

FINAL JEE-MAIN EXAMINATION - JUNE, 2022

(Held On Friday 24" June, 2022)

TIME: 9:00 AM to 12:00 PM

CHEMISTRY

SECTION-A

- If a rocket runs on a fuel (C₁₅ H₃₀) and liquid oxygen, the weight of oxygen required and CO2 released for every litre of fuel respectively are: (Given: density of the fuel is 0.756 g/mL)
 - (A) 1188 g and 1296 g (B) 2376 g and 2592 g
 - (C) 2592g and 2376 g (D) 3429 g and 3142 g

Official Ans. by NTA (C)

Ans. (C)

Sol.
$$C_{15} H_{30} + \frac{45}{2} O_2 \rightarrow 15 CO_2 + 15 H_2 O$$

Mass of fuel = $0.756 \times 1000 \text{ g}$

No. of moles of fuel =
$$\frac{0.756 \times 1000}{210}$$

Wt. of oxygen =
$$\frac{0.756 \times 1000}{210} \times \frac{45}{2} \times 32 = 2592g$$

Wt of
$$CO_2 = \frac{0.756 \times 1000}{210} \times 15 \times 44 = 2376 \text{ g}$$

Consider the following pairs of electrons 2.

(A) (a)
$$n = 3$$
, $1 = 1$, $m_1 = 1$, $m_s = +\frac{1}{2}$

(b)
$$n = 3$$
, $1 = 2$, $m_1 = 1$, $m_s = +\frac{1}{2}$

(B) (a)
$$n = 3$$
, $1 = 2$, $m_1 = -2$, $m_s = -\frac{1}{2}$

(b)
$$n = 3, 1 = 2, m_1 = -1, m_s = -\frac{1}{2}$$

(C) (a)
$$n = 4$$
, $1 = 2$, $m_1 = 2$, $m_s = +\frac{1}{2}$

(b)
$$n = 3$$
, $1 = 2$, $m_1 = 2$, $m_s = +\frac{1}{2}$

The pairs of electron present in degenerate orbitals is/are:

- (A) Only A
- (B) Only B
- (C) Only C

TEST PAPER WITH SOLUTION

Official Ans. by NTA (B)

Ans. (B)

- **Sol.** Based on "n + 1" rule only (B) has pair of electron in degenerate orbitals
- 3. Match List - I with List - II

List – I		List – II	
(A)	[PtCl ₄] ²⁻	(I)	sp ³ d
(B)	BrF ₅	(II)	d^2sp^3
(C)	PCl ₅	(III)	dsp ²
(D)	$\left[\operatorname{Co}(\operatorname{NH}_3)_6\right]^{3+}$	(IV)	$\mathrm{sp}^{3}\mathrm{d}^{2}$

- $(A)(A)\rightarrow(II), (B)\rightarrow(IV), (C)\rightarrow(I), (D)\rightarrow(III)$
- $(B) (A) \rightarrow (III), (B) \rightarrow (IV), (C) \rightarrow (I), (D) \rightarrow (II)$
- (C) $(A) \rightarrow (III), (B) \rightarrow (I), (C) \rightarrow (IV), (D) \rightarrow (II)$
- $(D) (A) \rightarrow (II), (B) \rightarrow (I), (C) \rightarrow (IV), (D) \rightarrow (III)$

Official Ans. by NTA (B)

Ans. (B)

Answer (B) Sol.

List – I		List – II	
(A)	[PtCl ₄] ²⁻	(III)	dsp ²
(B)	BrF ₅	(IV)	$\mathrm{sp}^{3}\mathrm{d}^{2}$
(C)	PCl ₅	(I)	sp ³ d
(D)	$\left[\operatorname{Co}(\operatorname{NH}_3)_6\right]^{3+}$	(II)	d^2sp^3

4. For a reaction at equilibrium

$$A(g) \rightleftharpoons B(g) + \frac{1}{2}C(g)$$

the relation between dissociation constant (K), degree of dissociation (α) and equilibrium pressure (p) is given by :

(A)
$$K = \frac{\alpha^{\frac{1}{2}}p^{\frac{3}{2}}}{\left(1 + \frac{3}{2}\alpha\right)^{\frac{1}{2}}\left(1 - \alpha\right)}$$

(B)
$$K = \frac{\alpha^{\frac{3}{2}}p^{\frac{1}{2}}}{(2+\alpha)^{\frac{1}{2}}(1-\alpha)}$$

(C)
$$K = \frac{(\alpha p)^{\frac{3}{2}}}{\left(1 + \frac{3}{2}\alpha\right)^{\frac{1}{2}} (1 - \alpha)}$$

(D)
$$K = \frac{(\alpha p)^{\frac{3}{2}}}{(1+\alpha)(1-\alpha)^{\frac{1}{2}}}$$

Official Ans. by NTA (B)

Ans. (B)

Sol.

$$\mathbf{A}(\mathbf{g}) \qquad \rightleftharpoons \quad \mathbf{B}(\mathbf{g}) + \frac{1}{2} \, \mathbf{C} \, (\mathbf{g})$$

Initial: Pi

n (4

At eq.: $P_i(1-\alpha)$

.α P_i

Now, equilibrium pressure (p),

$$P = P_i \times \left(1 + \frac{\alpha}{2}\right)$$

$$\therefore P_{A} = \left(\frac{1-\alpha}{1+\frac{\alpha}{2}}\right) P$$

$$P_{\rm B} = \left(\frac{\alpha}{1 + \frac{\alpha}{2}}\right) P$$

$$\mathbf{P}_{\mathrm{C}} = \left(\frac{\frac{\alpha}{2}}{1 + \frac{\alpha}{2}}\right) \mathbf{P}$$

$$\therefore K = \frac{P_c^{\frac{1}{2}} \times P_B}{P_A}$$

$$K = \frac{\alpha^{\frac{3}{2}} p^{\frac{1}{2}}}{(2 + \alpha)^{\frac{1}{2}} (1 - \alpha)}$$

5. Given below are two statements :

Statement I: Emulsions of oil in water are unstable and sometimes they separate into two layers on standing.

Statement II :For stabilisation of an emulsion, excess of electrolyte is added.

In the light of the above statements, choose the most appropriate answer from the options given below:

- (A) Both Statement I and Statement II are correct.
- (B) Both Statement I and Statement II are incorrect.
- (C) Statement I is correct but Statement II is incorrect.
- (D) Statement I is incorrect but Statement II is correct.

Official Ans. by NTA (C)

Ans. (C)

Sol. Statement I: Fact

Statement II: The principle emulsifying agents for O/W emulsions are proteins, gums natural and synthetic soaps etc...

6. Given below are the oxides:

Na₂O, As₂O₃, N₂O, NO and Cl₂O₇

Number of amphoteric oxides is:

(A) 0

(B) 1

(C) 2

(D) 3

Official Ans. by NTA (B)

Ans. (B)

Sol. $Na_2O = Basic$

 $As_2O_3 = Amphoteric$

 $N_2O = Neutral$

NO = Neutral

 $Cl_2O_7 = Acidic$

CollegeDekho

7. Match List - I with List - II

	List - I		List - II
(A)	Sphalerite	(I)	FeCO ₃
(B)	Calamine	(II)	PbS
(C)	Galena	(III)	ZnCO ₃
(D)	Siderite	(IV)	ZnS

Choose the most appropriate answer from the options given below:

$$(A)(A) - (IV), (B) - (III), (C) - (II), (D) - (I)$$

$$(B) (A) - (IV), (B) - (I), (C) - (II), (D) - (III)$$

$$(C) (A) - (II), (B) - (III), (C) - (I), (D) - (IV)$$

$$(D) (A) - (III), (B) - (IV), (C) - (II), (D) - (I)$$

Official Ans. by NTA (A)

Ans. (A)

Sol.

	List - I		List - II
(A)	Sphalerite	(IV)	ZnS
(B)	Calamine	(III)	ZnCO ₃
(C)	Galena	(II)	PbS
(D)	Siderite	(I)	FeCO ₃

- **8.** The highest industrial consumption of molecular hydrogen is to produce compounds of element:
 - (A) Carbon
- (B) Nitrogen
- (C) Oxygen
- (D) Chlorine

Official Ans. by NTA (B)

Ans. (B)

- **Sol.** Nitrogen . Around 55% of hydrogen around would goes to ammonia production
- **9.** Which of the following statements are correct?
 - (A) Both LiCl and MgCl₂ are soluble in ethanol.
 - (B) The oxides Li₂O and MgO combine with excess of oxygen to give superoxide.
 - (C) LiF is less soluble in water than other alkali metal fluorides.
 - (D) Li₂O is more soluble in water than other alkali

- Choose the most appropriate answer from the options given below:
- (A) (A) and (C) only
- (B) (A), (C) and (D) only
- (C) (B) and (C) only
- (D) (A) and (C) only

Official Ans. by NTA (A)

Ans. (A)

- **Sol.** (A) Both LiCl and MgCl₂ are soluble in ethanol
 - (B) Li and Mg do not form superoxide
 - (C) LiF has high lattice energy
 - (D) Li_2O is least soluble in water than other alkali metal oxides
- 10. Identify the correct statement for B_2H_6 from those given below.
 - (A) In B₂H₆, all B-H bonds are equivalent.
 - (B) In B₂H₆ there are four 3-centre-2-electron bonds.
 - (C) B₂H₆ is a Lewis acid.
 - (D) B_2H_6 can be synthesized form both BF_3 and $NaBH_4$.
 - (E) B₂H₆ is a planar molecule.

Choose the most appropriate answer from the options given below:

- (A)(A) and (E) only
- (B) (B), (C) and (E) only
- (C) (C) and (D) only
- (D) (C) and (E) only

Official Ans. by NTA (C)

Ans. (C)

Sol. (A) (B)

Two 3 centre – 2 – electron bonds

- (C) B₂ H₆ is e⁻ deficient species
- (E) B₂H₆ is non Planar molecule
- (D) $BF_3 + LiAlH_4 \rightarrow 2B_2H_6 + 3LiF + 3AlF_3$

 $NaBH_4 + I_2 \rightarrow B_2H_6 + 2NaI + H_2$

- 11. The most stable trihalide of nitrogen is:
 - (A) NF₃
- (B) NCl_3
- (C) NBr₃
- (D) NI₃

Official Ans. by NTA (A)

Ans. (A)

Sol. Order of stability: -

$$NF_3 > NCl_3 > NBr_3 > NI_3$$

12. Which one of the following elemental forms is not present in the enamel of the teeth?

(A)
$$Ca^{2+}$$

(B)
$$P^{3+}$$

(D)
$$P^{5+}$$

Official Ans. by NTA (B)

Sol. Calcium and phosphate are the major components of teeth enamel

13. In the given reactions sequence, the major product

$$C_8H_{10} \xrightarrow{HNO_3} A \xrightarrow{Br_2} B \xrightarrow{alcoholic} C$$

$$(A) \qquad \qquad \stackrel{NO_2}{\longrightarrow} C = CH_2$$

(B)
$$O_2N$$
 CH=CH

(C)
$$C = CH_2$$
 NO_2
 $C = CH_2$
 NO_2
 $CH = CH_2$

Official Ans. by NTA (B)

Sol.
$$C_8H_{10}$$
 DU = 9 -5 = 4

$$\begin{array}{c|c} CH_3 & HNO_3 \\ \hline & H_2SO_4 \end{array} \qquad \begin{array}{c} CH_3 \\ \hline & Br_2 \\ \hline & A \end{array} \qquad \begin{array}{c} Br \\ \hline & Br_2 \\ \hline & A \end{array} \qquad \begin{array}{c} Br \\ \hline & Br_2 \\ \hline & A \end{array}$$

14. Two statements are given below:

Statement I: The melting point of monocarboxylic acid with even number of carbon atoms

is higher than that of with odd number of carbon atoms acid immediately

Statement II: The solubility of monocarboxylic acids in water decreases with increase in molar mass.

Choose the most appropriate option:

- (A) Both Statement I and Statement II are correct.
- (B) Both Statement I and Statement II are incorrect.
- (C) Statement I is correct but Statement II is incorrect.
- (D) Statement I is incorrect but Statement II is correct.

Official Ans. by NTA (A)

Sol. I . Better packing efficiency of monocarboxylic acids with even number of carbon atoms results in higher M.P

II. As molar mass increases hydrophobic part size increase hence solubility decreases.

15. Which of the following is an example of conjugated diketone?

$$\begin{pmatrix}
O & O & O \\
\parallel & \parallel & \parallel \\
(A) & CH_3 - C - CH_2 - CH_2 - CH_2 - C - CH_3
\end{pmatrix}$$

Official Ans. by NTA (C)

Ans. (C)

is a conjugated diketone

16.

The major product of the above reaction is

(A)
$$OCH_3$$
 OCH_3 OCH_3

Official Ans. by NTA (D)

Ans. (D)

Sol.

- 17. Which of the following is an example of polyester?
 - (A) Butadiene-styrene copolymer
 - (B) Melamine polymer
 - (C) Neoprene
 - (D) Poly-β-hydroxybutyrate-co-β-hydroxy valerate

Official Ans. by NTA (D)

Ans. (D)

Sol. Factual

18. A polysaccharide 'X' on boiling with dil H₂SO₄ at 393 K under 2-3 atm pressure yields 'Y'.

'Y' on treatment with bromine water gives gluconic acid. 'X' contains β -glycosidic linkages only. Compound 'X' is:

(A) starch

(B) cellulose

(C) amylose

(D) amylopectin

Official Ans. by NTA (B)

Ans. (B)

Sol. Cellulose contains β – glycosidic linkages only

- **19.** Which of the following is not a broad spectrum antibiotic?
 - (A) Vancomycin
- (B) Ampicillin
- (C) Ofloxacin
- (D) Penicillin G

Official Ans. by NTA (D)

Ans. (D)

Sol. Penicillin G following is a narrow spectrum antibiotic

- **20.** During the qualitative analysis of salt with cation y^{2+} , addition of a reagent (X) to alkaline solution of the salt gives a bright red precipitate. The reagent (X) and the cation (y^{2+}) present respectively are:
 - (A) Dimethylglyoxime and Ni²⁺
 - (B) Dimethylglyoxime and Co²⁺
 - (C) Nessler's reagent and Hg²⁺
 - (D) Nessler's reagent and Ni²⁺

Official Ans. by NTA (A)

Ans. (A)

Sol. $Ni^{2+} + DMG^{-} \rightarrow [Ni (DMG)_{2}] \downarrow$ (Bright red precipitate)

SECTION-B

1. Atoms of element X form hcp lattice and those of element Y occupy $\frac{2}{3}$ of its tetrahedral voids. The percentage of element X in the lattice is _____ (Nearest integer)

Official Ans. by NTA (43)

CollegeDekho

Sol.
$$X \rightarrow 6$$
 $Y \rightarrow \frac{2}{3} \times 2 \times 6 = 8$

$$\% X = \frac{6}{14} \times 100 = 42.8 \ge 43\%$$

20.
$$2O_3(g) \rightleftharpoons 3O_2(g)$$

At 300 K, ozone is fifty percent dissociated. The standard free energy change at this

temperature and 1 atm pressure is (–) $_J$ mol $^{-1}$ (Nearest integer)

[Given: $\ln 1.35 = 0.3$ and $R = 8.3 \text{ J K}^{-1} \text{ mol}^{-1}$]

Official Ans. by NTA (747)

Ans. (747)

Sol.
$$2O_3 \rightleftharpoons 3O_2(g)$$

$$\frac{2}{5}$$
 $\frac{3}{5}$

$$k_{p} = \frac{P_{O_{2}}^{3}}{P_{O_{3}}^{2}}$$

$$k_{p} = 1.35$$

$$\Delta G^{\circ} = -RT \ln k_n$$

$$= -8.3 \times 300 \times \ln 1.35$$

$$= -747 \text{ J/mol}$$

3. The osmotic pressure of blood is 7.47 bar at 300 K.

To inject glucose to a patient intravenously, it has to be isotonic with blood. The concentration of glucose solution in gL⁻¹ is ____(Molar mass of glucose = 180 g mol⁻¹

 $R = 0.083 \text{ L bar } K^{-1} \text{ mol}^{-1})$ (Nearest integer)

Official Ans. by NTA (54)

Ans. (54)

Sol.
$$\pi = C.R.T$$

$$7.47 = C \times 0.083 \times 300$$

$$C = 0.3 \text{ M}$$

$$= 0.3 \times 180 \text{ gL}^{-1}$$

$$= 54 \text{ gL}^{-1}$$

4. The cell potential for the following cell

$$Pt\,|\,H_2(g)\,|\,H^{_+}(aq)\,\|\,Cu^{^{2+}}(0.01M)\,|\,Cu(s)$$

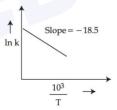
is 0.576 V at 298 K. The pH of the solution is _____ (Nearest integer)

Official Ans. by NTA (5)

Ans. (5)

Anode:
$$H_2 \rightarrow 2H^+ + 2e^-$$

Sol. Cathode:
$$Cu^{2+} + 2e^{-} \rightarrow Cu$$


$$Cu^{2+} + H_2 \rightarrow 2H^+ + Cu$$

$$E_{cell}\!=\,E_{cell}^{0}-\frac{0.06}{2}log\frac{\left \lceil H^{+} \right \rceil^{2}}{\left \lceil Cu^{^{2+}} \right \rceil}$$

$$0.576 = 0.34 - \frac{0.06}{2} log \left\{ \frac{\left[H^{+}\right]^{2}}{(0.01)} \right\}$$

$$+3.93 - \log(H^{+}) + \log 0.1 \Rightarrow pH = 4.93 \sim 5$$

5. The rate constants for decomposition of acetaldehyde have been measured over the temperature range 700-1000 K. The data has been analysed by plotting In k vs $\frac{10^3}{T}$ graph. The value of activation energy for the reaction is ___ kJ mol⁻¹. (Nearest integer) (Given: $R = 8.31 \text{ J K}^{-1} \text{ mol}^{-1}$)

Official Ans. by NTA (154)

Ans. (154)

Sol. ln k = ln A -
$$\frac{\text{Ea}}{10^3 \text{RT}} \times 10^3$$

= $\ell \text{nA} + \frac{10^3}{\text{T}} \left[-\frac{\text{Ea}}{10^3 \text{RT}} \right]$

From the graph

$$\frac{-Ea}{1} = -18.5$$

$$Ea = 153.735 \text{ kJ/mol}$$

CollegeDekho

6. The difference in oxidation state of chromium in chromate and dichromate salts is

Official Ans. by NTA (0)

Ans. (0)

Sol. $Cr O_4^{2-}, Cr_2 O_7^{2-}$ difference is zero

7. In the cobalt-carbonyl complex: $[Co_2(CO)_8]$, number of Co-Co bonds is "X" and terminal

CO ligands is "Y". X + Y =

Official Ans. by NTA (7)

Ans. (7)

Sol.

X = 1

Y = 6

8. A 0.166 g sample of an organic compound was digested with cone. H₂SO₄ and then distilled with NaOH. The ammonia gas evolved was passed through 50.0 mL of 0.5 N H₂SO₄. The used acid required 30.0 mL of 0.25 N NaOH for complete neutralization. The mass percentage of nitrogen in the organic compound is

Official Ans. by NTA (63)

Ans. (Bonus)

Sol. m_{eq} of NaOH used = 30×0.25

 m_{eq} of H_2SO_4 taken = 50×0.5

∴ m_{eq} of H₂SO₄ used

 $= 50 \times 0.25 \times 30 \times 0.25 = 17.5 \text{ m mol of NH}_3$

$$\therefore \% N = \frac{17.5 \times 10^{-3} \times 14}{0.166} \times 100 = 147.59\%$$

(Not possible)

9. Number of electrophilic centre in the given compound is ____

Official Ans. by NTA (3)

Ans. (3)

Sol.

- 10. The major product 'A' of the following given reaction has _____ sp² hybridized carbon atoms.
 - 2,7 Dimethyll 2,6 octadiene

$$\xrightarrow{H^+} A$$
Mojor Product

Official Ans. by NTA (2)

Ans. (2)

Sol. Answer (2)