

FINAL JEE-MAIN EXAMINATION - APRIL, 2023

(Held On Thursday 13th April, 2023)

TIME: 9: 00 AM to 12:00 NOON

62. Given below are two statements:

Statement-I Permutit process is more efficient compared to the synthetic resin method for the softening of water.

Statement-II: Synthetic resin method results in the formation of soluble sodium salts.

In the light of the above statements, choose the most appropriate answer from the options given below:

- (1) Both the Statements I and II are correct
- (2) Statement I is correct but Statement II is incorrect
- (3) Statement I is incorrect but Statement II is correct
- (4) Both the Statements I and II are incorrect

Official Ans. by NTA (4)

Ans. (4)

- **Sol.** Nowadays hard water is softened by using synthetic ion exchangers. This method is more efficient than zeolite process/Permutit process
- 63. The mismatched combinations are
 - A. Chlorophyll Co
 - B. Water hardness EDTA
 - C. Photography $\left\lceil Ag(CN)_2 \right\rceil^{-1}$
 - D. Wilkinson catalyst $\left[\left(Ph_{3}P\right)_{3}RhCl\right]$
 - E. Chelating ligand D Penicillamine

Choose the correct answer from the options given below:

- (1) A and C Only
- (2) A and E Only
- (3) D and E Only
- (4) A, C and E Only

Official Ans. by NTA (1)

Ans. (1)

Sol. Mg is present in chlorophyll and in black and white photography the developed film is fixed by washing with hypo solution which dissolves the undecomposed AgBr to form a complex ion $[Ag(S_2O_3)_2]^{3-}$

- 64. In which of the following processes, the bond order increases and paramagnetic character changes to diamagnetic one? (1) $O_2 \rightarrow O_2^{2-}$
 - $(1) \circ_2 , \circ_2$
 - (2) $NO \rightarrow NO^+$
 - (3) $N_2 \rightarrow N_2^+$
 - (4) $O_2 \rightarrow O_2^+$
 - Official Ans. by NTA (2)
 - Ans. (2)
- **Sol.** NO is paramagnetic with BO = 2.5, NO⁺ is diamagnetic with BO = 3
- **65.** The incorrect statement from the following for borazine is:
 - (1) It has electronic delocalization
 - (2) It contains banana bonds.
 - (3) It can react with water.
 - (4) It is a cyclic compound.

Sol.

66. Among the following compounds, the one which shows highest dipole moment is

Sol. Among the given compounds, the following compound has the highest dipole moment because both the +ve and –ve ends acquire aromaticity.

67. Match the following

Column –A		Column-B	
a	Nylon 6	Ι	Natural Rubber
b	Vulcanized Rubber	II	Cross Linked
c	cis-1,4-polyisoprene	III	Caprolactam
d	Polychloroprene	IV	Neoprene

Choose the correct answer from option given below:

(1) $a \rightarrow IV, b$ -III, $c \rightarrow II, d \rightarrow I$

(2)
$$a \rightarrow III, b \rightarrow IV, c \rightarrow I, d \rightarrow II$$

(3) $a \rightarrow II, b \rightarrow III, c \rightarrow IV, d \rightarrow I$

(4) $a \rightarrow III, b \rightarrow II, c \rightarrow I, d \rightarrow IV$

Official Ans. by NTA (4)

Ans. (4)

Sol. Nylon-6 – Caprolactum (Monomer) Natural rubber – Isoprene (Monomer) Vulcanized rubber – Sulphur containing rubber

In the above reaction. Left hand side and right hand side rings are named as 'A' and 'B' respectively. They undergo ring expansion. The correct statement for this process is:

- (1) Finally both rings will become six membered each.
- (2) Finally both rings will become five membered each.
- (3) Only 'A' will become 6 membered.
- (4) Ring expansion can go upto seven membered rings

Official Ans. by NTA (1) Ans. (1)

2

68.

Sol.

- **69.** The radical which mainly causes ozone depletion in the presence of UV radiations is:
 - (1) CH_3^{\bullet} (2) NO^{\bullet}
 - (3) *Cl* (4) *OH* Official Ans. by NTA (3)
- **Sol.** $O_2(g) \xrightarrow{UV} O(g) + O(g)$

 $O_2(g) + O(g) \longrightarrow O_3(g)$

$$CF_2Cl_2(g) \xrightarrow{UV} Cl(g) + CF_2Cl(g)$$

$$Cl(g) + O_3(g) \longrightarrow ClO(g) + O_2(g)$$

70. In the following reaction 'X' is

$$CH_3(CH_2)_4 CH_3 \xrightarrow{Anhy.AlCl_3} X_{HCl,A}$$

major product
(1) $CH_3(CH_2)_4 CH_2Cl$

(2)
$$Cl - CH_2 - (CH_2)_4 - CH_2 - Cl$$

(3)
$$\operatorname{CH}_{3}\operatorname{CH}_{-}(\operatorname{CH}_{2})_{2}\operatorname{CH}_{3}$$

 CH_{3}

Sol. n-alkanes on heating in this presence of anhydrous AlCl₃ and hydrogen chloride gas isomerise to branched chain alkanes. The major product has one methyl side chain.

$$CH_3 - (CH_2)_4 - CH_3 \xrightarrow{Anhy.AlCl_3}_{HCl,\Delta}$$

- 71. 2-Methyl propyl bromide reacts with $C_2H_5O^-$ and gives 'A' whereas on reaction with C_2H_5OH it gives 'B'. The mechanism followed in these reactions and the products 'A' and 'B' respectively are:
 - (1) $S_N 2$. A = iso-butyl ethyl ether; $S_N 1$, B = tertbutyl ethyl ether
 - (2) $S_N 1, A =$ tert-butyl ethyl ether; $S_N 1, B = 2$ butyl ethyl ether
 - (3) $S_N 1$, A = tert-butyl ethyl ether; $S_N 2$, B = isobutyl ethyl ether
 - (4) S_N^2 , A =2-butyl ethyl ether; S_N^2 , B= isobutyl ethyl ether

Official Ans. by NTA (1)

Ans. (1)

(i) Br
$$\xrightarrow{C_2H_5O^-}$$
 OC_2H_5
 $C_2H_5O^-$ is strong nucleophile.
(ii) Br $\xrightarrow{C_2H_5OH}$ C_2H_5 C_2H_5

$$\xrightarrow{C_2H_3OH} \xrightarrow{OC_2H_5}$$

 C_2H_5OH is weak nucleophile.

72. D- (+)- Glyceraldehyde $\frac{(i) \text{ HCN}}{(ii) \text{ H}_2\text{O/H}^+}$ (iii) HNO₃

> The products formed in the above reaction are
> (1) Two optically active products
> (2) One optically active and one meso product
> (3) One optically inactive and one meso product.
> (4) Two optically inactive products
> Official Ans. by NTA (2) Ans. (2)

- **73.** Which one of the following is most likely a mismatch?
 - (1) Zinc- Liquation
 - (2) Titanium van Arkel method
 - (3) Nickel Mond process
 - (4) Copper Electrolysis

Official Ans. by NTA (1)

Sol. Zinc is refined by distillation method, which is used for metals having low boiling point.

74. ClF₅ at room temperature is a:

- (1) Colourless gas with trigonal bipyramidal geometry.
- (2) Colourless gas with square pyramidal geometry
- (3) Colourless liquid with square pyramidal geometry
- (4) Colourless liquid with trigonal bipyramidal geometry.

Official Ans. by NTA (3) Ans. (3)

Sol.

 ClF_5 is colourless liquid.

- **75.** Be $(OH)_2$ react with Sr $(OH)_2$ to yield an ionic salt. Choose the incorrect option related to this reaction from the following:
 - (1) Be is tetrahedrally coordinated in the ionic salt.
 - (2) The reaction is an example of acid base neutralization reaction.
 - (3) Both Sr and Be elements are present in the ionic salt.
 - (4) The elements Be is present in the cationic part of the ionic salt.
 - Official Ans. by NTA (4)

Ans. (4)

Sol. $Be(OH)_2$ is amphoteric in nature.

 $Sr(OH)_2$ is basic in nature.

These two undergo acid - base reaction to form a salt.

$$\operatorname{Be}(OH)_2 + \operatorname{Sr}(OH)_2 \rightarrow \operatorname{Sr}[\operatorname{Be}(OH)_4]$$
(salt)

76. In the reaction given below

Official Ans. by NTA (3) Ans. (3)

- 77. Which of the following statements are **not** correct?
 - A. The electron gain enthalpy of F is more negative than that of Cl
 - B. Ionization enthalpy decreases in a group of periodic table
 - C. The electronegativity of an atom depends upon the atoms bonded to it.
 - D. Al_2O_3 and NO are examples of amphoteric oxides.

Choose the most appropriate answer from the options given below:

- (1) A, B, C, and D
- (2) A, C and D Only
- (3) B and D Only
- (4) A, B and D Only

Official Ans. by NTA (2)

Ans. (A&D, Bonus)

Sol. Electronegativity of an element depends on the atom with which it is attached.

NO = neutral oxide

 $Al_2O_3 =$ amphoteric oxide

78. The energy of an electron in the first Bohr orbit of hydrogen atom is $-2.18 \times 10^{-18} J$. Its energy in the third Bohr orbit is _____.

(1)
$$\frac{1}{27}$$
 of this value

- (2) One third of this value
- (3) Three times of this value

(4) $\frac{1}{9}$ th of this value

Official Ans. by NTA (4) Ans. (4) Sol.

$$E_{n} = \frac{-2.18 \times 10^{-18} Z^{2}}{n^{2}}$$

i.e. $E_{n} \propto \frac{1}{n^{2}}$

- **79.** What happens when a lyophilic sol is added to a lyophobic sol?
 - (1) Lyophilic sol is dispersed in lyophobic sol.
 - (2) Film of lyophobic sol is formed over lyophilic sol.
 - (3) Lyophobic sol is coagulated
 - (4) Film of lyophilic sol is formed over lyophobic sol.

Official Ans. by NTA (4)

Ans. (4)

- Sol. Lyophilic sol is used as protective action for lyophobic sol. It forms a layer / film around the lyophobic sol.
- **80.** The pair of lanthanides in which both elements have high third –ionization energy is:
 - (1) Eu, Gd
 - (2) Eu, Yb
 - (3) Lu, Yb
 - (4) Dy, Gd

Official Ans. by NTA (2)

- Ans. (2)
- Sol. $\begin{array}{c} \operatorname{Eu}^{+2}:[\operatorname{Xe}]4f^{7} \\ \operatorname{Yb}^{+2}: f^{14} \end{array}$ High IE due to half filled & fully filled configurations

SECTION-B

81. For the given reaction

$$\begin{array}{ccc} CH_{3} & CH_{3} \\ I & I \\ CH_{3} - C - CH - C - CH_{3} \xrightarrow{H^{+}}{\Delta} \\ I & I \\ H_{3}C & OH & H \\ & `A' \end{array}$$

The total number of possible products formed by tertiary carbocation of A is _____.

Official Ans. by NTA (4) Ans. (5)

82. Solution of 12 g of non – electrolyte (A) prepared by dissolving it in 1000 mL of water exerts the same osmotic pressure as that of 0.05 M glucose solution at the same temperature. The empirical formula of A is CH₂O. The molecular mass of A is _____ g. (Nearest integer)

Official Ans. by NTA (240)

Ans. (240)

$$\pi_1 = \pi_2$$

⇒ $C_1 = C_2$
 $\frac{12}{x} = 0.05 [x \rightarrow Molar Mass of A]$
 $X = 240$

83. 25.0 mL of 0.050 M Ba(NO₃)₂ is mixed with 25.0 mL of 0.020 M NaF. K_{sp} of BaF₂ is 0.5×10^{-6} at 298 K. The ratio of $[Ba^{2+}][F^{-}]^{2}$ and K_{sp} is _____ (Nearest integer)

Official Ans. by NTA (5)

Sol.
$$[Ba^{+2}] = \frac{25 \times 0.05}{50} = 0.025M$$

 $[F^{-}] = \frac{25 \times 0.02}{50} = 0.01M$
 $[Ba^{+2}][F^{-}]^{2} = 25 \times 10^{-7}$
 $K_{sp} = 5 \times 10^{-7}$ (given)
Ratio $= \frac{[Ba^{+2}][F^{-}]^{2}}{K} = 5$

84. $A_2 + B_2 \rightarrow 2AB. \Delta H_f^0 = -200 \text{ kJmol}^{-1}$

AB, A_2 and B_2 are diatomic molecule. If the bond enthalpies of A_2 , B_2 and AB are in the ratio 1:0.5:1, then the bond enthalpy of A_2 is

____ kJmol⁻¹ (Nearest integer)

Official Ans. by NTA (400)

Ans. (800)

Sol. $A_2 + B_2 \rightarrow 2AB$; $\Delta H_f^0 = -200 \text{ kJ mol}^{-1}$

 $\Rightarrow \Delta H_{f}^{0} (AB) = -200 \text{ kJ mol}^{-1}$

 $\therefore \Delta H_R^0 \quad \text{for reaction} \quad A_2 + B_2 \rightarrow 2AB \quad \text{is} \\ -400 \text{ kJ mol}^{-1}$

Given: Bond Enthalpy of A_2, B_2 and AB is 1:0.5:1

Assuming bond enthalpy of A_2 be x kJ mol⁻¹

- \therefore Bond enthalpy $B_2 = 0.5 \text{ x kJ mol}^{-1}$
- \therefore Bond enthalpy AB = (x)kJ mol⁻¹

$$A_2 + B_2 \longrightarrow 2AB; \Delta H^0_R = -400 \text{ kJ / mol}$$

$$A_2 + B_2 \longrightarrow 2AB; \Delta H^0_R = -400 \text{ kJ / mol}$$

$$A_2 + B_2 \longrightarrow 2AB; \Delta H^0_R = -400 \text{ kJ / mol}$$

$$-2x$$

$$-400 = x + 0.5 \text{ x} - 2 \text{ x}$$

$$-400 = -0.5 \text{ x}$$

$$\therefore \text{ x} = 800 \text{ kJ / mol}$$

85. An organic compound gives 0.220 g of CO₂ and 0.126 g of H₂O on complete combustion. If the % of carbon is 24 then the % hydrogen is ______×10⁻¹. (Nearest integer) Official Ans. by NTA (56) Ans. (56) Sol. Moles of CO₂ = $\frac{0.22}{44} = \frac{1}{200}$ ∴ Moles of carbon = (Moles of CO₂)×1 = $\frac{1}{200}$

$$\therefore \text{ wt. of } C = \frac{1}{200} \times 12 = 0.06$$

% of C = $\frac{0.06}{W} \times 100 = 24$
(W = Wt. of Organic Compound)

$$W = 0.25$$

Moles of H₂O = $\frac{0.126}{18}$ = 0.007 ∴ Moles of H atom = 2×0.007 = 0.014 % of Hydrogen = $\frac{0.014 \times 1}{W} \times 100$

> = $\frac{1}{0.25} \times 100$ = 5.6 = 56 $\times 10^{-1}$

86. 20 mL of calcium hydroxide was consumed when it was reacted with 10 mL of unknown solution of H_2SO_4 . Also 20 mL standard solution of 0.5 M HCl containing 2 drops of phenolphthalein was titrated with calcium hydroxide the mixture showed pink colour when burette displayed the value of 35.5 mL whereas the burette showed 25.5 mL initially. The concentration of H_2SO_4 is

_M (Nearest integer)

Official Ans. by NTA (1) Ans. (1) Reaction with HCl $Ca(OH)_{2} + 2HCl \rightarrow CaCl_{2} + 2H_{2}O$ Volume of $Ca(OH)_{2} = 10 \text{ ml}$ Volume of HCl = 20 mlConcentration of HCl = 0.5 M. No. of milli moles of HCl= 10 No. of milli moles of $Ca(OH)_{a} = 5$. i.e. $M_{Ca(OH)_2} = \frac{\text{no. of milli moles}}{V(ml)} = \frac{5}{10}$ = 0.5 M.Reaction with H_2SO_4 $Ca(OH)_{a} + H_{2}SO_{4} \rightarrow CaSO_{4} + 2H_{2}O$. No. of milli moles of $Ca(OH)_{2} = 20 \times 0.5$ = 10i.e. no. of milli moles of $H_2SO_4 = 10$ $\Rightarrow M_{H_2SO_4} = \frac{\text{no. of mil limoles}}{V(ml)}$ $=\frac{10}{10}$ = 1 MA certain quantity of real gas occupies a volume of

87. A certain quantity of real gas occupies a volume of 0.15 dm³ at 100 atm and 500 K when its compressibility factor is 1.07. Its volume at 300 atm and 300K (When its compressibility factor is 1.4) is $___$ ×10⁻⁴ dm³ (Nearest integer)

Official Ans. by NTA (392)

Sol.

Sol.
$$z = \frac{PV}{nRT}$$
 ; $n = \frac{PV}{ZRT}$

$$Z_1 = 1.07, P_1 = 100$$
 atm, $V_1 = 0.15$ L, $T_1 = 500$ K

$$\frac{P_1 V_1}{Z_1 R T_1} = \frac{P_2 V_2}{Z_2 R T_2} = n$$
$$V_2 = \frac{1.4}{1.07} \times .03$$
$$= 392 \times 10^{-4} \text{ dm}^3$$

88. $t_{87.5}$ is the time required for the reaction to undergo 87.5% completion and t_{50} is the time required for the reaction to undergo 50% completion. The relation between $t_{87.5}$ and t_{50} for a first order reaction is $t_{87.5} = x \times t_{50}$

The value of x is _____ (Nearest integer)

Official Ans. by NTA (3)

Ans. (3)

Sol. $A_t = A_0 \times \frac{12.5}{100} = \frac{A_0}{8}$ [87.5% complete] $A_0 \xrightarrow{t_{1/2}} \xrightarrow{A_0} \xrightarrow{t_{1/2}} \xrightarrow{A_0} \xrightarrow{t_{1/2}} \xrightarrow{A_0} \xrightarrow{t_{1/2}} \xrightarrow{A_0} \xrightarrow{t_{1/2}} \xrightarrow{A_0} \xrightarrow{t_{1/2}} \xrightarrow{A_0} \xrightarrow{t_{1/2}} \xrightarrow{x = 3}$

89. KMnO_4 is titrated with ferrous ammonium sulphate hexahydrate in presence of dilute H_2SO_4 . Number of water molecules produced for 2 molecules of KMnO_4 is _____.

Official Ans. by NTA (68)

Ans. (68)

Sol. By balancing the redox reaction we get $10[FeSO_4.(NH_4)_2SO_4.6H_2O] + 2KMnO_4 + 8H_2SO_4$

 $5Fe_2(SO_4)_3 + 2MnSO_4 + 10(NH_4)_2SO_4 + K_2SO_4 + 68H_2O_4$

90. A metal surface of 100 cm^2 area has to be coated with nickel layer of thickness 0.001mm. A current of 2A was passed through a solution of Ni (NO₃)₂ for 'x' seconds to coat the desired layer. The value of x is _____ (Nearest integer)

(ρ_{Ni} (density of Nickel) is 10 gmL⁻¹, Molar mass

of Nickel is 60 gmol^{-1} F = 96500 C mol⁻¹)

Official Ans. by NTA (161)

Sol. $W = z \times i \times t$.

Density
$$\times$$
 volume = $\frac{E \times 1 \times t}{96500}$

$$10 \times 100 \times 0.0001 = \frac{\left(\frac{v.f}{v.f}\right) \times \times}{96500} (v.f = 2)$$

$$\therefore x = 161 \text{ sec}$$