt plaster (II)  $Ca(OH)_2$
- (C) Caustic soda (III) Na<sub>2</sub>CO<sub>3</sub>·10H<sub>2</sub>O
- (D) Washing soda (IV) CaSO<sub>4</sub>

Choose the correct answer form the options given below:

(1) (A) - I, (B) - IV, (C) - II, (D) - III(2) (A) - III, (B) - IV, (C) - II, (D) - I(3) (A) - II, (B) - IV, (C) - I, (D) - III(4) (A) - III, (B) - II, (C) - IV, (D) - I



## Official Ans. by NTA (3)

Ans. (3)

Sol. From S-block NCERT

**46.** Choose the correct statement(s):

A. Beryllium oxide is purely acidic in nature.

B. Beryllium carbonate is kept in the atmosphere of CO<sub>2</sub>.

C. Beryllium sulphate is readily soluble in water.

D. Beryllium shows anomalous behavior.

Choose the correct answer from the options given below:

(1) A, B and C only

(2) B, C and D only

(3) A and B only

(4) A only

Official Ans. by NTA (2)

Ans. (2)

**Sol.** A. Beryllium oxide is amphoteric in nature.

B. Beryllium carbonate is kept in the atmosphere of  $CO_2$  because it is thermally less stable.

C. Beryllium sulphate is readily soluble in water due to high degree of hydration.

D. Beryllium shows anomalous behaviour due to small size, high ionization energy and high value of  $\phi$  (polarising power).

47. Given below are two statements: one is labelled as
Assertion A and the other is labelled as Reason R
Assertion A: In an Ellingham diagram, the oxidation of carbon to carbon monoxide shows a negative slope with respect to temperature.

**Reason R:** CO tends to get decomposed at higher temperature.

In the light of the above statements, choose the correct answer from the options given below

(1) Both A and R are correct and R is the correct explanation of A

(2) A is not correct but R is correct

(3) Both A and R are correct but R is NOT the correct explanation of A

(4) A is correct but R is not correct

### Official Ans. by NTA (4)

Ans. (4)

**Sol.**  $2C(s) + O_2(g) \rightarrow 2CO(g)$ 

 $\Delta_r S^o$  is +ve,  $\Delta_r G^o = \Delta_r H^o - T \Delta_r S^o$  ; thus slope is negative

As temperature increases  $\Delta_r G^o$  becomes more negative thus it has lower tendency to get decomposed.

**48.** But-2-yne is reacted separately with one mole of Hydrogen as shown below:

$$\underline{B} \xleftarrow[]{\operatorname{Na}}_{\operatorname{liq}\operatorname{NH}_3} - CH_3 - C \underset{_{+H_2}}{\equiv} C - CH_3 \xrightarrow[]{\operatorname{Pd/C}} A$$

Identify the incorrect statements from the options given below:

A. A is more soluble than B.

B. The boiling point & melting point of A are higher and lower than B respectively.

C. A is more polar than B because dipole moment of A is zero.

- D. Br<sub>2</sub> adds easily to B than A.
- (1) B and C only
- (2) B, C and D only
- (3) A, C and D only

(4) A and B only

# Ans. (Bonus)

**Sol.** Incorrect statements are C and D only, correct choice is not available.

49. Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R Assertion A: Hydrogen is an environment friendly fuel.

**Reason R:** Atomic number of hydrogen is 1 and it is a very light element.

In the light of the above statements, choose the correct answer from the options given below

(1) A is true but R is false

(2) Both A and R are true but R is NOT the correct explanation of A

(3) A is false but R is true

(4) Both A and R are true and R is the correct explanation of A



## Official Ans. by NTA (2)

## Ans. (2)

- **Sol.** No pollution occurs by combustion of hydrogen and very low density of hydrogen.
- **50.** Match List I and List II

| List I               | List II                                 |
|----------------------|-----------------------------------------|
| Test                 | Functional group /<br>Class of Compound |
| (A) Molisch's Test   | (I) Peptide                             |
| (B) Biuret Test      | (II) Carbohydrate                       |
| (C) Carbylamine Test | (III) Primary amine                     |
| (D) Schiff s Test    | (IV) Aldehyde                           |

Choose the correct answer from the options given below:

(1) (A) - I, (B) - II, (C) - III, (D) - IV

(2) (A) – III, (B) – IV, (C) –I, (D) – II

(3) (A) - II, (B) - I, (C) - III, (D) - IV

(4) (A) - III, (B) - IV, (C) - II, (D) - I

Official Ans. by NTA (3)

Ans. (3)

Sol.

| List I               | List II                                 |
|----------------------|-----------------------------------------|
| Test                 | Functional group /<br>Class of Compound |
| (A) Molisch's Test   | (II) Carbohydrate                       |
| (B) Biuret Test      | (I) Peptide                             |
| (C) Carbylamine Test | (III) Primary amine                     |
| (D) Schiff s Test    | (IV) Aldehyde                           |

### **SECTION-B**

51. The density of 3 M solution of NaCl is 1.0 g mL<sup>-1</sup>. Molality of the solution is  $\_\_\_ \times 10^{-2}$  m. (Nearest integer).

Given: Molar mass of Na and Cl is 23 and 35.5 g mol<sup>-1</sup> respectively.

Official Ans. by NTA (364)

Ans. (364)

Sol. 
$$m = \frac{1000 \times M}{1000 \times d - M \times M.W \text{ of solute}}$$

$$=\frac{1000\times3}{1000\times1-(3\times58.5)}=3.64$$

 $= 364 \times 10^{-2}$ 

52. Electrons in a cathode ray tube have been emitted with a velocity of 1000 ms<sup>-1</sup>. The number of following statements which is/are <u>true</u> about the emitted radiation is .

Given :  $h = 6 \times 10^{-34}$  Js,  $m_e = 9 \times 10^{-31}$  kg.

- (A) The deBroglie wavelength of the electron emitted is 666.67nm.
- (B) The characteristic of electrons emitted depend upon the material of the electrodes of the cathode ray tube.
- (C) The cathode rays start from cathode and move towards anode.
- (D) The nature of the emitted electrons depends on the nature of the gas present in cathode ray tube.

Official Ans. by NTA (2)

Ans. ( 2)

**Sol.** (A) 
$$V_e = 1000 \text{ m/s}$$
;  $h = 6 \times 10^{-34} \text{ Js}$ ;

$$m_e=9\times 10^{-31}\ kg$$

$$\lambda = \frac{h}{mv} = \frac{6 \times 10^{-34}}{9 \times 10^{-31} \times 1000} = 666.67 \times 10^{-9} m$$

= 666.67 nm

(B) The characteristic of electrons emitted is independent of the material of the electrodes of the cathode ray tube.



|      | gobolalle                                                                             |          |
|------|---------------------------------------------------------------------------------------|----------|
|      | (C) The cathode rays start from cathode and                                           | 55.      |
|      | move towards anode.                                                                   |          |
|      | (D) The nature of the emitted electrons is                                            |          |
|      | independent on the nature of the gas present in                                       |          |
|      | cathode ray tube.                                                                     |          |
| 53.  | Sum of oxidation states of bromine in bromic acid                                     |          |
|      | and perbromic acid is                                                                 | Sol.     |
|      | Official Ans. by NTA (12)                                                             |          |
|      | Ans. (12)                                                                             | = (      |
| Sol. | HBrO <sub>3</sub> (Bromic acid)                                                       | 56.      |
|      | Ox. State of $Br = +5$                                                                | T        |
|      | HBrO <sub>4</sub> (per bromic acid)                                                   | If<br>of |
|      | OX. State of $Br = +7$                                                                |          |
|      | Sum of Ox. State = 12                                                                 | th       |
| 54.  | At what pH, given half cell $Mn O_4^-$ (0.1 M)   $Mn^{2+}$                            | ec       |
|      | (0.001 M) will have electrode potential of 1.282                                      | 111      |
|      | V? (Nearest Integer)                                                                  |          |
|      | Given $E_{MnO_4^-/Mn^{2+}}^o = 1.54 \text{ V}, \ \frac{2.303RT}{F} = 0.059 \text{ V}$ | Sol.     |
|      |                                                                                       | Initial  |
|      | Official Ans. by NTA (3)                                                              | at equ   |
|      | Ans. (3)                                                                              |          |
| Sol. | $MnO_4^- + 8H^+ + 5e^- \rightleftharpoons Mn^{2+} + 4H_2O$                            |          |
|      | $E = E^{\circ} - \frac{0.059}{5} \log \frac{[Mn^{2+}]}{[MnO_{4}^{-}][H^{+}]^{8}}$     |          |
|      | $1.282 = 1.54 - \frac{0.059}{5} \log \frac{10^{-3}}{10^{-1} \times [\mathrm{H^+}]^8}$ |          |
|      |                                                                                       |          |

$$\frac{0.2}{0.059} = \log \frac{10^{-2}}{[\text{H}^+]^8}$$

$$\Rightarrow 21.86 = -2 + 8\text{pH}$$

$$\therefore \text{ pH} = 2.98$$

$$\approx 3$$

Number of isomeric compounds with molecular formula C<sub>9</sub>H<sub>10</sub>O which (i) do not dissolve in NaOH (ii) do not dissolve in HCl. (iii) do not give orange precipitate with 2, 4 - DNP (iv) on hydrogenation give identical compound with molecular formula  $C_9H_{12}O$  is

Official Ans. by NTA (2)

Ans. (2)

As per the language of given question, the best possible isomeric structure is  $Ph - CH = CH - O - CH_3$  (cis and trans). So, the answer is 2.

**56.** (i) 
$$X(g) \implies Y(g) + Z(g) K_{p1} = 3$$

(ii)  $A(g) \Longrightarrow 2B(g)$  $K_{p2} = 1$ 

the degree of dissociation and initial concentration f both the reactants X(g) and A(g) are equal, then

he ratio of the total pressure at equilibrium  $\left(\frac{p_1}{p_2}\right)$  is

qual to x : 1. The value of x is (Nearest nteger)

Official Ans. by NTA (12)

moles

 $x(g) \rightleftharpoons y(g) + z(g)$  $k_{p_1} = 3$ 

n ilibrium  $n - \alpha n$ αn αn

$$k_{p_1} = \frac{\left(\frac{\alpha}{1+\alpha} \times p_1\right)^2}{\frac{1-\alpha}{1+\alpha}p_1}$$
$$3 = \frac{\alpha^2 \times p_1}{1-\alpha^2}$$

 $A(g) \rightleftharpoons 2B(g) \qquad k_{p_2} = 1$ 

 $2 \alpha n$ 

Initial mole n

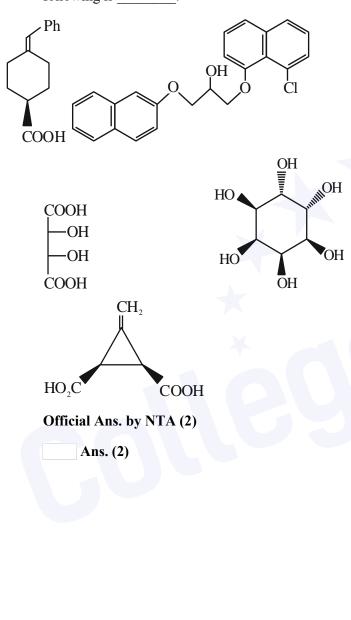
at equilibrium

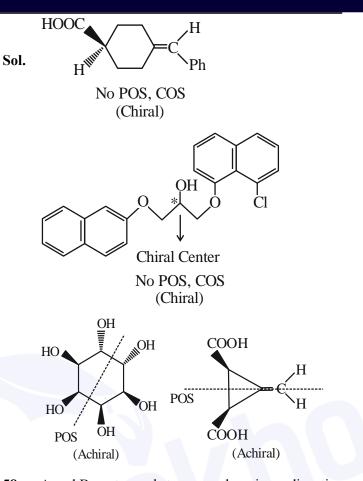
 $p_{total} = p_2$ 

$$\mathbf{k}_{\mathbf{p}_{2}} = \frac{\left(\frac{2\alpha}{1+\alpha} \times \mathbf{p}_{2}\right)^{2}}{\frac{1-\alpha}{1+\alpha} \times \mathbf{p}_{2}}$$

 $x-\alpha n$ 

$$1 = \frac{4\alpha^2 \times p_2}{1 - \alpha^2}$$





$$\frac{k_{p_1}}{k_{p_2}} = \frac{p_1}{4p_2}$$

$$\frac{3}{1} = \frac{p_1}{4p_2} \qquad \therefore p_1 : p_2 = 12 : 1$$

$$x = 12$$

**57.** The total number of chiral compound/s from the following is \_\_\_\_\_.





**58.** A and B are two substances undergoing radioactive decay in a container. The half life of A is 15 min and that of B is 5 min. If the initial concentration of B is 4 times that of A and they both start decaying at the same time, how much time will it take for the concentration of both of them to be same? \_\_\_\_\_ min.

Official Ans. by NTA (15)

**Sol.**  $[A]_t = [A]_0 e^{-kt}$ 

For A : Let [A]<sub>t</sub> be y and [A]<sub>0</sub> be x ;  $k = \frac{\ln 2}{t_{_{1/2}}} =$ 

 $\frac{\ln 2}{15 \min}$  $y = xe^{-kt}$ 

# 

$$= xe^{-\left(\frac{\ln 2}{15}\right)t}$$
For B : [B]<sub>t</sub> = [B]<sub>0</sub>e<sup>-kt</sup>  
Let [B]<sub>t</sub> = y ; [B]<sub>0</sub> = 4x ; k =  $\frac{\ln 2}{t_{1/2}} = \frac{\ln 2}{5 \min}$   
 $y = 4xe^{-\left(\frac{\ln 2}{5}\right)t}$   
 $\Rightarrow xe^{-\left(\frac{\ln 2}{15}\right)t} = 4xe^{-\left(\frac{\ln 2}{5}\right)t}$   
 $e^{t\left(\frac{\ln 2}{5} - \frac{\ln 2}{15}\right)} = 4$   
 $t \times \left[\frac{\ln 2}{5} - \frac{\ln 2}{15}\right] = \ln 4$   
 $t \times \ln 2\left[\frac{1}{5} - \frac{1}{15}\right] = 2\ln 2$ 

t = 15 min

**59.** At 25°C, the enthalpy of the following processes are given:

 $\begin{aligned} H_2(g) + O_2(g) &\longrightarrow 2OH(g) \quad \Delta H^\circ = 78 \text{kJ mol}^{-1} \\ H_2(g) + \frac{1}{2}O_2(g) &\longrightarrow H_2O(g) \quad \Delta H^\circ = -242 \text{ kJ mol}^{-1} \end{aligned}$ 

 $H_2(g) \rightarrow 2H(g) \Delta H^\circ = 436 \text{ kJ mol}^{-1}$ 

 $\frac{1}{2} O_2(g) \rightarrow O(g) \Delta H^\circ = 249 \text{ kJ mol}^{-1}$ 

What would be the value of X for the following reaction? \_\_\_\_\_ (Nearest integer)

 $H_2O(g) \rightarrow H(g) + OH(g) \Delta H^o = X kJ mol^{-1}$ 

## Official Ans. by NTA (499)

Ans. (499)

Sol. 
$$2H_2O(g) \rightarrow 2H_2(g) + O_2(g) + (242 \times 2) \text{ kJ mol}^{-1}$$
  
 $H_2(g) + O_2(g) \rightarrow 2OH + 78 \text{ kJ mol}^{-1}$ 

| $H_2(g) \rightarrow 2H$      | +436 kJ mol <sup>-1</sup>                           |
|------------------------------|-----------------------------------------------------|
| $2H_2O \rightarrow 2H + 2OH$ | +998 kJ mol <sup>-1</sup>                           |
| $H_2O \rightarrow H + OH$    | $998 \times \frac{1}{2} = +499 \text{ kJ mol}^{-1}$ |

60. 25 mL of an aqueous solution of KCl was found to require 20 mL of 1 M AgNO<sub>3</sub> solution when titrated using K<sub>2</sub>CrO<sub>4</sub> as an indicator. What is the depression in freezing point of KCl solution of the given concentration? \_\_\_\_\_ (Nearest integer).

(Given :  $K_f = 2.0 \text{ K kg mol}^{-1}$ )

Assume

1) 100% ionization and

2) density of the aqueous solution as 1 g mL<sup>-1</sup>

Official Ans. by NTA (3)

Ans. (3)

Sol.

$$\begin{array}{ccc} \text{KCl} + \text{AgNO}_3 \rightarrow \text{AgCl} + \text{KNO}_3 \\ \downarrow & \downarrow \\ V = 25\text{ml} & V = 20\text{ml} \\ M = 1\text{M} \end{array}$$

At equivalence point,

mmole of KCl = mmole of AgNO<sub>3</sub>

= 20 mmole

Volume of solution = 25 ml

Mass of solution = 25 gm

Mass of solvent

= 25 - mass of solute=  $25 - [20 \times 10^{-3} \times 74.5]$ 

= 23.51 gm



Molality of KCl =  $\frac{\text{mole of KCl}}{\text{mass of solvent in kg}}$ =  $\frac{20 \times 10^{-3}}{23.51 \times 10^{-3}} = 0.85$ i of KCl = 2 (100% ionisation)  $\Delta T_f = i \times K_f \times m$ =  $2 \times 2 \times 0.85$ 

 $\simeq 3$