

FINAL JEE-MAIN EXAMINATION - JANUARY, 2023

(Held On Tuesday 24th January, 2023)

TIME: 9:00 AM to 12:00 NOON

SECTION-A

- 61. The distance of the point (7, -3, -4) from the plane passing through the points (2, -3, 1), (-1, 1, -2) and (3, -4, 2) is:
 - (1) 4
 - (2) 5
 - (3) $5\sqrt{2}$
 - (4) $4\sqrt{2}$

Official Ans. by NTA (3)

Ans. (3)

Sol. Equation of Plane is

$$\begin{vmatrix} x-2 & y+3 & z-1 \\ -3 & 4 & -3 \\ 4 & -5 & 4 \end{vmatrix} = 0$$

$$x - z - 1 = 0$$

Distance of P (7, -3, -4) from Plane is

$$d = \left| \frac{7 + 4 - 1}{\sqrt{2}} \right| = 5\sqrt{2}$$

- **62.** $\lim_{t\to 0} \left(1^{\frac{1}{s}} \frac{\frac{1}{\sin^2 t}}{1} + \dots + n^{\frac{1}{\sin^2 t}}\right)^{\sin^2 t}$ is equal to
 - $(1) n^2 + n$
 - (2) n

$$(3) \frac{n(n+1)}{2}$$

 $(4) n^2$

Official Ans. by NTA (2)

Ans. (2)

Sol.
$$\lim_{t \to 0} \left(1^{\cos ec^2 t} + 2^{\cos ec^2 t} + \dots + n^{\csc^2 t} \right)^{\sin^2 t}$$

$$= \lim_{t \to 0} n \left(\left(\frac{1}{n} \right)^{\cos ec^2 t} + \left(\frac{2}{n} \right)^{\cos ec^2 t} + \dots + 1 \right)^{\sin^2 t}$$

$$= n$$

63. Let
$$\vec{u} = \hat{i} - \hat{j} - 2k, \vec{v} = 2\hat{i} + \hat{j} - k, \vec{v}.\vec{w} = 2$$
 and $\vec{v} \times \vec{w} = \vec{u} + \lambda \vec{v}$. Then $\vec{u}.\vec{w}$ is equal to

- (1) 1
- (2) $\frac{3}{2}$
- (3)2
- $(4) \frac{2}{3}$

Official Ans. by NTA (1)

Ans. (1)

Sol.
$$\vec{u} = (1, -1, -2), \vec{v} = (2, 1, -1), \vec{v} \cdot \vec{w} = 2$$

$$\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}} = \overrightarrow{\mathbf{u}} + \lambda \overrightarrow{\mathbf{v}}$$
(1)

Taking dot with w in (1)

$$\overrightarrow{w} \cdot (\overrightarrow{v} \times \overrightarrow{w}) = \overrightarrow{u} \cdot \overrightarrow{w} + \lambda \overrightarrow{v} \cdot \overrightarrow{w}$$

$$\Longrightarrow 0 = \overset{\rightharpoonup}{u}.\overset{\rightharpoonup}{w} + 2\lambda$$

Taking dot with \vec{v} in (1)

$$\vec{v} \cdot (\vec{v} \times \vec{w}) = \vec{u} \cdot \vec{v} + \lambda \vec{v} \cdot \vec{v}$$

$$\Rightarrow$$
 0 = $(2-1+2)+\lambda(6)$

$$\lambda = -\frac{1}{2}$$

$$\Rightarrow \vec{u}.\vec{w} = -2\lambda = 1$$

- **64.** The value $\sum_{r=0}^{22} {}^{22}C_r {}^{23}C_r$ is
 - (1) $^{45}C_{23}$
 - (2) $^{44}C_{23}$
 - (3) $^{45}C_{24}$
 - (4) $^{44}C_{22}$

Official Ans. by NTA (1)

Ans. (1)

Sol.
$$\sum_{r=0}^{22} {}^{22}C_r \cdot {}^{23}C_r = \sum_{r=0}^{22} {}^{22}C_r \cdot {}^{23}C_{23-r}$$
$$= {}^{45}C_{23}$$

CollegeDekho

- 65. Let a tangent to the curve $y^2 = 24x$ meet the curve xy = 2 at the points A and B. Then the mid points of such line segments AB lie on a parabola with the
 - (1) directrix 4x = 3
 - (2) directrix 4x = -3
 - (3) Length of latus rectum $\frac{3}{2}$
 - (4) Length of latus rectum 2

Official Ans. by NTA (1)

Ans. (1)

- **Sol.** $y^2 = 24x$
 - a = 6
 - xy = 2

AB
$$\equiv ty = x + 6t^2$$
(1)

- $AB \equiv T = S_1$
- kx + hy = 2hk(2)

From (1) and (2)

- $\frac{k}{1} = \frac{h}{-t} = \frac{2hk}{-6t^2}$
- \Rightarrow then locus is $y^2 = -3x$

Therefore directrix is 4x = 3

- **66.** Let N denote the number that turns up when a fair die is rolled. If the probability that the system of equations
 - x + y + z = 1
 - 2x + Ny + 2z = 2
 - 3x + 3y + Nz = 3

has unique solution is $\frac{k}{6}$, then the sum of value of k and all possible values of N is

- (1) 18
- (2) 19
- (3)20
- (4) 21

Official Ans. by NTA (3)

Ans. (3)

Sol. x + y + z = 1

$$2x + Ny + 2z = 2$$

$$3x + 3y + Nz = 3$$

$$\Delta = \begin{vmatrix} 1 & 1 & 1 \\ 2 & N & 2 \\ 3 & 3 & N \end{vmatrix}$$

$$=(N-2)(N-3)$$

For unique solution $\Delta \neq 0$

- So N \neq 2, 3
- \Rightarrow P (system has unique solution) = $\frac{4}{6}$

So k = 4

Therefore sum = 4 + 1 + 4 + 5 + 6 = 20

- 67. $\tan^{-1} \left(\frac{1 + \sqrt{3}}{3 + \sqrt{3}} \right) + \sec^{-1} \left(\sqrt{\frac{8 + 4\sqrt{3}}{6 + 3\sqrt{3}}} \right)$ is equal to
 - $(1) \frac{\pi}{4}$
- $(2) \ \frac{\pi}{2}$
- $(3) \frac{\pi}{3}$
- (4) $\frac{\pi}{6}$

Official Ans. by NTA (3)

Ans. (3)

Sol.
$$\tan^{-1} \left(\frac{1 + \sqrt{3}}{3 + \sqrt{3}} \right) + \sec^{-1} \left(\sqrt{\frac{8 + 4\sqrt{3}}{6 + 3\sqrt{3}}} \right)$$

$$= \tan^{-1} \left(\frac{1}{\sqrt{3}} \right) + \sec^{-1} \left(\frac{2}{\sqrt{3}} \right) = \frac{\pi}{3}$$

68. Let PQR be a triangle. The points A, B and C are on the sides QR, RP and PQ respectively such that

$$\frac{QA}{AR} = \frac{RB}{BP} = \frac{PC}{CQ} = \frac{1}{2}. \quad \text{Then} \quad \frac{Area(\Delta PQR)}{Area(\Delta ABC)} \, \text{is}$$

equal to

(1)4

(2) 3

(3) 2

 $(4)\frac{5}{3}$

Official Ans. by NTA (2)

Ans. (2)

Sol. Let P is $\vec{0}$, Q is \vec{q} and R is \vec{r}

A is
$$\frac{2\vec{q} + \vec{r}}{3}$$
, B is $\frac{2\vec{r}}{3}$ and C is $\frac{\vec{q}}{3}$

Area of
$$\triangle PQR$$
 is $=\frac{1}{2} |\vec{q} \times \vec{r}|$

Area of
$$\triangle ABC$$
 is $\frac{1}{2} |\overrightarrow{AB} \times \overrightarrow{AC}|$

$$\overrightarrow{AB} = \frac{\overrightarrow{r} - 2\overrightarrow{q}}{3}, \overrightarrow{AC} = \frac{-\overrightarrow{r} - \overrightarrow{q}}{3}$$

Area of
$$\triangle ABC = \frac{1}{6} |\vec{q} \times \vec{r}|$$

$$\frac{\text{Area}(\Delta PQR)}{\text{Area}(\Delta ABC)} = 3$$

- **69.** If A and B are two non-zero $n \times n$ matrics such that $A^2 + B = A^2 B$, then
 - (1) AB = I
 - (2) $A^2B = I$
 - (3) $A^2 = I$ or B = I
 - $(4) A^2B = BA^2$

Official Ans. by NTA (4)

Ans. (4)

CollegeDékho

Sol.
$$A^2 + B = A^2 B$$

$$(A^2 - I)(B - I) = I \dots (1)$$

$$A^2 + B = A^2 B$$

$$A^2(B-I) = B$$

$$A^2 = B(B-I)^{-1}$$

$$A^2 = B(A^2 - I)$$

$$A^2 = BA^2 - B$$

$$A^2 + B = BA^2$$

$$A^2B = BA^2$$

Let y = y(x) be the solution of the differential **70.** equation x^3 dy + (xy - 1) dx = 0, x > 0,

$$y\left(\frac{1}{2}\right) = 3 - e$$
. Then y(1) is equal to

- (1) 1
- (2) e
- (3) 2-e
- (4) 3

Official Ans. by NTA (1)

Ans. (1)

Sol.
$$\frac{dy}{dx} = \frac{1 - xy}{x^3} = \frac{1}{x^3} - \frac{y}{x^2}$$

$$\frac{\mathrm{dy}}{\mathrm{dx}} + \frac{\mathrm{y}}{\mathrm{x}^2} = \frac{1}{\mathrm{x}^3}$$

If =
$$e^{\int \frac{1}{x^2} dx} = e^{-\frac{1}{x}}$$

$$y.e^{-\frac{1}{x}} = \int e^{-\frac{1}{x}} \cdot \frac{1}{x^3} dx \text{ (put } -\frac{1}{x} = t \text{)}$$

$$y.e^{-\frac{1}{x}} = -\int e^{t}.t \, dt$$

$$v = \frac{1}{1} + 1 + Ce^{\frac{1}{x}}$$

Where C is constant

Put
$$x = \frac{1}{2}$$

$$3 - e = 2 + 1 + Ce^2$$

$$C = -\frac{1}{e}$$

$$y(1) = 1$$

The area enclosed by the curves $y^2 + 4x = 4$ and y-2x = 2 is:

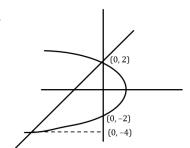
(1)
$$\frac{25}{3}$$
 (2) $\frac{22}{3}$ (3) 9 (4) $\frac{23}{3}$

(2)
$$\frac{22}{3}$$

Official Ans. by NTA (3)

Ans. (3)

Sol.



$$y^2 + 4x = 4$$

$$y^2 = -4(x-1)$$

$$A = \int_{4}^{2} \left(\frac{4 - y^{2}}{4} - \frac{y - 2}{2} \right) dy = 9$$

Let α be a root of the equation 72.

$$(a - c) x^2 + (b - a) x + (c - b) = 0$$
 where a, b, c are distinct real numbers such that the matrix

$$\begin{bmatrix} \alpha^2 & \alpha & 1 \\ 1 & 1 & 1 \\ a & b & c \end{bmatrix}$$

is singular. Then the value of

$$\frac{(a-c)^2}{(b-a)(c-b)} + \frac{(b-a)^2}{(a-c)(c-b)} + \frac{(c-b)^2}{(a-c)(b-a)}$$
 is

(1)6

(2) 3

(3)9

(4) 12

Official Ans. by NTA (2)

Ans. (2)

Sol.
$$\Delta = 0 = \begin{vmatrix} \alpha^2 & \alpha & 1 \\ 1 & 1 & 1 \\ a & b & c \end{vmatrix}$$

$$\Rightarrow \alpha^{2}(c-b)-\alpha(c-a)+(b-a)=0$$

It is singular when $\alpha = 1$

$$\frac{(a-c)^2}{(b-a)(c-b)} + \frac{(b-a)^2}{(a-c)(c-b)} + \frac{(c-b)^2}{(a-c)(b-a)}$$

$$(a-b)^3 + (b-c)^3 + (c-a)^3$$

$$\frac{(a-b)^{3}+(b-c)^{3}+(c-a)^{3}}{(a-b)(b-c)(c-a)}$$

$$= 3 \frac{(a-b)(b-c)(c-a)}{(a-b)(b-c)(c-a)} = 3$$

The distance of the point (-1, 9, -16) from the 73. plane 2x + 3y - z = 5 measured parallel to the line

$$\frac{x+4}{3} = \frac{2-y}{4} = \frac{z-3}{12}$$
 is

- (1) $13\sqrt{2}$
- (2)31
- (3)26
- (4) $20\sqrt{2}$

Official Ans. by NTA (3)

Ans. (3)

Sol. Equation of line

$$\frac{x+1}{3} = \frac{y-9}{-4} = \frac{z+16}{12}$$

G.P on line $(3\lambda - 1, -4\lambda + 9, 12\lambda - 16)$

point of intersection of line & plane

$$6\lambda - 2 - 12\lambda + 27 - 12\lambda + 16 = 5$$

$$\lambda = 2$$

Point (5, 1, 8)

Distance =
$$\sqrt{36 + 64 + 576} = 26$$

For three positive integers p, q, r, $x^{pq^2} = y^{qr} = z^{p^2r}$ 74.

and r = pq + 1 such that 3, 3 $log_v x$, $3log_z y$, $7log_x z$

are in A.P. with common difference $\frac{1}{2}$. Then

r - p - q is equal to

(1)2

- (2)6
- (3) 12
- (4) -6

Official Ans. by NTA (1)

Ans. (1)

Sol. $pq^2 = log_v \lambda$

$$qr = log_v \lambda$$

$$p^2 r = \log_2 \lambda$$

$$\log_{y} x = \frac{qr}{pq^{2}} = \frac{r}{pq} \dots (1)$$

$$\log_{x} z = \frac{pq^{2}}{p^{2}r} = \frac{q^{2}}{pr}$$
(2)

$$\log_z y = \frac{p^2 r}{qr} = \frac{p^2}{q}$$
(3)

$$3, \frac{3r}{pq}, \frac{3p^2}{q}, \frac{7q^2}{pr}$$
 in A.P

$$\frac{3r}{pq} - 3 = \frac{1}{2}$$

$$r = \frac{7}{6} pq$$
(4)

$$r = pq + 1$$

$$pq = 6$$
(5)

$$r = 7$$
.....(6)

$$\frac{3p^2}{q} = 4$$

After solving p = 2 and q = 3

Let $p, q \in \mathbb{R}$ and $(1 - \sqrt{3}i)^{200} = 2^{199} (p + iq),$

 $i = \sqrt{-1}$ Then $p + q + q^2$ and $p - q + q^2$ are roots of the equation.

- (1) $x^2 + 4x 1 = 0$ (2) $x^2 4x + 1 = 0$
- (3) $x^2 + 4x + 1 = 0$
- (4) $x^2 4x 1 = 0$

Official Ans. by NTA (2)

Ans. (2)

Sol. $\left(1 - \sqrt{3}i\right)^{200} = 2^{199} \left(p + iq\right)$

$$2^{200} \left(\cos \frac{\pi}{3} - i \sin \frac{\pi}{3} \right)^{200} = 2^{199} \left(p + iq \right)$$

$$2\left(-\frac{1}{2} - i\frac{\sqrt{3}}{2}\right) = p + iq$$

$$p = -1, q = -\sqrt{3}$$

$$\alpha = p + q + q^2 = 2 - \sqrt{3}$$

$$\beta = p - q + q^2 = 2 + \sqrt{3}$$

$$\alpha + \beta = 4$$

$$\alpha . \beta = 1$$

equation
$$x^2 - 4x + 1 = 0$$

The relation $R = \{(a,b) : gcd(a,b) = 1, 2a \neq b, a, b \in \mathbb{Z}\}$ **76.**

- (1) transitive but not reflexive
- (2) symmetric but not transitive
- (3) reflexive but not symmetric
- (4) neither symmetric nor transitive

Official Ans. by NTA (4)

Ans. (4)

Reflexive : $(a, a) \Rightarrow \gcd of (a, a) = 1$ Sol.

Which is not true for every a ϵ Z.

Symmetric:

Take
$$a = 2, b = 1 \Rightarrow \gcd(2, 1) = 1$$

Also
$$2a = 4 \neq b$$

Now when a = 1, $b = 2 \Rightarrow \gcd(1, 2) = 1$

Also now
$$2a = 2 = b$$

Hence a = 2b

⇒ R is not Symmetric

Transitive:

Let
$$a = 14$$
, $b = 19$, $c = 21$

$$gcd(a, b) = 1$$

$$gcd(b, c) = 1$$

$$gcd(a, c) = 7$$

Hence not transitive

 \Rightarrow R is neither symmetric nor transitive.

77. The compound statement

$$(\sim (P \land Q)) \lor ((\sim P) \land Q) \Longrightarrow ((\sim P) \land (\sim Q))$$
 is

equivalent to

$$(1) \left(\left(\sim P \right) \vee Q \right) \wedge \left(\left(\sim Q \right) \vee P \right)$$

(2)
$$(\sim Q) \vee P$$

$$(3) \left(\left(\sim P \right) \vee Q \right) \wedge \left(\sim Q \right)$$

$$(4) \left(\sim P\right) \vee Q$$

Official Ans. by NTA (1)

Ans. (1)

Sol. Let $\mathbf{r} = (\sim (P \wedge Q)) \vee ((\sim P) \wedge Q);$ $\mathbf{s} = ((\sim P) \wedge (\sim Q))$

P	Q	$\sim (P \wedge Q)$	$(-P) \wedge Q$	r	S	r→s
T	T	F	F	F	F	T
T	F	T	F	T	F	F
F	T	T	T	T	F	F
F	F	T	F	T	T	T

Option (A):
$$((\sim P) \lor Q) \land ((\sim Q) \lor P)$$

is equivalent to (not of only P) \land (not of only Q) = (Both P, Q) and (neither P nor Q)

- 78. Let $f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right), & x \neq 0 \\ 0, & x = 0 \end{cases}$; Then at x = 0
 - (1) f is continuous but not differentiable
 - (2) f is continuous but f' is not continuous
 - (3) f and f' both are continuous
 - (4) f' is continuous but not differentiable

Official Ans. by NTA (2)

Ans. (2)

Sol. Continuity of f(x): $f(0^+) = h^2 \cdot \sin \frac{1}{h} = 0$

$$f(0^{-}) = (-h)^{2} . \sin(\frac{-1}{h}) = 0$$

- f(0) = 0
- f(x) is continuous

$$f'(0^+) = \lim_{h \to 0} \frac{f(0+h) - f(0)}{h} = \frac{h^2 \cdot \sin(\frac{1}{h}) - 0}{h} = 0$$

$$f'(0^-) = \lim_{h \to 0} \frac{f(0-h) - f(0)}{-h} = \frac{h^2 \cdot \sin(\frac{1}{-h}) - 0}{-h} = 0$$

f(x) is differentiable.

$$f'(x) = 2x.\sin\left(\frac{1}{x}\right) + x^2.\cos\left(\frac{1}{x}\right).\frac{-1}{x^2}$$

$$f'(x) = \begin{cases} 2x.\sin\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right), & x \neq 0 \\ 0, & x = 0 \end{cases}$$

 \Rightarrow f'(x) is not continuous (as $\cos\left(\frac{1}{x}\right)$ is highly

oscillating at x = 0)

- 79. The equation $x^2 4x + [x] + 3 = x[x]$, where [x] denotes the greatest integer function, has:
 - (1) exactly two solutions in $(-\infty, \infty)$
 - (2) no solution
 - (3) a unique solution in $(-\infty, 1)$
 - (4) a unique solution in $(-\infty, \infty)$

Official Ans. by NTA (4)

Ans. (4)

Sol.
$$x^2 - 4x + [x] + 3 = x[x]$$

$$\Rightarrow$$
 $x^2 - 4x + 3 = x[x] - [x]$

$$\Rightarrow$$
 (x-1) (x -3) = [x]. (x -1)

$$\Rightarrow$$
 x = 1 or x - 3 = [x]

$$\Rightarrow x - [x] = 3$$

$$\Rightarrow$$
{x} = 3 (Not Possible)

Only one solution x = 1 in $(-\infty, \infty)$

- **80.** Let Ω be the sample space and $A \subseteq \Omega$ be an event. Given below are two statements :
 - (S1): If P (A) = 0, then A = ϕ
 - (S2) : If P (A) = , then A = Ω Then
 - (1) only (S1) is true
 - (2) only (S2) is true
 - (3) both (S1) and (S2) are true
 - (4) both (S1) and (S2) are false

Official Ans. by NTA (4)

Ans. (3)

CollegeDekho

Sol. Ω = sample space

A = be an event

If
$$P(A) = 0 \Rightarrow A = \phi$$

If
$$P(A) = 1 \Rightarrow A = \Omega$$

Then both statement are true

SECTION-B

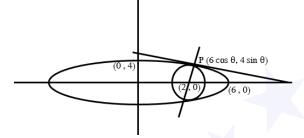
81. Let C be the largest circle centred at (2, 0) and inscribed in the ellipse = $\frac{x^2}{36} + \frac{y^2}{16} = 1$.

If $(1, \alpha)$ lies on C, then $10 \alpha^2$ is equal to

Official Ans. by NTA (118)

Ans. (118)

Sol.



Equation of normal of ellipse $\frac{x^2}{36} + \frac{y^2}{16} = 1$ at

any point P (6 cos θ , 4 sin θ) is

3 sec $\theta x - 2$ cosec $\theta y = 10$ this normal is also the normal of the circle passing through the point (2, 0) So,

 $6 \sec \theta = 10 \text{ or } \sin \theta = 0 \text{ (Not possible)}$

$$\cos \theta = \frac{3}{5}$$
 and $\sin \theta = \frac{4}{5}$ so point $P = \left(\frac{18}{5}, \frac{16}{5}\right)$

So the largest radius of circle

$$r = \frac{\sqrt{320}}{5}$$

So the equation of circle $(x-2)^2 + y^2 = \frac{64}{5}$

Passing it through $(1,\alpha)$

Then
$$\alpha^2 = \frac{59}{5}$$

$$10\alpha^2 = 118$$

82. Suppose $\sum_{r=0}^{2023} r^2 \, ^{2023}C_r = 2023 \times \alpha \times 2^{2022}$. Then

the value of α is

Official Ans. by NTA (1012)

Ans. (1012)

Sol. using result

$$\sum_{r=0}^{n} r^{2} {^{n}C_{r}} = n(n+1).2^{n-2}$$

Then
$$\sum_{r=0}^{2023} r^2~^{2023}C_r = 2023 \times 2024 \times 2^{2021}$$

$$= 2023 \times \alpha \times 2^{2022} \text{ So,}$$

$$\Rightarrow \alpha = 1012$$

83. The value of $12\int_{0}^{3} |x^2 - 3x + 2| dx$ is _____

Official Ans. by NTA (22)

Ans. (22)

Sol.
$$12\int_{0}^{3} |x^2 - 3x + 2| dx$$

$$= 12 \int_{0}^{3} \left| \left(x - \frac{3}{2} \right)^{2} - \frac{1}{4} \right| dx$$

If
$$x - \frac{3}{2} = t$$

$$dx = dt$$

$$=24\int_{0}^{3/2}\left| t^{2}-\frac{1}{4}\right| dt$$

$$=24\left[-\int_{0}^{1/2}\left(t^{2}-\frac{1}{4}\right)dt+\int_{1/2}^{3/2}\left(t^{2}-\frac{1}{4}\right)dt\right]=22$$

84. The number of 9 digit numbers, that can be formed using all the digits of the number 123412341 so that the even digits occupy only even places, is____

Official Ans. by NTA (60)

Ans. (60)

Sol. Even digits occupy at even places

$$\frac{4!}{2!2!} \times \frac{5!}{2!3!} = \frac{24 \times 120}{4 \times 12} = 60$$

85. Let $\lambda \in \mathbb{R}$ and let the equation E be $|x|^2 - 2|x| + |\lambda - 3| = 0$. Then the largest element in the set S =

 $\{x + \lambda : x \text{ is an integer solution of E } \}$ is

Official Ans. by NTA (5)

Ans. (5)

Sol.
$$|x|^2 - 2|x| + |\lambda - 3| = 0$$

$$|x|^2 - 2|x| + |\lambda - 3| - 1 = 0$$

$$(|x|-1)^2 + |\lambda - 3| = 1$$

At
$$\lambda = 3$$
, $x = 0$ and 2,

at
$$\lambda = 4$$
 or 2, then

$$x = 1 \text{ or } -1$$

So maximum value of $x + \lambda = 5$

86. A boy needs to select five courses from 12 available courses, out of which 5 courses are language courses. If he can choose at most two language courses, then the number of ways he can choose five courses is

Official Ans. by NTA (546)

Ans. (546)

Sol. For at most two language courses

$$= {}^{5}C_{2} \times {}^{7}C_{3} + {}^{5}C_{1} \times {}^{7}C_{4} + {}^{7}C_{5} = 546$$

87. Let a tangent to the Curve $9x^2 + 16y^2 = 144$ intersect the coordinate axes at the points A and B. Then, the minimum length of the line segment AB is

Official Ans. by NTA (7)

Ans. (7)

Sol. Equation of tangent at point $P(4\cos\theta, 3\sin\theta)$ is

$$\frac{x\cos\theta}{4} + \frac{y\sin\theta}{3} = 1 \text{ So A is } (4\sec\theta, 0) \text{ and }$$

point B is $(0, 3 \csc \theta)$

Length AB =
$$\sqrt{16\sec^2\theta + 9\csc^2\theta}$$

$$= \sqrt{25 + 16 \tan^2 \theta + 9 \cot^2 \theta} \ge 7$$

88. The value of $\frac{8}{\pi} \int_{0}^{\frac{\pi}{2}} \frac{(\cos x)^{2023}}{(\sin x)^{2023} + (\cos x)^{2023}} dx$

is .

Official Ans. by NTA (2)

Ans. (2)

Sol.
$$I = \frac{8}{\pi} \int_{0}^{\frac{\pi}{2}} \frac{(\cos x)^{2023}}{(\sin x)^{2023} + (\cos x)^{2023}} dx$$
(1)

Using
$$\int_{0}^{a} f(x)dx = \int_{0}^{a} f(a-x)dx$$

$$I = \frac{8}{\pi} \int_{0}^{\frac{\pi}{2}} \frac{\left(\sin x\right)^{2023}}{\left(\sin x\right)^{2023} + \left(\cos x\right)^{2023}} dx \qquad(2)$$

Adding (1) & (2)

$$2I = \frac{8}{\pi} \int_{0}^{\frac{\pi}{2}} 1 \, dx$$

I = 2

89. The shortest distance between the line

$$\frac{x-2}{3} = \frac{y+1}{2} = \frac{z-6}{2}$$
 and $\frac{x-6}{3} = \frac{1-y}{2} = \frac{z+8}{0}$

is equal to

Official Ans. by NTA (14)

Ans. (14)

Sol. Shortest distance between the lines

$$= \begin{vmatrix} 4 & 2 & -14 \\ 3 & 2 & 2 \\ \hline \begin{vmatrix} 3 & -2 & 0 \\ \hline \begin{vmatrix} \hat{i} & \hat{j} & k \\ 3 & 2 & 2 \\ \hline 3 & -2 & 0 \end{vmatrix} \end{vmatrix}$$

$$= \frac{16+12+168}{\left|-4\hat{\mathbf{i}}+6\hat{\mathbf{j}}-12\mathbf{k}\right|} = \frac{196}{14} = 14$$

The 4th term of GP is 500 and its common ratio is 90.

 $\frac{1}{m}$, $m \in \mathbb{N}$. Let S_n denote the sum of the first n

terms of this GP. If $S_6 > S_5 + 1$ and $S_7 < S_6 + \frac{1}{2}$,

then the number of possible values of m is _____

Official Ans. by NTA (12)

Ans. (12)

Sol. $T_4 = 500$ where a = first term,

 $r = common ratio = \frac{1}{m}, m \in N$

$$ar^3 = 500$$

$$\frac{a}{m^3} = 500$$

$$S_n - S_{n-1} = ar^{n-1}$$

$$S_6 > S_5 + 1$$

 $S_6 > S_5 + 1$ and $S_7 - S_6 < \frac{1}{2}$

$$S_6 - S_5 > 1$$

 $\frac{a}{m^6} < \frac{1}{2}$

$$ar^5 > 1$$

 $m^3 > 10^3$

$$\frac{500}{m^2} > 1$$

 $m > 10 \dots (2)$

$$m^2 < 500 \dots (1)$$

From (1) and (2)

So number of possible values of m is 12