
FINAL JEE-MAIN EXAMINATION - JANUARY, 2023

(Held On Sunday 29th January, 2023)

TIME: 9:00 AM to 12:00 NOON

SECTION-A

31. For 1 mol of gas, the plot of pV vs p is shown below. p is the pressure and V is the volume of the gas.

What is the value of compressibility factor at point A?

$$(1) 1 - \frac{a}{RTV}$$

(2)
$$1 + \frac{b}{V}$$

(3)
$$1 - \frac{b}{V}$$

$$(4) 1 + \frac{a}{RTV}$$

Official Ans. by NTA (1)

Ans. (1)

Sol. For 1 mole of real gas

PV = ZRT

from graph PV for real gas is less than PV for ideal gas at point A

Z < 1

$$Z = 1 - \frac{a}{V_m RT}$$

- 32. The shortest wavelength of hydrogen atom in Lyman series is λ . The longest wavelength in Balmer series of He⁺ is
 - $(1) \frac{5}{9\lambda}$

 $(2) \frac{9\lambda}{5}$

 $(3) \frac{36\lambda}{5}$

 $(4) \frac{5\lambda}{9}$

Official Ans. by NTA (2)

Ans. (2)

Sol. For H: $\frac{1}{\lambda} = R_H \times 1^2 \left(\frac{1}{1^2} - \frac{1}{\infty^2} \right) \dots (1)$

$$\frac{1}{\lambda_{\text{H,t}}} = R_{\text{H}} \times 2^2 \times \left(\frac{1}{4} - \frac{1}{9}\right) \quad \dots (2)$$

From (1) & (2) $\frac{\lambda_{\text{He}^+}}{\lambda} = \frac{9}{5}$

 $_{\mathrm{He}^{+}} = \lambda \times \frac{9}{5}$

 $\lambda_{He^+} = \frac{9\lambda}{5}$

33. Which of the following salt solutions would coagulate the colloid solution formed when FeCl₃ is added to NaOH solution, at the fastest rate?

(1) 10 mL of 0.2 mol dm⁻³ AlCl₃

(2) 10 mL of 0.1 mol dm⁻³ Na₂SO₄

(3) 10 mL of 0.1 mol dm⁻³ Ca₃(PO₄)₂

(4) 10 mL of 0.15 mol dm⁻³ CaCl₂

Official Ans. by NTA (1)

Ans. (1)

- **Sol.** Sol. Formed is negatively charged solution, therefore Al³⁺ has highest coagulating power
- **34.** The bond dissociation energy is highest for

(1) Cl₂

 $(2) I_2$

(3) Br₂

 $(4) F_2$

Official Ans. by NTA (1)

Ans. (1)

Sol. Bond energy of F_2 less than Cl_2 due to lone pair – lone pair repulsions.

Bond energy order $Cl_2 > Br_2 > F_2 > I_2$

35. The reaction representing the Mond process for metal refining is

(1) Ni + 4CO
$$\xrightarrow{\Delta}$$
 Ni(CO)₄

(2) $2K \left[Au(CN)_2\right] + Zn \xrightarrow{\Delta} K_2 \left[Zn(CN)_4\right] + 2 Au$

$$(3) Zr + 2I_2 \xrightarrow{\Delta} Zr I_4$$

$$(4) ZnO + C \xrightarrow{\Delta} Zn + CO$$

Official Ans. by NTA (1)

Ans. (1)

Sol. Mond's process uses:

 $Ni + 4CO \rightarrow [Ni(CO)_4]$

36. Which of the given compounds can enhance the efficiency of hydrogen storage tank?

 $(1) Li/P_4$

(2) SiH₄

(3) NaNi₅

(4) Di-isobutylaluminium hydride

Official Ans. by NTA (3)

Ans. (3)

Sol. Refer NCERT

- **37.** The correct order of hydration enthalpies is
 - $(A) K^{+}$
 - $(B) Rb^+$
 - (C) Mg^{2+}
 - $(D) Cs^+$
 - (E) Ca²⁺

Choose the correct answer from the options given below:

- (1) C > A > E > B > D
- (2) E > C > A > B > D
- (3) C > E > A > D > B
- (4) C > E > A > B > D

Official Ans. by NTA (4) Ans. (4)

- **Sol.** Hydration enthalpies:
 - (i) $K^+ > Rb^+ > Cs^+ : (A) > (B) > (D)$
 - (ii) $Mg^{+2} > Ca^{+2} : (C) > (E)$

Option (D)

- (C) > (E) > (A) > (B) > (D)
- **38.** The magnetic behaviour of Li₂O, Na₂O₂ and KO₂, respectively, are
 - (1) diamagnetic, paramagnetic and diamagnetic
 - (2) paramagnetic, paramagnetic and diamagnetic
 - (3) paramagnetic, diamagnetic and paramagnetic
 - (4) diamagnetic, diamagnetic and paramagnetic

Official Ans. by NTA (4)

Ans. (4)

Sol. Li₂O \rightarrow O²⁻ \rightarrow diamagnetic

 $Na_2O_2 \rightarrow O_2^{2-} \rightarrow diamagnetic$

 $KO_2 \rightarrow O_2^- \rightarrow paramagnetic$

- 39. "A" obtained by Ostwald's method involving air oxidation of NH₃, upon further air oxidation produces "B". "B" on hydration forms an oxoacid of Nitrogen along with evolution of "A". The oxoacid also produces "A" and gives positive brown ring test
 - $(1) NO_2, N_2O_5$
 - (2) NO_2 , N_2O_4
 - (3) NO, NO₂
 - $(4) N_2O_3, NO_2$

Official Ans. by NTA (3)

Ans. (3)

Sol. $4NH_3 + 5O_2 \xrightarrow{\Delta} 4NO + 6H_2O$

 (\mathbf{A})

 $2NO + O_2 \longrightarrow 2NO_2$

(B)

- **40.** The standard electrode potential (M³⁺/M²⁺) for V, Cr, Mn & Co are -0.26 V, 0.41 V, + 1.57 V and +1.97 V, respectively. The metal ions which can liberate H₂ from a dilute acid are
 - (1) V^{2+} and Mn^{2+}
 - (2) Cr²⁺ and CO²⁺
 - (3) V^{2+} and Cr^{2+}
 - (4) Mn²⁺ and Co²⁺

Official Ans. by NTA (3) Ans. (3)

Sol. Metal cation with (–) value of reduction potential (M^{+3}/M^{+2}) or with (+) value of oxidation potential (M^{+2}/M^{+3}) will liberate H_2

Therefore they will reduce H⁺

i.eV⁺² and Cr⁺²

- **41.** Correct statement about smog is
 - (1) NO₂ is present in classical smog
 - (2) Both NO₂ and SO₂ are present in classical smog
 - (3) Photochemical smog has high concentration of oxidizing agents
 - (4) Classical smog also has high concentration of oxidizing agents

Official Ans. by NTA (3)

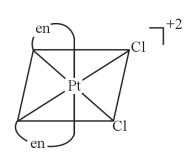
Ans. (3)

Sol. Photochemical smog has high concentration of oxidising agents

NO₂ is produced from NO and O₃ in the presence of sunlight

Classical smog contain smoke, fog and SO₂ and it is known as reducing smog, as chemically it is reducing mixture

42. Chiral complex from the following is:


Here en = ethylene diamine

- (1) $cis [PtCl_2 (en)_2]^{2+}$
- (2) trans $[PtCl_2(en)_2]^{2+}$
- (3) $cis [PtCl_2(NH_3)_2]$
- (4) trans $[Co(NH_3)_4 Cl_2]^+$

Official Ans. by NTA (1)

Ans. (1)

Sol.

this is chiral complex form

- 43. Identify the correct order for the given property for following compounds
 - (A) Boiling Point: \CI < \CI < \
 - (B) Density: \nearrow Br < \nearrow Cl < \nearrow

 - (C) Boiling Point: \bigcirc Br \bigcirc
 - (E) Boiling Point: Cl > Cl> Cl> Cl

Choose the correct answer from the option given below:-

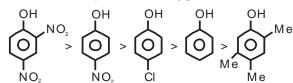
- (1) (B), (C) and (D) only
- (2) (A), (C) and (E) only
- (3) (A), (C) and (D) only
- (4) (A), (B) and (E) only

Official Ans. by NTA (2)

Ans. (2)

Sol. Boiling point of alkyl halide increases with increase in size, mass of halogen atom and size of alkyl group

> Boiling point of isomeric alkyl halide decreases with increase in branching


> Density increases with increase in atomic mass of halogen atom

- 44. The increasing order of pK_a for the following phenols is
 - (1) 2, 4-Dinitrophenol
 - (2) 4 Nitrophenol
 - (3) 2, 4, 5- Trimethylphenol
 - (4) Phenol
 - (5) 3-Chlorophenol

Official Ans. by NTA (2)

Ans. (2)

Sol. Order of acidity for following phenol is

- M and I increases acidity
- + M and + I decreases acidity
- Match List I with List II. 45.

List-I	List-II
Reaction	Reagents
(A) Hoffmann	(I) Conc.KOH, Δ
Degradation	
(B) Clemenson	(II) CHCl ₃ , NaOH/H ₃ O ⁺
reduction	
(C) Cannizaro reaction	(III) Br ₂ , NaOH
(D) Reimer-Tiemann	(IV) Zn-Hg/HCl
reaction	

- (1) (A) III, (B) IV, (C) II, (D) I
- (2) (A) II, (B) IV, (C) I, (D) III
- (3) (A) III, (B) IV, (C) I, (D) II
- (4) (A) II, (B) I, (C) III, (D) IV

Official Ans. by NTA (3)

Ans. (3)

Sol. Reactions

Reagent used

- (A) Hoffmann degradation Br₂/NaOH
- (B) Clemenson reduction Zn-Hg/HCl
- (C) Cannizaro reaction conc.KOH/A
- (D) Reimer-Tiemann reaction CHCl₃,

NaOH/H₃O⁺

46. The major product 'P' for the following sequence of reactions is:

$$\begin{array}{c|c} O & O \\ Ph & & \\ NH_2 & \\ \hline \begin{array}{c} 1) \text{ Zn/Hg} \\ HCl \\ \hline 2) \text{ LiAlH}_4 \\ 3) \text{ H}_3O^{+4} \end{array} \text{ major product}$$

Official Ans. by NTA (3)

Ans. (3)

Sol.

Ph
$$\stackrel{O}{\longrightarrow}$$
 NH₂ $\stackrel{1) Zn/Hg}{\underset{\text{Teduction}}{\text{HCI}}}$ Ph $\stackrel{O}{\longrightarrow}$ NH₂ $\stackrel{N}{\underset{\text{Teduction}}{\text{HCI}}}$ Ph $\stackrel{N}{\longrightarrow}$ NH₂

- **47.** During the borax bead test with CuSO₄, a blue green colour of the bead was observed in oxidising flame due to the formation of
 - (1) Cu₃B₂
- (2) Cu
- (3) $Cu(BO_2)_2$
- (4) CuO
- Official Ans. by NTA (3)

Ans. (3)

Sol. Blue green colour is due to formation of Cu(BO₂)₂

$$CuSO_4 \xrightarrow{\Delta} CuO + SO_3$$

 $CuO + B_2O_3 \rightarrow Cu (BO_2)_2$

48. Match List I with List II

List I	List II
Antimicrobials	Names
(A) Narrow Spectrum	(I) Furacin
Antibiotic	
(B) Antiseptic	(II) Sulphur dioxide
(C) Disinfectants	(III) Penicillin-G
(D) Broad spectrum	(IV) Chloramphenicol
antibiotic	

- (1) (A) III, (B) I, (C) II, (D) IV
- (2)(A) I, (B) II, (C) IV, (D) III
- (3)(A) II, (B) I, (C) IV, (D) III
- (4) (A) III, (B) I, (C) IV, (D) II

Official Ans. by NTA (1)

Ans. (1)

- **Sol.** (A) Narrow spectrum antibiotic penicillin-G
 - (B) Antiseptic Furacine
 - (C) Disinfectants sulphur dioxide
 - (D) Broad spectrum antisiotics chloramphenicol
- **49.** Number of cyclic tripeptides formed with 2 amino acids A and B is:
 - (1) 2

(2) 3

(3)5

(4) 4

Official Ans. by NTA (4)

Ans. (4)

Sol. Two amino acid are

$$H_2N$$
 - CH - $COOH$, H_2N - CH - $COOH$ R₂ (B) R₂

Tripeptide are formed from three amino acids

- **50.** Compound that will give positive Lassaigne's test for both nitrogen and halogen is
 - (1) N₂H₄.HCl
 - (2) CH₃NH₂. HCl
 - (3) NH₄Cl
 - (4) NH₂OH.HCl

Official Ans. by NTA (2)

Ans. (2)

Sol. CH_3NH_2 . $HC1 \xrightarrow{Na} NaCN$ and NaC1

NaCN gives +ve test for nitrogen and

NaCl gives +ve test for halogen

SECTION-B

51. Millimoles of calcium hydroxyide required to produce 100 mL of the aqueous solution of pH 12 is $x \times 10^{-1}$. The value of x is _____ (Nearest integer).

Assume complete dissociation.

Official Ans. by NTA (5)

Ans. (5)

Sol. \therefore pH = 12

- $: [H^+] = 10^{-12} \text{ M}$
- $: [OH^{-}] = 10^{-2} M$
- ∴ $[Ca(OH)_2] = 5 \times 10^{-3} M$

$$5 \times 10^{-3} = \frac{\text{milli moles of Ca(OH)}_2}{100 \,\text{mL}}$$

milli moles of $Ca(OH)_2 = 5 \times 10^{-1}$ Ans. = 5

- **52.** The number of molecules or ions from the following, which do not have odd number of electrons are ______.
 - (A) NO₂
 - (B) ICl₄
 - (C) BrF₃
 - (D) ClO₂
 - (E) NO_2^+
 - (F) NO

Official Ans. by NTA (3)

Ans. (3)

Sol. ICl₄, BrF₃ and NO₂ do not have odd number of e

53. Consider the following reaction approaching equilibrium at 27°C and 1 atm pressure

$$A + B \frac{K_f = 10^3}{K_r = 10^2} C + D$$

The standard Gibb's energy change $\left(\Delta_{r}G^{\circ}\right)$ at

27°C is (-) kJ mol⁻¹

(Nearest integer).

(Given : $R = 8.3 \text{ J K}^{-1} \text{ mol}^{-1}$ and $\ln 10 = 2.3$)

Official Ans. by NTA (6)

Ans. (6)

Sol. :: $\Delta G^{\circ} = -RT \ln K_{eq}$

and
$$K_{eq} = \frac{K_f}{K_b}$$

$$K_{\text{eq}} = \frac{10^3}{10^2} = 10$$

$$\Delta G = -RT \ln 10$$

$$\Rightarrow$$
 - (8.3 × 300 × 2.3) = - 5.7 kJ mole⁻¹ \approx 6 kJ mole⁻¹(nearest integer)

$$Ans = 6$$

54. Solid Lead nitrate is dissolved in 1 litre of water. The solution was found to boil at 100.15°C. When 0.2 mol of NaCl is added to the resulting solution, it was observed that the solution froze at -0.8° C. The solutibility product of PbCl₂ formed is _____ × 10⁻⁶ at 298 K. (Nearest integer)

Given : $K_b = 0.5 \text{ K kg mol}^{-1}$ and $K_f = 1.8 \text{ kg mol}^{-1}$. Assume molality to be equal to molarity in all cases.

Official Ans. by NTA (13)

Ans. (13)

Sol. Let a mole $Pb(NO_3)_2$ be added

$$Pb(NO_3)_2 \to Pb^{2+} + 2NO_3^-$$

$$\Delta T_b = 0.15 = 0.5 \, [3a] \Rightarrow a = 0.1$$

$$Pb_{(aq)}^{2+}$$
 + $2Cl_{(aq)}^{-} \rightarrow PbCl_2(s)$

$$t = 0$$

$$\mathbf{t} = \infty$$

$$(0.1 - x)$$

$$(0.2 - 2x)$$

In final solution

$$\Delta T_f = 0.8 = 1.8 \left[\frac{0.3 - 3x + 0.2 + 0.2}{1} \right]$$

$$\Rightarrow x = \frac{2.3}{27}$$

$$\Rightarrow K_{sp} = \left(0.1 - \frac{2.3}{27}\right) \left(0.2 - \frac{4.6}{27}\right)^2 = 13 \times 10^{-6}$$

55. Water decomposes at 2300 K

$$H_2O(g) \to H_2(g) + \frac{1}{2}O_2(g)$$

The percent of water decomposing at 2300 K and 1 bar is (Nearest integer).

Equilibrium constant for the reaction is 2×10^{-3} at 2300 K

Official Ans. by NTA (2)

Ans. (2)

Sol. $H_2O(g) \Longrightarrow H_2(g) + \frac{1}{2}O_2(g)$

$$P_0[1-\alpha]$$
 $P_0\alpha = \frac{P_0\alpha}{2}$ partial pr. at eq.

$$P_0 \left[1 + \frac{\alpha}{2} \right] = 1 \qquad \dots (i)$$

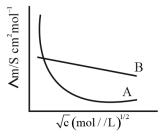
$$K_{p} = \frac{(P_{H_{2}})(P_{O_{2}})^{1/2}}{P_{H_{2}O}}$$

$$\frac{(P_0 \alpha) \left(\frac{P_0 \alpha}{2}\right)^{1/2}}{P_0 [1 - \alpha]} = 2 \times 10^{-3}$$

since α is negligible w.r.t 1 so $P_0 = 1$ and $1 - \alpha \approx 1$

$$\frac{\alpha\sqrt{\alpha}}{\sqrt{2}} = 2 \times 10^{-3}$$

$$\alpha^{3/2} = 2^{3/2} \times 10^{-3}$$


$$\alpha = 2^{3/2 \times 2/3} \times 10^{-3 \times 2/3}$$

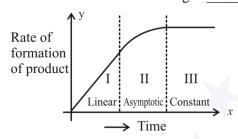
$$\alpha = 2 \times 10^{-2}$$

$$\% \alpha = 2\%$$

56. Following figure shows dependence of molar conductance of two electrolytes on concentration.

 Λ m is the limiting molar conductivity.

The number of <u>Incorrect</u> statement(s) from the following is _____


- (A) Λ m for electrolyte A is obtained by extrapolation
- (B) For electrolyte B, vx Λm vs \sqrt{c} graph is a straight line with intercept equal to Λm
- (C) At infinite dilution, the value of degree of dissociation approach zero for electrolyte B.
- (D) Λm for any electrolyte A or B can be calculated using λ^o for individual ions.

Official Ans. by NTA (2)

Ans. (2)

Sol. Statement (A) and Statement (C) are incorrect

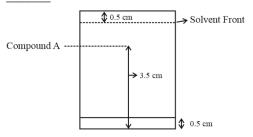
57. For certain chemical reaction $X \rightarrow Y$, the rate of formation of product is plotted against the time as shown in the figure. The number of <u>Correct</u> statement/s from the following is

- (A) Over all order of this reaction is one
- (B) Order of this reaction can't be determined
- (C) In region-I and III, the reaction is of first and zero order respectively
- (D) In region-II, the reaction is of first order
- (E) In region-II, the order of reaction is in the range of 0.1 to 0.9.

Official Ans. by NTA (2)

Ans. (1)

- **Sol.** Only option (B) is correct as order cannot be determined
- **58.** The sum of bridging carbonyls in $W(CO)_6$ and Mn_2 $(CO)_{10}$ is ______.


Official Ans. by NTA (0)

Ans. (0)

Sol.

 $[(CO)_5Mn - Mn(CO)_5]$

59. Following chromatogram was developed by adsorption of compound 'A' on a 6 cm TLC glass plate. Retardation factor of the compound 'A' is $\times 10^{-1}$

Official Ans. by NTA (6)

Ans. (6)

Sol. $R_f = \frac{Distance moved by the substance from base line}{Distance moved by the solvent from base line}$ 3.0 cm

$$= \frac{3.0 \text{ cm}}{5.0 \text{ cm}} = 0.6 \text{ or } 6 \times 10^{-1}$$

60. 17 mg of a hydrocarbon (M.F. C₁₀H₁₆) takes up 8.40 mL of the H₂ gas measured at 0°C and 760 mm of Hg. Ozonolysis of the same hydrocarbon yields

The number of double bond/s present in the hydrocarbon is

Official Ans. by NTA (3)

Ans. (3)

Sol. Moles of hydrocarbon =
$$\frac{17 \times 10^{-3}}{136} = 1.25 \times 10^{-4}$$

Mole of H₂ gas

$$\Rightarrow 1 \times \frac{8.40}{1000} = n \times 0.0821 \times 273$$

$$\Rightarrow$$
 n = 3.75 × 10⁻⁴

Hydrogen molecule used for 1 molecule of hydrocarbon is 3

$$=\frac{3.75\times10^{-4}}{1.25\times10^{-4}}=3$$