

FINAL JEE-MAIN EXAMINATION - APRIL, 2023

(Held OnThursday13thApril, 2023)

SECTION-A

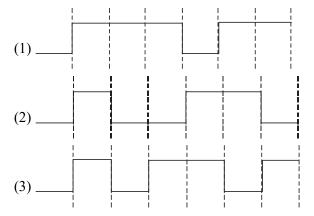
31. Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R Assertion A: The binding energy per nucleon is practically independent of the atomic number for nuclei of mass number in the range 30 to 170.

Reason R: Nuclear force is short ranged.

In the light of the above statements, choose the *correct* answer from the options given below

Option:

- (1) Both **A** and **R** are true but **R** is **NOT** the correct explanation of **A**
- (2) A is true but R is false
- (3) A is false but R is true
- (4) Both **A** and **R** are true and **R** is the correct explanation of **A**


Official Ans. by NTA (4)

Ans. (4)

- **Sol.** Binding energy per nucleon is almost same for nuclei of mass number ranging 30 to 170.
- **32.** The output from a NAND gate having inputs A and B given below will be.

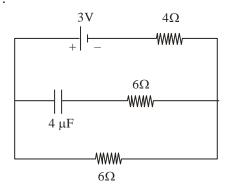
Option:

TIME:3:00 PM to 6:00 PM

Official Ans. by NTA (1)

Ans. (1)

Sol. Truth table for NAND gate is


A	В	$Y = \overline{A \cdot B}$
0	0	1
0	1	1
1	0	1
1	1	0

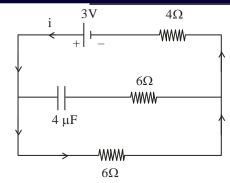
On the basis of given input A and B the truth table is

A	В	Y
1	1	0
0	0	1
0	1	1
1	0	1
1	1	0
0	0	1
0	1	1

So the correct answer is Option 1.

33. In the network shown below, the charge accumulated in the capacitor in steady state will be:

Option:


- (1) $7.2 \mu C$
- (2) $4.8 \mu C$
- (3) $10.3 \mu C$
- (4) $12 \mu C$

Official Ans. by NTA (1)

Ans. (1)

Sol.

No current will flow in capacitor in steady state, current flowing in the circuit in steady state

$$I = \frac{3}{6+4} = \frac{3}{10}$$

Potential difference on 6Ω resistance

$$V = 6 \times \frac{3}{10} = 1.8 \text{ volt}$$

Capacitor will have same potential so charge,

$$q = CV = (4 \mu F) \cdot (1.8 \text{ volt}) = 7.2 \mu C.$$

34. Given below are two statements:

Statement I: For a planet, if the ratio of mass of the planet to its radius increases, the escape velocity from the planet also increases.

Statement II: Escape velocity is independent of the radius of the planet.

In the light of above statements, choose the *most* appropriate answer from the options given below

Option:

- (1) Both Statement I and Statement II are incorrect
- (2) Statement I is correct but statement II is incorrect
- (3) Statement I is incorrect but statement II is correct
- (4) Both Statement I and Statement II are correct

Official Ans. by NTA (2)

Sol.
$$V_e = \sqrt{\frac{2GM}{R}} \Rightarrow V_e \propto \sqrt{\frac{M}{R}}$$

As
$$\frac{M}{R}$$
 increases $\Rightarrow V_e$ increases

Statement (1) is correct

Also
$$V_e \propto \frac{1}{\sqrt{R}}$$

As V_e depends upon R

⇒ Statement (2) is incorrect

Option (2) is correct

35. A particle executes SHM of amplitude A. The distance from the mean position when its's kinetic energy becomes equal to its potential energy is:

Option:

- (1) $\sqrt{2A}$
- (2) 2A
- (3) $\frac{1}{\sqrt{2}}$ A
- (4) $\frac{1}{2}$ A

Official Ans. by NTA (3)

Sol. KE = PE

$$\frac{1}{2}M\omega^{2}(A^{2}-x^{2})=\frac{1}{2}M\omega^{2}x^{2}$$

$$A^2 - x^2 = x^2 \Rightarrow A^2 = 2 \times 2$$

$$\Rightarrow x = \pm \frac{A}{\sqrt{2}}$$

36. A passenger sitting in a train A moving at 90 km/h observes another train B moving in the opposite direction for 8 s. If the velocity of the train B is 54 km/h, then length of train B is:

Option:

- (1) 80 m
- (2) 200 m
- (3) 120 m
- (4) 320 m

Official Ans. by NTA (4)

Sol. Velocity of train A

$$V_A = 90 \frac{\text{km}}{\text{hr}} = 90 \times \frac{5}{18} = 25 \text{ m/s}$$

Velocity of train B

$$V_B = 54 \frac{\text{km}}{\text{hr}} = 54 \times \frac{5}{18} = 15 \text{ m/s}$$

Velocity of train B w.r.t. train $A = \vec{V}_B - \vec{V}_A$

$$= 15 - (-25) \text{ m/s}$$

$$= 40 \text{ m/s}$$

Time of crossing = $\frac{\text{length of train}}{\text{relative velocity}}$

$$(8) = \frac{\ell}{40}$$

$$\ell = 8 \times 40 = 320$$
 meter.

37. The initial pressure and volume of an ideal gas are P_0 and V_0 . The final pressure of the gas when the gas is suddenly compressed to volume $\frac{V_0}{4}$ will be:

(Given γ = ratio of specific heats at constant pressure and at constant volume)

Option:

- $(1) P_0(4)^{\frac{1}{\gamma}}$
- (2) $P_0(4)^{\gamma}$
- $(3) P_0$
- $(4) 4P_0$

Official Ans. by NTA (2)

Ans. (2)

Sol. As gas is suddenly compressed, the processes is adiabatic.

Equation of gas for adiabatic process is $PV^\gamma = constant$.

- $\Rightarrow P_1V_1^{\gamma} = P_2V_2^{\gamma}$
- $\Rightarrow P_0 V_0^{\gamma} = P_2 \left(\frac{V_0}{4}\right)^{\gamma}$
- \Rightarrow P₂ = P₀(4) $^{\gamma}$

Option (2) is correct

38. Given below are two statements: one is labelled as Assertion A and the other is labelled as Reason R Assertion A: A spherical body of radius (5 ± 0.1) mm having a particular density is falling through a liquid of constant density. The percentage error in the calculation of its terminal velocity is 4%.

Reason R: The terminal velocity of the spherical body falling through the liquid is inversely proportional to its radius.

In the light of the above statements, choose the *correct* answer from the options given below

Option:

- (1) Both **A** and **R** are true but **R** is **NOT** the correct explanation of **A**
- (2) Both $\bf A$ and $\bf R$ are true and $\bf R$ is the correct explanation of $\bf A$
- (3) A is false but R is true
- (4) A is true but R is false

Official Ans. by NTA (4)

Ans. (4)

Sol. Terminal velocity of a spherical body in liquid

$$\Rightarrow V_t \propto r^2$$

$$\Rightarrow \frac{\Delta V_t}{V_t} = 2 \cdot \frac{\Delta r}{r}$$

$$\Rightarrow \frac{\Delta V_t}{V_t} \times 100\% = 2\frac{(0.1)}{5} \times 100 = 4\%$$

Also $V_t \propto r^2$

Reason R is false

Option (4) is correct

39. In an electromagnetic wave, at an instant and at a particular position, the electric field is along the negative z-axis and magnetic field is along the positive x-axis. Then the direction of propagation of electromagnetic wave is:

Option:

- (1) at 45° angle from positive y-axis
- (2) negative y-axis
- (3) positive z-axis
- (4) positive y-axis

Official Ans. by NTA (2)

Ans. (2)

- **Sol.** Direction of propagation of EM wave will be in the direction of $\vec{E} \times \vec{B}$.
- **40.** The distance travelled by an object in time t is given by $s = (2.5)t^2$. The instantaneous speed of the object at t = 5 s will be:

Option:

- $(1) 12.5 \text{ ms}^{-1}$
- $(2) 62.5 \text{ ms}^{-1}$
- $(3) 5 \text{ ms}^{-1}$
- $(4) 25 \text{ ms}^{-1}$

Official Ans. by NTA (4)

Ans. (4)

Sol. Distance (s) = $(2.5)t^2$

Speed (v) =
$$\frac{ds}{dt} = \frac{d}{dt} \{(2.5)t^2\}$$

v = 5t

At
$$t = 5$$
, $v = 5 \times 5 = 25$ m/s.

Option (4) is correct

- **41.** An electron is moving along the positive x-axis. If the uniform magnetic field is applied parallel to the negative z-axis. then
 - A. The electron will experience magnetic force along positive y-axis
 - B. The electron will experience magnetic force along negative y-axis
 - C. The electron will not experience any force in magnetic field
 - D. The electron will continue to move along the positive x-axis
 - E. The electron will move along circular path in magnetic field

Choose the correct answer from the options given below:

Option:

- (1) B and E only
- (2) A and E only
- (3) C and D only
- (4) B and D only

Official Ans. by NTA (1)

Ans. (1)

Sol. $\vec{F} = -e(\vec{v} \times \vec{B})$

Force will be along –ve y-axis.

As magnetic force is \perp to velocity, path of electron must be a circle.

42. Two planets A and B of radii R and 1.5 R have densities ρ and $\rho/2$ respectively. The ratio of acceleration due to gravity at the surface of B to A is:

Option:

- (1)2:3
- (2) 2:1
- (3)3:4
- (4)4:3

Official Ans. by NTA (3)

Ans. (3)

Sol. $g = \frac{GM}{R^2} = \frac{4}{3}\pi G\rho R$

$$\therefore \frac{g_2}{g_1} = \frac{\rho_2}{\rho_1} \times \frac{R_2}{R_1} = \frac{1}{2} \times 1.5 = \frac{3}{4}$$

43. Given below are two statements:

Statement I: An AC circuit undergoes electrical resonance if it contains either a capacitor or an inductor.

Statement II: An AC circuit containing a pure capacitor or a pure inductor consumes high power due to its non-zero power factor.

In the light of above statements, choose the *correct* answer from the options given below:

Option:

- (1) Both Statement I and Statement II are false
- (2) Statement I is true but Statement II is false
- (3) Both Statement I and Statement II are true
- (4) Statement I is false but Statement II is true

Official Ans. by NTA (1)

Ans. (1)

- **Sol.** For resonance, $\phi = 0$, hence both inductor & capacitor must be present. Also power factor is zero for pure inductor or pure capacitor hence both the component consume zero average power.
- **44.** A vehicle of mass 200 kg is moving along a levelled curved road of radius 70 m with angular velocity of 0.2 rad/s. The centripetal force acting on the vehicle is:

Option:

- (1) 560 N
- (2) 2800 N
- (3) 14 N
- (4) 2240 N

Official Ans. by NTA (1)

Ans. (1)

- **Sol.** $F_c = m\omega^2 r = 200 \times (0.2)^2 \times 70 = 560 \text{ N}$
- 45. To radiate EM signal of wavelength λ with high efficiency, the antennas should have a minimum size equal to:

Option:

- $(1) \frac{\lambda}{2}$
- (2) $\frac{\lambda}{4}$
- $(3) 2\lambda$
- $(4) \lambda$

Official Ans. by NTA (2)

Ans. (2)

- **Sol.** Minimum length of antenna should be $\frac{\lambda}{4}$.
- **46.** Given below are two statements:

Statement I: Out of microwaves, infrared rays and ultraviolet rays, ultraviolet rays are the most effective for the emission of electrons from a metallic surface.

Statement II: Above the threshold frequency, the maximum kinetic energy of photoelectrons is inversely proportional to the frequency of the incident light.

In the light of above statements, choose the *correct* answer from the options given below

Option:

- (1) Statement I is true but Statement II is false
- (2) Both Statement I and Statement II are true
- (3) Statement I is false but Statement II is true
- (4) Both Statement I and Statement II are false

Official Ans. by NTA (1)

Ans. (1)

Sol. UV rays have maximum frequency hence are most effective for emission of electrons from a metallic surface.

$$KE_{max.} = hf - hf_0$$

47. A 10 μ C charge is divided into two parts and placed at 1 cm distance so that the repulsive force between them is maximum. The charges of the two parts are :

Option:

- (1) 9 μ C, 1 μ C
- (2) 5 μ C, 5 μ C
- (3) $7 \mu C$, $3 \mu C$
- (4) $8 \mu C$, $2 \mu C$

Official Ans. by NTA (2)

Sol. Divide $q = 10 \mu C$ into two parts x & q - x.

$$F = \frac{Kx(q-x)}{r^2}$$

For F to be maximum

$$\frac{dF}{dx} = \frac{K}{r^2} (q - 2x) = 0$$

$$x = \frac{q}{2}$$

48. In the equation $\left[X + \frac{a}{Y^2}\right] \left[Y - b\right] = RT$, X is

pressure, Y is volume, R is universal gas constant and T is temperature. The physical quantity equivalent to the ratio $\frac{a}{h}$ is:

Option:

- (1) Energy
- (2) Impulse
- (3) Pressure gradient
- (4) Coefficient of viscosity

Official Ans. by NTA (1)

Ans. (1)

Sol. X and $\frac{a}{y^2}$ have same dimensions

Y and b have same dimensions

$$\therefore [a] = [ML^5T^{-2}]$$

$$[b] = [L^3]$$

$$\frac{[a]}{[b]}$$
 = [ML²T⁻²] has dimensions of energy

49. In a Young's double slits experiment, the ratio of amplitude of light coming from slits is 2:1. The ratio of the maximum to minimum intensity in the interference pattern is:

Option:

- (1)9:4
- (2) 9:1
- (3) 2 : 1
- (4) 25:9

Official Ans. by NTA (2)

Sol. Given that $\frac{A_1}{A_2} = \frac{2}{1}$

$$\frac{I_{\text{max}}}{I_{\text{min}}} = \left(\frac{A_1 + A_2}{A_1 - A_2}\right)^2 = \frac{9}{1} = 9:1$$

50. The mean free path of molecules of a certain gas at STP is 1500d, where d is the diameter of the gas molecules. While maintaining the standard pressure, the mean free path of the molecules at 373K is approximately:

Option:

- (1) 1098d
- (2) 2049d
- (3) 750d
- (4) 1500d

Official Ans. by NTA (2)

Sol. Mean free path

$$\lambda = \frac{RT}{\sqrt{2}\pi d^2 N_A P}$$

$$\lambda \propto \ T$$

$$\frac{1500d}{\lambda} = \frac{273}{373}$$

$$\lambda = 2049d$$

SECTION-B

51. A bi convex lens of focal length 10 cm is cut in two identical parts along a plane perpendicular to the principal axis. The power of each lens after cut is ______ D.

Official Ans. by NTA (5)

Ans. (5)

Sol.

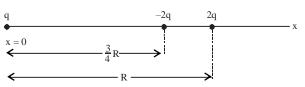
Let power of each part is P_1 , then

$$\mathbf{P}_1 + \mathbf{P}_1 = \mathbf{P} = \frac{1}{\mathbf{f}}$$

$$2P_1 = \frac{1}{0.1} = 10$$

$$P_1 = 5D$$

52. An atom absorbs a photon of wavelength 500 nm and emits another photon of wavelength 600 nm. The net energy absorbed by the atom in this process is $n \times 10^{-4} \text{eV}$. The value of n is _____. [Assume the atom to be stationary during the absorption and emission process]


(Take h = 6.6×10^{-34} Js and c = 3×10^8 m/s).

Official Ans. by NTA (4125)

Ans. (4125)

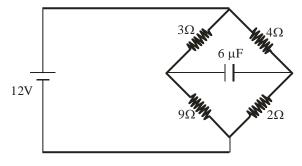
Sol.
$$E = E_1 - E_2 = \frac{hc}{\lambda_1} - \frac{hc}{\lambda_2} = hc \left(\frac{1}{\lambda_1} - \frac{1}{\lambda_2}\right)$$

 $= 6.6 \times 10^{-34} \times 3 \times 10^8 \left(\frac{1}{500 \times 10^{-9}} - \frac{1}{600 \times 10^{-9}}\right)$
 $= 6.6 \times 10^{-20} \text{ J}$
 $= \frac{6.6 \times 10^{-20}}{1.6 \times 10^{-19}} \text{ eV} = 4.125 \times 10^{-1} \text{ eV}$
 $= 4125 \times 10^{-4} \text{ eV}$

53. Three point charges q, -2q and 2q are placed on x-axis at a distance x = 0, $x = \frac{3}{4}R$ and x = R respectively from origin as shown. If $q = 2 \times 10^{-6}$ C and R = 2 cm, the magnitude of net force experienced by the charge -2q is ______ N.

Official Ans. by NTA (5440)

Ans. (5440)

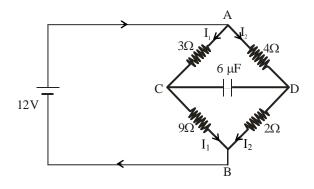

$$F_{BA} = \frac{Kq(2q)}{\left(\frac{3}{4}R\right)^2} = \frac{32Kq^2}{9R^2}$$

$$F_{BC} = \frac{K(2q)(2q)}{\left(\frac{R}{4}\right)^2} = \frac{2}{1-\frac{2}{4}}$$

$$F_{B} = F_{BC} - F_{BA} = \frac{544 \text{Kq}^{2}}{9 \text{R}^{2}}$$

$$= \frac{544 \times 9 \times 10^{9} \times (2 \times 10^{-6})^{2}}{9 \times (2 \times 10^{-2})^{2}} = 5440 \text{ N}$$

54. In the circuit shown, the energy stored in the capacitor is n μJ. The value of n is _____.



Official Ans. by NTA (75)
Ans. (75)

CollegeDekho

Sol.
$$I_1 = \frac{12}{3+9} = 1A$$

$$I_2 = \frac{12}{4+2} = 2A$$

$$V_A - V_C = 3I_1 = 3V$$
(1)

$$V_A - V_D = 2 \times 4 = 8V$$
(2)

Subtracting eq. (1) from eq. (2)

$$V_C - V_D = 5V \Rightarrow V = 5V$$

$$U = \frac{1}{2}CV^2 = \frac{1}{2} \times 6 \times 5^2 = 75 \text{ }\mu\text{J}$$

55. An insulated copper wire of 100 turns is wrapped around a wooden cylindrical core of the cross-sectional area 24 cm². The two ends of the wire are connected to a resistor. The total resistance in the circuit is 12Ω. If an externally applied uniform magnetic field in the core along its axis changes from 1.5 T in one direction to 1.5 T in the opposite direction, the charge flowing through a point in the circuit during the change of magnetic field will be mC.

Official Ans. by NTA (60)

Ans. (60)

Sol.
$$\Delta Q = -\frac{\Delta \phi}{R} = -\left(\frac{\phi_2 - \phi_1}{R}\right)$$

$$\phi_1 = NBA$$

$$\phi_2 = -NBA$$

:.
$$\Delta Q = \frac{2NBA}{R} = \frac{2 \times 100 \times 1.5 \times 24 \times 10^{-4}}{12}$$

$$= 6 \times 10^{-2} \text{ C} = 60 \text{ mC}$$

56. In an experiment with sonometer when a mass of 180 g is attached to the string, it vibrates with fundamental frequency of 30 Hz. When a mass m is attached, the string vibrates with fundamental frequency of 50 Hz. The value of m is g.

Official Ans. by NTA (500)

Ans. (500)

Sol.
$$f = \frac{1}{2\ell} \sqrt{\frac{T}{\mu}}$$
 (T: Tension)

$$\frac{\mathbf{f}_2}{\mathbf{f}_1} = \sqrt{\frac{\mathbf{T}_2}{\mathbf{T}_1}}$$

$$\left(\frac{50}{30}\right)^2 = \frac{\text{mg}}{180\text{g}} \implies m = \frac{25}{9} \times 180 = 500 \text{ gram}$$

57. A light rope is wound around a hollow cylinder of mass 5 kg and radius 70 cm. The rope is pulled with a force of 52.5 N. The angular acceleration of the cylinder will be rad s⁻².

Official Ans. by NTA (15)

Ans. (15)

Sol. $\tau = I\alpha$

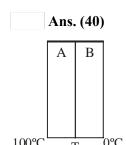
$$\Rightarrow$$
 FR = mR² α

$$\alpha = \frac{F}{mR} = \frac{52.5}{5 \times 0.7} = 15 \text{ rad s}^{-2}$$

58. A car accelerates from rest to u m/s. The energy spent in this process is E J. The energy required to accelerate the car from u m/s to 2u m/s is nE J. The value of n is

Official Ans. by NTA (3)

Ans. (3)


Sol.
$$E_1 = \frac{1}{2} mu^2 - 0 = \frac{1}{2} mu^2 = E$$

$$E_2 = \frac{1}{2} m(2u)^2 - \frac{1}{2} mu^2 = \frac{3}{2} mu^2 = 3E$$

CollegeDekho

59. Two plates A and B have thermal conductivities 84 Wm⁻¹K⁻¹ and 126 Wm⁻¹K⁻¹ respectively. They have same surface area and same thickness. They are placed in contact along their surfaces. If the temperatures of the outer surfaces of A and B are kept at 100 °C and 0 °C respectively, then the temperature of the surface of contact in steady state is _____°C.

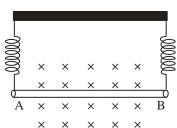
Official Ans. by NTA (40)

Sol.

Let the temperature of contact surface is T, then

$$H_A = H_B$$

$$\frac{K_A A(T_A - T)}{L} = \frac{K_B A(T - T_B)}{L}$$


$$84(100 - T) = 126 (T - 0)$$

$$2(100 - T) = 3T$$

$$200 - 2T = 3T$$

$$T = 40^{\circ}C$$

60. A straight wire AB of mass 40 g and length 50 cm is suspended by a pair of flexible leads in uniform magnetic field of magnitude 0.40 T as shown in the figure. The magnitude of the current required in the wire to remove the tension in the supporting leads is _____A. (Take g = 10 ms⁻²).

Official Ans. by NTA (2)

Sol. For equilibrium

$$Mg = I\ell B$$

$$I = \frac{mg}{\ell B} = \frac{40 \times 10^{-3} \times 10}{50 \times 10^{-2} \times 0.4} = 2A$$