

FINAL JEE–MAIN EXAMINATION – JUNE, 2022 (Held On Friday 24 th June, 2022) TIME : 3 : 00 PM to 6 : 00 PM			
TEST PAPER WITH SOLUTION			
4. Two identical charged particles each having a mass 10 g and charge 2.0×10^{-7} C area placed on a horizontal table with a separation of L between then such that they stay in limited equilibrium. If the coefficient of friction between each particle and the table is 0.25, find the value of L. [Use g = 10 ms ⁻²] (A) 12 cm (B) 10 cm (C) 8 cm (D) 5 cm Official Ans. by NTA (A) Ans. (A) Sol. $\frac{kq^2}{L^2} = \mu mg \Rightarrow L = \sqrt{\frac{k}{\mu mg}}q$ 5. A Carnot engine take 5000 kcal of heat from a reservoir at 727°C and gives heat to a sink at 127°C. The work done by the engine is : (A) 3×10^6 J (B) Zero (C) 12.6 × 10 ⁶ J (D) 8.4 × 10 ⁶ J Official Ans. by NTA (C) Ans. (C) Sol. $L = \frac{WD}{Q_H}$ $\Rightarrow WD = Q_H \left(1 - \frac{T_L}{T_H}\right)$ $= 5 \times 10^3 \left(1 - \frac{400}{1000}\right)$ = 3000 kcal 6. Two massless springs with spring constants 2 k and 2 k, carry 50 g and 100 g masses at their free ends. These two masses oscillate vertically such that their maximum velocities are equal. Then, the ratio of their respective amplitudes will be : (A) 1 : 2 (B) 3 : 2 (C) 3 : 1 (D) 2 : 3 Official Ans. by NTA (B) Ans. (B) Sol. $V_{max} = \omega A$ $\Rightarrow \frac{A_1}{A_2} = \frac{\omega_2}{\omega_1} = \sqrt{\frac{9}{2} \times \frac{1}{2}} = \frac{3}{2}$			
4			

CollegeDekho

- 7. What will be the most suitable combination of three resistors $A = 2\Omega$, $B = 4\Omega$, $C = 6\Omega$ so that
 - $\frac{22}{3}$ Ω is equivalent resistance of combination?
 - (A) Parallel combination of A and C connected in series with B.
 - (B) Parallel combination of A and B connected in series with C.
 - (C) Series combination of A and C connected in parallel with B.
 - (D) Series combination of B and C connected in parallel with A.

Official Ans. by NTA (B)

Sol.
$$\Rightarrow \frac{4}{3} + 6 = \frac{22}{3}$$

- The soft-iron is a suitable material for making an 8. electromagnet. This is because soft-iron has :
 - (A) low coercively and high retentively
 - (B) low coercively and low permeability
 - (C) high permeability and low retentively
 - (D) high permeability and high retentively

Official Ans. by NTA (C)

Ans. (C)

Sol. Theory

9. A proton, a deuteron and an α -particle with same kinetic energy enter into a uniform magnetic field at right angle to magnetic field. The ratio of the radii of their respective circular paths is :

(A)
$$1:\sqrt{2}:\sqrt{2}$$
 (B) $1:1:\sqrt{2}$
(C) $\sqrt{2}:1:1$ (D) $1:\sqrt{2}:1$

Official Ans. by NTA (D)

m

Ans. (D)

Sol.
$$R = \frac{\sqrt{2km}}{qB} \propto \frac{\sqrt{m}}{q}$$
$$\frac{\sqrt{m}}{e} : \frac{\sqrt{2m}}{e} : \frac{\sqrt{4m}}{2e}$$
$$1 : \sqrt{2} : 1$$

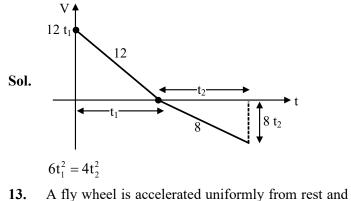
Given below are two statements : Statement-I: The reactance of an ac circuit is zero. It is possible that the circuit contains a capacitor and an inductor. Statement-II : In ac circuit, the average poser delivered by the source never becomes zero. In the light of the above statements, choose the correct answer from the options given below : (A) Both Statement I and Statement II are true. (B) Both Statement I and Statement II are false. (C) Statement I is true but Statement II in false. (D) Statement I is false but Statement II is true. Official Ans. by NTA (C) Ans. (C) **Sol.** if R = 0, P = 0Potential energy as a function of r is given by $U = \frac{A}{r^{10}} - \frac{B}{r^5}$, where r is the interatomic distance, A and B are positive constants. The equilibrium distance between the two atoms will be : $(A)\left(\frac{A}{B}\right)^{\overline{5}}$ (B) $\left(\frac{B}{A}\right)^{\frac{1}{2}}$ (D) $\left(\frac{B}{2A}\right)^{\frac{1}{5}}$ (C) $\left(\frac{2A}{B}\right)^{\frac{1}{5}}$ Official Ans. by NTA (C) Ans. (C)

Sol.
$$\frac{-10A}{r^{11}} + \frac{5B}{r^6} = 0$$

 $r^5 = \frac{10A}{5B} = \frac{2A}{B}$

10.

11.


12. An object of mass 5 kg is thrown vertically upwards from the ground. The air resistance produces a constant retarding force of 10 N throughout the motion. The ratio of time of ascent to the time of descent will be equal to : $[\text{Use g} = 10 \text{ ms}^{-2}]$

(A) 1 : 1 (B)
$$\sqrt{2} : \sqrt{3}$$

(C)
$$\sqrt{3}:\sqrt{2}$$
 (D) 2:3

Official Ans. by NTA (B)

- **13.** A fly wheel is accelerated uniformly from rest and rotates through 5 rad in the first second. The angle rotated by the fly wheel in the next second, will be :
 - (A) 7.5 rad (B) 15 rad

(C) 20 rad (D) 30 rad Official Ans. by NTA (B)

- Ans. (B)
- **Sol.** $5 = \frac{1}{2}\alpha(1)^2$
 - $\theta = \frac{1}{2}\alpha(2)^2$
 - $\theta 5 = 15$
- 14. A 100 g of iron nail is hit by a 1.5 kg hammer striking at a velocity of 60 ms⁻¹. What will be the rise in the temperature of the nail if one fourth of energy of the hammer goes into heating the nail? [Specific heat capacity of iron = $0.42 \text{ Jg}^{-1} \circ \text{C}^{-1}$]

(C)
$$160.7^{\circ}$$
C (D) 6.75° C

Official Ans. by NTA (C)

Sol.

Sol. $\frac{1}{2} \times 1.5 \times 60^2 \times \frac{1}{4} = 0.1 \times 420 \times \Delta T$

15. If the charge on a capacitor is increased by 2 C, the energy stored in it increases by 44%. The original charge on the capacitor is (in C) :

-	-	. ,
(A) 10		(B) 20
(C) 30		(D) 40
Official Ans. by NTA (A)		
Ans. ((A)	
$U \propto q^2$		
\Rightarrow q _f = 1.2 q	1	
$q_{\rm f}-q=2$		
$\Rightarrow 1.2 a - a$	= 2	

16. A long cylindrical volume contains a uniformly distributed charge of density ρ. The radius of cylindrical volume is R. A charge particle (q) revolves around the cylinder in a circular path. The kinetic of the particle is :

(A)
$$\frac{\rho q R^2}{4\epsilon_0}$$
 (B) $\frac{\rho q R^2}{2\epsilon_0}$

(C)
$$\frac{q\rho}{4\epsilon_0 R^2}$$
 (D) $\frac{4\epsilon_0 R^2}{q\rho}$

Official Ans. by NTA (A)

Ans. (A)
Sol.
$$E = 2\pi r \ell = \frac{\rho \pi r^2 \ell}{\varepsilon_0}$$

 $qE = \frac{q\rho R^2}{2\varepsilon_0 r} = \frac{mv^2}{r}$
 $mv^2 = \frac{q\rho R^2}{2\varepsilon_0}$

17. An electric bulb is rated as 200 W. What will be the peak magnetic field at 4 m distance produced by the radiations coming from this bulb? Consider this bulb as a point source with 3.5% efficiency.

(A)
$$1.19 \times 10^{-8}$$
 T (B) 1.71×10^{-8} T
(C) 0.84×10^{-8} T (D) 3.36×10^{-8} T
Official Ans. by NTA (B)

Sol.
$$\frac{\eta P}{4\pi r^2} = \frac{cB_0^2}{2\mu_0}$$

 $B_0 = \sqrt{\frac{\mu_0}{4\pi} \frac{\eta P}{c}} \frac{1}{r}$
 $\Rightarrow B_0 = \frac{1}{4} \sqrt{\frac{10^{-7} \times 4 \times 3.5}{3 \times 10^8}} = 1.71 \times 10^{-8} \text{ T}$

18. The light of two different frequencies whose photons have energies 3.8 eV and 1.4 eV respectively, illuminate a metallic surface whose work function is 0.6 eV successively. The ratio of maximum speeds of emitted electrons for the two frequencies respectivly will be :

(A) 1 : 1 (B) 2 : 1

(C) 4 : 1 (D) 1 : 4

Official Ans. by NTA (B)

Ans. (B)

Sol.
$$\sqrt{\frac{3.8 - 0.6}{1.4 - 0.6}} = \sqrt{\frac{3.2}{0.8}} = 2$$

19. Two light beams of intensities in the ratio of 9 : 4 are allowed to interfere. The .ratio of the intensity of maxima and minima will be :

(A) 2 : 3 (B) 16 : 81

(C) 25 : 169 (D) 25 : 1

Official Ans. by NTA (D)

Ans. (D)

Sol. $\sqrt{\frac{I_1}{I_2}} = \sqrt{\frac{9}{4}} = \frac{3}{2}$

$$\left(\frac{\sqrt{I_1} + \sqrt{I_2}}{\sqrt{I_1} - \sqrt{I_2}}\right)^2 = 5^2 = 25^2$$

- 20. In Bohr's atomic model of hydrogen, let K. P and E are the kinetic energy, potential energy and total energy of the electron respectively. Choose the correct option when the electron undergoes transitions to a higher level :
 - (A) All K. P and E increase.
 - (B) K decreases. P and E increase.
 - (C) P decreases. K and E increase.
 - (D) K increases. P and E decrease.

Official Ans. by NTA (B)

1. A body is projected from the ground at an angle of 45° with the horizontal. Its velocity after 2s is 20 ms⁻¹. The maximum height reached by the body during its motion is _____m. (use g = 10ms⁻²) Official Ans. by NTA (20) Ans. (20) Sol. $v_y = v_x - 20$ $\sqrt{(u_x - 20)^2 + u_x^2} = 20$

SECTION-B

$$\Rightarrow 2u_x^2 - 40u_x = 0$$

$$\therefore u_x = 20$$

 An antenna is placed in a dielectric medium of dielectric constant 6.25. If the maximum size of that antenna is 5.0 mm. it can radiate a signal of minimum frequency of GHz.

(Given $\mu_r = 1$ for dielectric medium)

Official Ans. by NTA (6)

Ans. (6)

Sol.
$$C' = \frac{C}{\sqrt{\mu_r \varepsilon_r}} = \frac{3 \times 10^8}{\sqrt{6.25}} = \frac{3 \times 10^8}{2.5}$$
$$f\lambda = 1.25 \times 10^8 \text{ s}$$
$$\Rightarrow f(5 \times 10^{-3} \times 4) = 1.25 \times 10^8$$
$$f = 6.25 \text{ GHz}$$
$$f \approx 6$$

3. A potentiometer wire of length 10 m and resistance 20 Ω is connected in series with a 25 V battery and an external resistance 30 Ω . A cell of emf E in secondary circuit is balanced by 250 cm long potentiometer wire. The value of E (in volt) is

 $\frac{x}{10}$. The value of x is _____.

Official Ans. by NTA (25)

Ans. (25)

Sol.
$$\begin{array}{c}
25\Omega & 30\Omega \\
\hline
1 & 2.5m & 20\Omega & 7.5m \\
\hline
F & F
\end{array}$$

 $I = \frac{25}{50} = \frac{1}{2} A$ $\therefore \Delta V = 10 V$ $10 \text{ m} \rightarrow 10 V$

 $2.5m \rightarrow 2.5V$

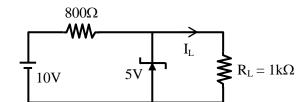
4. Two travelling waves of equal amplitudes and equal frequencies move in opposite directions along a string. They interfere to produce a stationary wave whose equation is given by

 $y = (10 \cos \pi x \sin \frac{2\pi t}{T}) cm$

The amplitude of the particle at $x = \frac{4}{3}$ cm will be

_____ cm.

Official Ans. by NTA (5)


Ans. (5)

Sol. $10\cos\left(\frac{4\pi}{3}\right)$

In the given circuit- the value of current I_L will be _____mA.

(When $R_L = lk\Omega$)

5.

Official Ans. by NTA (5)

Sol.
$$I_L = \frac{5}{1000} = 5 \text{mA}$$

6. A sample contains 10^{-2} kg each of two substances A and B with half lives 4 s and 8 s respectively. The ratio of then atomic weights is 1 : 2. The ratio of the amounts of A and B after 16 s is $\frac{x}{100}$. the value of x is _____.

Official Ans. by NTA (25)

Sol.
$$N_t = N_0 (0.5)^{\frac{1}{t_{1/2}}}$$

7.

$$= \frac{m}{M} \times N_{A} (0.5)^{\frac{1}{T_{1/2}}}$$
$$\frac{N_{1}}{N_{2}} = \frac{M_{2}}{M_{1}} (0.5)^{t} \left[\frac{1}{T_{A}} - \frac{1}{T_{B}} \right]$$
$$= 2(0.5)^{16\times\frac{1}{8}} = \frac{2}{4} = \frac{1}{2} = \frac{x}{100}$$

A ray of ligh is incident at an angle of incidence 60° on the glass slab of refractive index $\sqrt{3}$. After refraction, the light ray emerges out from other parallel faces and lateral shift between incident ray and emergent ray is $4\sqrt{3}$ cm. The thickness of the glass slab is _____ cm.

Official Ans. by NTA (12)

Sol.
$$\ell = t \sin i \left[1 - \frac{\cos i}{\sqrt{\mu^2 - \sin^2 i}} \right]$$

 $\Rightarrow 4\sqrt{3} = t \sin 60^\circ \left[1 - \frac{\cos 60^\circ}{\sqrt{3 - \frac{3}{4}}} \right]$

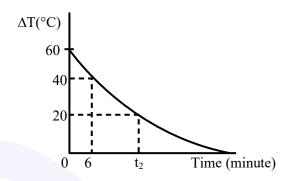
8. A circular coil of 1000 turns each with area 1m² is rotated about its vertical diameter at the rate of one revolution per second in a uniform horizontal magnetic field of 0.07T. The maximum voltage generation will be _____V.

Official Ans. by NTA (440)

Sol. $\in_{max} = BAN\omega$

- $= 0.07 \times 1 \times 10^3 \times 2\pi$
- $= 140\pi \approx 440$
- 9. A monoatomic gas performs a work of $\frac{Q}{4}$ where Q is the heat supplied to it. The molar heat capaticy of the gas will be _____R during this transformation.

Where R is the gas constant.


Official Ans. by NTA (2)

Ans. (2)

Sol. $\Delta Q = \Delta E + WD \Longrightarrow Q = \Delta E + \frac{Q}{4}$

$$\Rightarrow n \frac{3R}{2} \Delta T = \Delta E = \frac{3Q}{4}$$
$$\therefore n \Delta T = \frac{Q}{2R}$$
$$\therefore C = 2R$$

10. In an experiment of verify Newton's law of cooling, a graph is plotted between, the temperature difference (ΔT) of the water and surroundings and time as shown in figure. The initial temperature of water is taken as 80°C. The value of t₂ as mentioned in the graph will be _____.

Official Ans. by NTA (16)

Ans. (16)

- **Sol.** $T T_0 (T_i T_0) e^{-\frac{Bt}{ms}}$
 - $6\lambda = \ln 1.5$

$$40 = 60e^{-\lambda(6)} \implies 6\lambda = \ln 1.5$$

$$20 = 60e^{-\lambda t_2} \implies t_2 \ \lambda = \ln 3$$

$$\frac{t_2}{6} = \frac{\ln 3}{\ln 1.5}$$

: $t_2 = 16.25 \text{ min}$

So ≈ 16