

FINAL JEE-MAIN EXAMINATION – APRIL, 2023

(Held On Monday 10th April, 2023)

TIME:9:00 AM to 12:00 NOON

SECTION-A

- 1. Let O be the origin and the position vector of the point P be $-\hat{i} - 2\hat{j} + 3\hat{k}$. If the position vectors of the points A, B and C are $-2\hat{i} + \hat{j} - 3\hat{k}, 2\hat{i} + 4\hat{j} - 2\hat{k}$ and $-4\hat{i} + 2\hat{j} - \hat{k}$ respectively then the projection of the vector \overrightarrow{OP} on a vector perpendicular to the vectors \overrightarrow{AB} and \overrightarrow{AC} is
 - (1) 3 (2) $\frac{8}{3}$

(3)
$$\frac{10}{3}$$
 (4) $\frac{7}{3}$

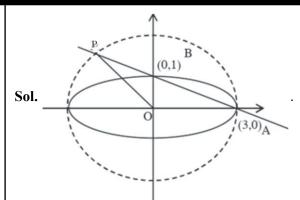
Official Ans. by NTA (1) Ans. (1)

Sol.
$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$$

$$= (2\hat{i} + 4\hat{j} - 2\hat{k}) - (-2\hat{i} + \hat{j} - 3\hat{k})$$

$$= 4\hat{i} + 3\hat{j} + \hat{k}$$
 $\overrightarrow{AC} = \overrightarrow{OC} - \overrightarrow{OA} = -2\hat{i} + \hat{j} + 2\hat{k}$
 $\overrightarrow{AB} \times \overrightarrow{AC} = 5\hat{i} - 10\hat{j} + 10\hat{k}$
 $\overrightarrow{OP} = -\hat{i} - 2\hat{j} + 3\hat{k}$
Projection
$$= \frac{(\overrightarrow{OP}) \cdot (\overrightarrow{AB} \times \overrightarrow{AC})}{|\overrightarrow{AB} \times \overrightarrow{AC}|} = 3$$

2. Let the ellipse $E: x^2 + 9y^2 = 9$ intersect the positive x- and y-axes at the points A and B respectively Let the major axis of E be a diameter of the circle C. Let the line passing through A and B meet the circle C at the point P. If the area of the triangle which vertices A, P and the origin O is $\frac{m}{n}$, where m and n are coprime, then m – n is equal to (1) 18 (2) 16 (3) 17 (4) 15 Official Ans. by NTA (3) Ans. (3)



For line AB x + 3y = 3 and circle is $x^2 + y^2 = 9$

$$(3-3y)^{2} + y^{2} = 9$$

$$\Rightarrow 10y^{2} - 18y = 0$$

$$\Rightarrow y = 0, \frac{9}{5}$$

$$\therefore \text{ Area} = \frac{1}{2} \times 3 \times \frac{9}{5} = \frac{27}{10}$$

m - n = 17

3. If
$$f(x) = \frac{(\tan 1^{\circ})x + \log_{e}(123)}{x \log_{e}(1234) - (\tan 1^{\circ})}, x > 0$$
, then

the least value of $f(f(x)) + f\left(f\left(\frac{4}{x}\right)\right)$ is

(1) 8
(2) 4
(3) 2
(4) 0
Official Ans. by NTA (2) Ans. (2)

Sol. Let
$$f(x) = \frac{Ax+B}{Cx-A}$$

$$f\left(f\left(x\right)\right) = \frac{A\left(\frac{+B}{Cx-A}\right)+B}{C\left(\frac{Ax+B}{Cx-A}\right)-A} = x$$

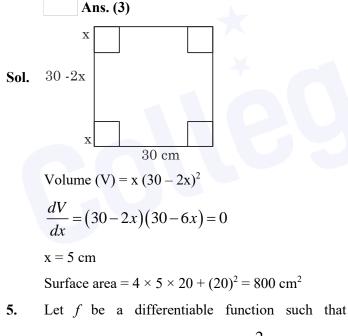
$$f\left(f\left(\frac{4}{x}\right)\right) = \frac{4}{x}$$

$$f\left(f\left(x\right)\right) + f\left(f\left(\frac{4}{x}\right)\right) = x + \frac{4}{x} \ge 4(by A.M. \ge G.M.)$$

A square piece of tin of side 30 cm is to be made into a box without top by cutting a square from each corner and folding up the flaps to form a box. If the volume of the box is maximum, then its surface area (in cm²) is equal to

(2) 1025

Official Ans. by NTA (3)



$$x^{2} f(x) - x = 4 \int_{0}^{x} t f(t) dt$$
, $f(1) = \frac{2}{3}$.

Then 18 f(3) is equal to

(1) 160	(2) 210
---------	---------

Official Ans. by NTA (1)

Ans. (1)

Sol. Differentiate the given equation

$$\Rightarrow 2xf(x) + x^{2}f'(x) - 1 = 4x f(x)$$

$$\Rightarrow x^{2} \frac{dy}{dx} - 2xy = 1$$

$$\Rightarrow \frac{dy}{dx} + \left(-\frac{2}{x}\right)y = \frac{1}{x^{2}}$$

$$I.F. = e^{\int -\frac{2}{x} \ln x} = \frac{1}{x^{2}}$$

$$\therefore y\left(\frac{1}{x^{2}}\right) = \int \frac{1}{x^{4}} dx$$

$$\Rightarrow \frac{y}{x^{2}} = \frac{-1}{3x^{3}} + c$$

$$\Rightarrow y = -\frac{1}{3x^{3}} + c$$

$$\Rightarrow y = -\frac{1}{3x} + cx^{2}$$

$$\therefore f(1) = \frac{2}{3} = -\frac{1}{3} + c \Rightarrow c = 1$$

$$f(x) = -\frac{1}{3x} + x^{2}$$

$$18f(3) = 160$$

6. A line segment AB of length λ moves such that the points A and B remain on the periphery of a circle of radius λ. Then the locus of the point, that divides the line segment AB in the ratio 2 : 3, is a circle of radius

(1)
$$\frac{3}{5}\lambda$$
 (2) $\frac{\sqrt{19}}{7}\lambda$
(3) $\frac{2}{3}\lambda$ (4) $\frac{\sqrt{19}}{5}\lambda$

Official Ans. by NTA (4) Ans. (4)

Sol.
$$\frac{\left(\frac{\lambda}{\sqrt{2}}\sin\theta, \frac{-\lambda}{\sqrt{2}}\cos\theta\right)A}{\frac{3}{\sqrt{2}}\operatorname{P(h,k)}B}\left(\frac{\lambda}{\sqrt{2}}\cos\theta, \frac{\lambda}{\sqrt{2}}\sin\theta\right)}{p(h,k)}$$
$$h = \frac{\frac{2\lambda}{\sqrt{2}}\sin\theta + 3\times\frac{\lambda}{\sqrt{2}}\cos\theta}{5}$$
$$k = \frac{\frac{-2\lambda}{\sqrt{2}}2\cos\theta + \frac{3\lambda}{\sqrt{2}}\sin\theta}{5}$$
$$h^{2} + k^{2} = \frac{19\lambda^{2}}{5}$$
$$r = \frac{\sqrt{19}\lambda}{5}$$

7. Let the complex number z = x + iy be such that $\frac{2z-3i}{2z+i}$ is purely imaginary. If $x + y^2 = 0$, then $y^4 + y^2 - y$ is equal to :

(1)
$$\frac{3}{2}$$
 (2) $\frac{4}{3}$
(3) $\frac{2}{3}$ (4) $\frac{3}{4}$

Official Ans. by NTA (4)

Ans. (4) **Sol.** $\frac{2z-3i}{2z+i}$ is purely imaginary $\therefore \frac{2z-3i}{2z+i} + \frac{2\overline{z}+3i}{2\overline{z}-i} = 0$ z = x + iy $\Rightarrow 4x^2 + 4y^2 - 4y - 3 = 0$ Given that $x + y^2 = 0$ $y^4 + y^2 - y = 3/4$ $96\cos\frac{\pi}{33} = \frac{2\pi}{33}\cos\frac{4\pi}{33}\cos\frac{8\pi}{33}\cos\frac{16\pi}{33}$ 8. equal to (1) 3 (2) 2(3)4(4)1Official Ans. by NTA (1) Ans. (1)

Sol.
$$P = 96 \cos \frac{\pi}{33} \cos \frac{2\pi}{33} \cos \frac{4\pi}{33} \cos \frac{8\pi}{33} \cos \frac{16\pi}{33}$$

 $2P \times \sin \frac{\pi}{33} = 96 \times 2 \sin \frac{\pi}{33} \cos \frac{\pi}{33} \cos \frac{2\pi}{33} \cos \frac{4\pi}{33} \cos \frac{8\pi}{33} \cos \frac{16\pi}{33}$
 $2P \times \sin \frac{\pi}{33} = 6 \times \sin \frac{32\pi}{33} = 6 \sin \frac{\pi}{33}$
 $P = 3$
9. If A is a 3 × 3 matrix and $|A| = 2$, then
 $\begin{vmatrix} 3adj(|3A|A^2) \end{vmatrix}$ is equal to
(1) $3^{11} \cdot 6^{10}$ (2) $3^{12} \cdot 6^{10}$
(3) $3^{10} \cdot 6^{11}$ (4) $3^{12} \cdot 6^{11}$
Official Ans. by NTA (1)
Ans. (1)
Sol. $\begin{vmatrix} 3adj(|3A|A^2) \end{vmatrix} = 3^3 \begin{vmatrix} adj(54A^2) \end{vmatrix} = 3^3 \cdot \left|54A^2\right|^2$
 $= 3^3 \times 54^6 \times |A|^4 = 3^{11} \times 6^{10}$

10. The slope of tangent at any point (x, y) on a curve

$$y = y(x)$$
 is $\frac{x^2 + y^2}{2xy}$, $x > 0$. If $y(2) = 0$, then a value
of y(8) is
(1) $-2\sqrt{3}$ (2) $4\sqrt{3}$
(3) $2\sqrt{3}$ (4) $-4\sqrt{2}$
Official Ans. by NTA (2)
Ans. (2)
 $dy = 1 + \left(\frac{y}{x}\right)^2$

Sol.
$$\frac{dy}{dx} = \frac{1 + \left(\frac{y}{x}\right)}{2\left(\frac{y}{x}\right)}$$

Let y = tx

$$\Rightarrow t + x\frac{dt}{dx} = \frac{1 + t^2}{2t}$$

$$\Rightarrow x \frac{dt}{dx} = \frac{1 - t^2}{2t}$$
$$\Rightarrow \int \frac{2t}{1 - t^2} dt = \int \frac{dx}{x}$$

is

$$\Rightarrow \ln \left| 1 - t^2 \right| = \ln x + \ln c$$
$$\Rightarrow \left(1 - t^2 \right) (cx) = 1$$
$$\Rightarrow \left(1 - \frac{y^2}{x^2} \right) cx = 1$$
$$y(2) = 0 \Rightarrow c = \frac{1}{2}$$
$$\left(1 - \frac{y^2}{x^2} \right) \cdot \frac{1}{2} x = 1$$

at
$$\mathbf{x} = 8$$

$$\left(1 - \frac{y^2}{64}\right) \times \frac{8}{2} = 1$$

$$y = \pm 4\sqrt{3}$$

11. For the system of linear equations

2x - y + 3z = 5

3x + 2y - z = 7

 $4x + 5y + \alpha z = \beta$

Which of the following is <u>NOT</u> correct?

- (1) The system has infinitely many solutions for $\alpha = -5$ and $\beta = 9$
- (2) The system has a unique solution for $\alpha \neq -5$ and $\beta = 8$
- (3) The system has infinitely many solutions for $\alpha = -6$ and $\beta = 9$
- (4) The system is inconsistent for $\alpha = -5$ and $\beta = 8$

Official Ans. by NTA (3)

Ans. (3)

Sol.
$$\Delta = \begin{vmatrix} 2 & -1 & 3 \\ 3 & -1 \\ 4 & 5 & \alpha \end{vmatrix} = 7(\alpha + 5)$$
$$\Delta_{1} = \begin{vmatrix} 5 & -1 & 3 \\ 7 & 2 & -1 \\ \beta & 5 & \alpha \end{vmatrix} = 17\alpha - 5\beta + 130$$

$$\Delta_{2} = \begin{vmatrix} 2 & 5 & 3 \\ 3 & 7 & -1 \\ 4 & \beta & \alpha \end{vmatrix} = -11\beta + \alpha + 104$$
$$\Delta_{3} = \begin{vmatrix} 2 & -1 & 5 \\ 3 & 2 & 7 \\ 4 & 5 & \beta \end{vmatrix} = 7(\beta - 9)$$

For infinitely many solutions

 $\Delta = \Delta_1 = \Delta_2 = \Delta_3 = 0$ For $\alpha = -5$ and $\beta = 9$

Hence option (3) is incorrect

12. Let N denotes the sum of the numbers obtained when two dice are rolled. If the probability that $2^{N} < N!$ is $\frac{m}{n}$, where m and n are coprime, then 4m - 3n is equal to (1) 8 (2) 16 (3) 10 (4) 12 Official Ans. by NTA (1)

Sol. $N = Sum of the numbers when two dice are rolled such that <math>2^N < N!$

$$\Rightarrow 4 \le N \le 12$$

Probability that $2^N \ge N!$

Now
$$P(N = 2) + P(N = 3) = \frac{1}{36} + \frac{2}{36} = \frac{3}{36} = \frac{1}{12}$$

Required probability $= 1 - \frac{1}{12} = \frac{11}{12} = \frac{m}{n}$
 $4m - 3n = 8$

13. Let P be the point of intersection of the line $\frac{x+3}{3} = \frac{y+2}{1} = \frac{1-z}{2}$ and the plane x + y + z = 2. If the distance of the point P from the plane 3x - 4y + 12z = 32 is q, then q and 2q are the roots of the equation (1) $x^2 - 18x - 72 = 0$ (2) $x^2 + 18x + 72 = 0$ (3) $x^2 - 18x + 72 = 0$ (4) $x^2 + 18x - 72 = 0$ Official Ans. by NTA (3)

Sol.
$$P = (3\lambda - 3, \lambda - 2, 1 - 2\lambda)$$

P lies on the plane, $x + y + z = 2$
 $\Rightarrow \lambda = 3$
 $P = (6, 1, -5)$
 $q = \left|\frac{18 - 4 - 60 - 32}{\sqrt{9 + 16 + 144}}\right| = \frac{78}{13} = 6$
 $q = 6, 2q = 12$
Equation, $x^2 - 18x + 72 = 0$

14. The negation of the statement $(p \lor q) \land (q \lor (\sim r))$ is $(1) ((\sim p) \lor r) \land (\sim q)$ $(2) ((\sim p) \lor (\sim q)) \land (\sim r)$ $(3) ((\sim p) \lor (\sim q)) \lor (\sim r)$ $(4) (p \lor r) \land (\sim q)$ Official Ans. by NTA (1) Ans. (1)

Sol. ~
$$[(p \lor q) \land (q \lor (\sim p)]$$

 $\Rightarrow \sim (p \land q) \lor \sim (q \lor (\sim p))$
 $\Rightarrow (\sim p \land \sim q) \lor (\sim q \land p)$
Apply distribution law
 $\Rightarrow \sim q \land (\sim p \lor p)$
 $\Rightarrow (\sim p \lor p) \land (\sim q)$

15. If the coefficient of x^7 in $\left(ax - \frac{1}{bx^2}\right)^{13}$ and the coefficient of x^{-5} in $\left(ax + \frac{1}{bx^2}\right)^{13}$ are equal, then a^4b^4 is equal to : (1) 44 (2) 22 (3) 11 (4) 33 Official Ans. by NTA (2) Ans. (2)

Sol.
$$T_{r+1} = {}^{13} C_r (ax)^{13-r} \left(-\frac{1}{bx^2}\right)^r$$

 $= {}^{13} C_r (a)^{13-r} \left(-\frac{1}{b}\right)^r x^{13-3r}$
 $13 - 3r = 7 \Rightarrow r = 2$
Coefficient of $x^7 = {}^{13} C_2 (a)^{11} \cdot \frac{1}{b^2}$
In the other expansion $T_{r+1} = {}^{13} C_r (ax)^{13-r} \left(\frac{1}{bx^2}\right)^r$
 $13 - 3r = -5 \Rightarrow r = 6$
Coefficient of $x^{-5} = {}^{13} C_6 (a)^7 \cdot \frac{1}{b^6}$
 ${}^{13} C_r \frac{a^{11}}{b^2} = {}^{13} C_r \frac{a^7}{b^7}$

$$a^{4}b^{4} = \frac{{}^{13}C_{6}}{{}^{13}C_{2}} = 22$$

16. Let two vertices of triangle ABC be (2, 4, 6) and (0, -2, -5), and its centroid be (2, 1, -1). If the image of third vertex in the plane x + 2y + 4z = 11is (α, β, γ) , then $\alpha\beta + \beta\gamma + \gamma\alpha$ is equal to (1)72(2)74(4)70(3)76Official Ans. by NTA (2) Ans. (2) Sol. Given, A(2, 4, 6), B(0, -2, -5) G(2, 1, -1)Let vertex C(x, y, z) $\frac{2+0+x}{3} = 2 \Longrightarrow x = 4$ $\frac{4-2+y}{3} = 1 \Longrightarrow y = 1$ $\frac{6-5+z}{3} = -1 \Longrightarrow z = -4$ Third vertex, C(4, 1, -4)Then image of vertex in the plane let image (α, β, γ) i.e., $\frac{\alpha - 4}{1} = \frac{\beta - 1}{2} = \frac{\gamma + 4}{4} = \frac{-2(4 + 2 - 16 - 11)}{21}$ $\alpha = 6, \beta = 5, \gamma = 4$

 $\alpha\beta+\beta\gamma+\gamma\alpha=30+20+24=74$

17.	The	shortest	distance	between	the	lines
	$\frac{x+2}{1}$	$=\frac{y}{-2}=\frac{z}{-2}$	$\frac{-5}{2}$ and $\frac{x}{2}$	$\frac{x-4}{1} = \frac{y-3}{2}$	$\frac{1}{z} = \frac{z+z}{0}$	$\frac{-3}{-3}$ is
	(1) 6		(2	2) 9	-	

(4) 8

(3) 7

Official Ans. by NTA (2)

Sol. Given lines

 $\frac{x+2}{1} = \frac{y}{-2} = \frac{z-5}{2} \& \frac{x-4}{1} = \frac{y-1}{2} = \frac{z+3}{0}$

Formula for shortest distance

S.D. =
$$\frac{\begin{vmatrix} x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix}}{\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \end{vmatrix}}$$
$$= \frac{\begin{vmatrix} 6 & 1 & -8 \\ 1 & -2 & 2 \\ 1 & 2 & 0 \\ \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -2 & 2 \\ 1 & 2 & 0 \end{vmatrix}} = \frac{54}{6} = 9$$

18. If $I(x) = \int e^{\sin^2 x} (\cos x \sin 2x - \sin x) dx$ and I(0) = 1, then $I\left(\frac{\pi}{3}\right)$ is equal to $(1) -\frac{1}{2}e^{\frac{3}{4}}$ $(2) e^{\frac{3}{4}}$ $(3) \frac{1}{2}e^{\frac{3}{4}}$ $(4) -e^{\frac{3}{4}}$ Official Ans. by NTA (3)

Ans. (3)

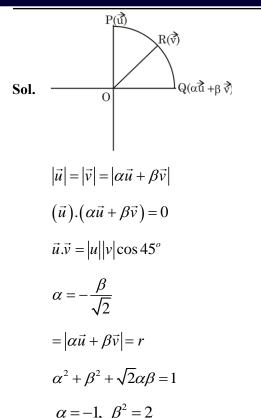
Sol.
$$I(x) = \int \frac{e^{\sin x} \cdot \sin 2x}{II} \cdot \frac{\cos x}{I} dx - \int e^{\sin^2 x} \cdot \sin x dx$$
$$\Rightarrow I(x) = e^{\sin^2 x} - \int (-\sin x) \cdot e^{\sin^2 x} dx - \int e^{\sin^2 x} \cdot \sin x dx$$
$$\Rightarrow I(x) = e^{\sin^2 x} \cdot \cos x + c$$
Put x = 0, c = 0
$$\therefore I\left(\frac{\pi}{3}\right) = e^{\frac{3}{4}} \cdot \cos \frac{\pi}{3} = \frac{1}{2}e^{\frac{3}{4}}$$
19. Let the first term *a* and the common ratio r of a

- 19. Let the first term a and the common ratio r of a geometric progression be positive integers. If the sum of its squares of first three terms is 33033, then the sum of these three terms is equal to
- (1) 231 (2) 210 (3) 220 (4) 241 **Official Ans. by NTA (1) Ans. (1) Sol.** $\Rightarrow a^2 + a^2r^2 + a^2r^4 = 33033$ $\Rightarrow a^2 (r^4 + r^2 + 1) = 3 \times 7 \times 11^2 \times 13 \Rightarrow a = 11$ $\Rightarrow r^4 + r^2 + 1 = 273 \Rightarrow r^4 + r^2 - 272 = 0$ $\Rightarrow (r^2 + 17) (r^2 - 16) = 0 \Rightarrow r^2 = 16 \Rightarrow r = \pm 4$ $t_1 + t_2 + t_3 = a + ar + ar^2 = 11 + 44 + 176 = 231$
- 20. An are PQ of a circle subtends a right angle at its centre O. The mid point of the arc PQ is R. If $\overrightarrow{OP} = \vec{u}$, $\overrightarrow{OR} = \vec{v}$ and then α , β^2

are the roots of the equation

(1)
$$x^{2} - x - 2 = 0$$

(2) $3x^{2} + 2x - 1 = 0$
(3) $x^{2} + x - 2 = 0$
(4) $3x^{2} - 2x - 1 = 0$
Official Ans. by NTA (1)
Ans. (1)



SECTION-B

21. The coefficient of x^7 in $(1-x+2x^3)^{10}$ is

Official Ans. by NTA (960)

Ans. (960)

Sol. General term = $\frac{10!}{r_1! \cdot r_2! \cdot r_3!} (-1)^{r_2} \cdot (2)^{r_3} x^{r_2 + 3r_3}$

where $r_1 + r_2 + r_3 = 10$ and $r_2 + 3r_3 = 7$

 $\begin{array}{rrrrr} r_1 & r_2 & r_3 \\ 3 & 7 & 0 \\ 5 & 4 & 1 \\ 7 & 1 & 2 \end{array}$

Required coefficient

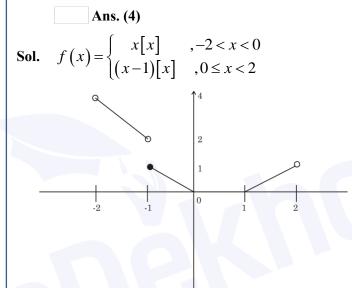
$$= \frac{10!}{3!.7!} (-1)^7 + \frac{10!}{5!.4!} (-1)^4 (2) + \frac{10!}{7!.2!} (-1)^1 (2)^2$$
$$= -120 + 2520 - 1440 = 960$$

22. Let $f: (-2, 2) \rightarrow IR$ be defined by

$$f(x) = \begin{cases} x[x] & ,-2 < x < 0\\ (x-1)[x] & ,0 \le x < 2 \end{cases}$$

Where [x] denotes the greatest integer function. If m and n respectively are the number of points in (-2, 2) at which y = |f(x)| is not continuous and not differentiable, then m + n is equal to _____.

Official Ans. by NTA (4)



|f(x)| = Remain same m = 1, n = 3 m + n = 4

23. The sum of all those terms, of the arithmetic progression 3, 8, 13,..... 373, which are not divisible by 3, is equal to .

Official Ans. by NTA (9525)

Ans. (9525) Required sum = $(3 + 8 + 13 + 18 + \dots + 373)$ $-(3 + 18 + 33 + \dots + 363)$

$$=\frac{75}{2}(3+373)-\frac{25}{2}(3-363)$$

$$= 75 \times 188 - 25 \times 183$$

7

24. Let a common tangent to the curves $y^2 = 4x$ and $(x - 4)^2 + y^2 = 16$ touch the curves at the points P and Q. Then (PQ)² is equal to _____.

Official Ans. by NTA (32)

Ans. (32)

Sol. General tangent of slope m to the circle $(x - 4)^2 + y^2 = 16$ is given by $y = m(x-4) \pm 4\sqrt{1+m^2}$ General tangent of slope m to the parabola $y^2 = 4x$ is given by $y = mx + \frac{1}{m}$ For common tangent $\frac{1}{m} = -4m \pm 4\sqrt{1+m^2}$

$$m = \pm \frac{1}{2\sqrt{2}}$$

Point of contact on parabola is $(8, 4\sqrt{2})$

Length of tangent PQ from $(8, 4\sqrt{2})$ on the circle

$$(x - 4)^{2} + y^{2} = 16$$
 is equal to
 $\sqrt{(8-4)^{2} + (4\sqrt{2})^{2} - 16}$ is equal to $\sqrt{32}$

 PQ^2 is equal to 32

25. The number of permutations, of the digits 1, 2, 3,7 without repetition, which neither contain the string 153 nor the string 2467, is _____.

Official Ans. by NTA (4898)

Ans. (4898)

Sol. Digits $\rightarrow 1, 2, 3, 4, 5, 6, 7$

Total permutations = 7!

Let A = number of numbers containing string 153 Let B = number of numbers containing string 2467

 $n(A) = 5! \times 1$ $n(B) = 4! \times 1$ $n(A \cap B) = 2!$ $n(A \cap B) = 5! + 4! - 2! = 142$ n(neither string 153 nor string 2467) $= Total - n(A \cup B)$ = 7! - 142 = 4898

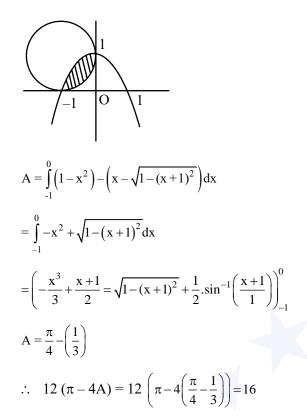
Let a, b, c be three distinct positive real numbers 26. such that $(2a)^{\log_e a} = (bc)^{\log_e b}$ and $b^{\log_e 2} = a^{\log_e c}$. Then 6a + 5bc is equal to . Official Ans. by NTA (8) Ans. (Bonus) **Sol.** $(2a)^{\ln a} = (bc)^{\ln b}$ 2a > 0, bc > 0 $b^{\ln 2} = a^{\ln c}$ $\ln a (\ln 2 + \ln a) = \ln b (\ln b + \ln c)$ | ln2.lnb = lnc.lna $\ln 2 = \alpha, \ln a = x_1 \ \ln b = y, \ \ln c = z \ \alpha y = yz$ x(a+x) = y(y+2) $\alpha = \frac{XZ}{V}$ $(2a)^{\ln a} = (2a)^0$ $x\left(\frac{xz}{y}+x\right) = y(y+z)$ $x^{2}(z+y) = y^{2}(y+z)$ y + z = 0 or $x^2 = y^2 \implies x = -y$ bc = 1 or ab = 1(1) if bc = 1 \Rightarrow (2a)^{ln a} = 1 $\checkmark a=1/2$ $(\mathbf{a}, \mathbf{b}, \mathbf{c}) = \left(\frac{1}{2}, \lambda, \frac{1}{\lambda}\right), \ \lambda \neq 1, 2, \frac{1}{2}$ then 6a + 5bc = 3 + 5 = 8(II) (a, b, c) = $\left(\lambda, \frac{1}{\lambda}, \frac{1}{2}\right), \lambda \neq 1, 2, \frac{1}{2}$

In this situation infinite answer are possible So, Bonus.

27. Let y = p(x) be the parabola passing through the points (-1, 0), (0, 1) and (1, 0). If the area of the region $\{(x, y): (x+1)^2 + (y-1)^2 \le 1, y \le p(x)\}$ is A, then $12(\pi$ -4A) is equal to _____. Official Ans. by NTA (16)

Ans. (Bonus)

Sol. There can be infinitely many parabolas through given points.



This is possible only when axis of parabola is parallel to Y axis but is not given in question, so it is bonus.

28. If the mean of the frequency distribution

Class :	0-10	10-20	20-30	30-40	40-50
Frequency	2	3	x	5	4

is 28, then its variance is _____

Official Ans. by NTA (151)

Ans. (151)

Sol. Given mean is = 28

$$\frac{2 \times 5 + 3 \times 15 + x \times 25 + 5 \times 35 + 4 \times 45}{14 + x} = 28$$

x = 6

Variance =
$$\left(\frac{\sum x_i^2 f_i}{\sum f_i}\right) - (mean)^2$$

Variance = $\frac{2 \times 5^2 + 3 \times 15^2 + 6 \times 25^2 + 5 \times 35^2 + 4 \times 45^2}{20} - (28)^2$
= 151

29. Some couples participated in a mixed doubles badminton tournament. If the number of matches played, so that no couple played in a match, is 840, then the total numbers of persons, who participated in the tournament, is _____.

Official Ans. by NTA (16)

Ans. (16)

Sol.
$${}^{n}C_{2} \times {}^{n-2}C_{2} \times 2 = 840$$

 $\Rightarrow n=8$

Therefore total persons = 16

30. The number of elements in the set $\left\{n \in \mathbb{Z} : \left|n^2 - 10n + 19\right| < 6\right\} \text{ is } ___.$

Official Ans. by NTA (6)

Sol.
$$-6 < n^2 - 10n + 19 < 6$$

$$\Rightarrow n^2 - 10n + 25 > 0$$
 and $n^2 - 10n + 13 < 0$

$$(n-5)^2 > 0 \ n \in \left[5 - 2\sqrt{3}, 5 + 2\sqrt{3}\right]$$

 $n \in R - [5]$

$$\therefore n \in [1.3, 8.3]$$

 \Rightarrow n = 2, 3, 4, 6, 7, 8