

FINAL JEE-MAIN EXAMINATION - JANUARY, 2023 (Held On Sunday 29th January, 2023) TIME: 9:00 AM to 12:00 NOON For two non-zero complex number z_1 and z_2 , if **SECTION-A** 63. The domain of $f(x) = \frac{\log_{(x+1)}(x-2)}{e^{2\log_e x} - (2x+3)}, x \in R$ is $\operatorname{Re}(z_1z_2) = 0$ and $\operatorname{Re}(z_1 + z_2) = 0$, then which of the 61. following are possible ? (A) $\text{Im}(z_1) > 0$ and $\text{Im}(z_2) > 0$ $(2)(2,\infty)-\{3\}$ (1) $\mathbb{R} - \{1-3\}$ (B) $Im(z_1) < 0$ and $Im(z_2) > 0$ (3) $(-1,\infty) - \{3\}$ (4) $\mathbb{R} - \{3\}$ (C) $Im(z_1) > 0$ and $Im(z_2) < 0$ Official Ans. by NTA (2) (D) $Im(z_1) < 0$ and $Im(z_2) < 0$ Ans. (2) Choose the correct answer from the options given **Sol.** $x-2 > 0 \Rightarrow x > 2$ below : $x + 1 > 0 \Longrightarrow x > -1$ (1) B and D (2) B and C $x + 1 \neq 1 \Longrightarrow x \neq 0$ and x > 0(3) A and B (4) A and C Denominator Official Ans. by NTA (2) $x^2 - 2x - 3 \neq 0$ Ans. (2) $(x-3)(x+1) \neq 0$ $x \neq -1, 3$ Sol. $z_1 = x_1 + iy_1$ So Ans $(2, \infty) - \{3\}$ Let $f: R \to R$ 62. be a function such that $z_2 = x_2 + iy_2$ $f(x) = \frac{x^2 + 2x + 1}{x^2 + 1}$. Then $\operatorname{Re}(z_1 z_2) = x_1 x_2 - y_1 y_2 = 0$ (1) f(x) is many-one in $(-\infty, -1)$ $\operatorname{Re}(z_1 + z_2) = x_1 + x_2 = 0$ (2) f(x) is many-one in $(1, \infty)$ (3) f(x) is one-one in $[1, \infty)$ but not in $(-\infty, \infty)$ $x_1 \& x_2$ are of opposite sign (4) f(x) is one-one in $(-\infty, \infty)$ Official Ans. by NTA (3) $y_1 \& y_2$ are of opposite sign Ans. (3) 2Let $\lambda \neq 0$ be a real number. Let α , β be the roots 64. Sol. of the equation $14x^2 - 31x + 3\lambda = 0$ and α, γ be the roots of the equation $35x^2 - 53x + 4\lambda = 0$. Then $\frac{3\alpha}{\beta}$ and $\frac{4\alpha}{\gamma}$ are the roots of the equation : (1) $7x^2 + 245x - 250 = 0$ (2) $7x^2 - 245x + 250 = 0$ $f(x) = \frac{(x+1)^2}{x^2+1} = 1 + \frac{2x}{x^2+1}$ $(3) 49x^2 - 245x + 250 = 0$ $f(x) = 1 + \frac{2}{x + \frac{1}{x}}$ $(4) 49x^2 + 245x + 250 = 0$ Official Ans. by NTA (3) Ans. (3)

Sol.	$14x^2 - 31x + 3\lambda = 0$
	$\alpha + \beta = \frac{31}{14}$ (1) and $\alpha \beta = \frac{3\lambda}{14}$ (2)
	$35x^2 - 53x + 4\lambda = 0$
	$\alpha + \gamma = \frac{53}{35}$ (3) and $\alpha \gamma = \frac{4\lambda}{35}$ (4)
	$\frac{(2)}{(4)} \Rightarrow \frac{\beta}{\gamma} = \frac{3 \times 35}{4 \times 14} = \frac{15}{8} \Rightarrow \beta = \frac{15}{8}\gamma$
	$(1)-(3) \Rightarrow \beta - \gamma = \frac{31}{14} - \frac{53}{35} = \frac{155 - 106}{70} = \frac{7}{10}$
	$\frac{15}{8}\gamma - \gamma = \frac{7}{10} \Longrightarrow \gamma = \frac{4}{5}$
	$\Rightarrow \beta = \frac{15}{8} \times \frac{4}{5} = \frac{3}{2}$
	$\Rightarrow \alpha = \frac{31}{14} - \beta = \frac{31}{14} - \frac{3}{2} = \frac{5}{7}$
	$\Rightarrow \lambda = \frac{14}{3} \alpha \beta = \frac{14}{3} \times \frac{5}{7} \times \frac{3}{2} = 5$
	so, sum of roots $\frac{3\alpha}{\beta} + \frac{4\alpha}{\gamma} = \left(\frac{3\alpha\gamma + 4\alpha\beta}{\beta\gamma}\right)$
	$=\frac{\left(3\times\frac{4\lambda}{35}+4\times\frac{3\lambda}{14}\right)}{\beta\gamma}=\frac{12\lambda(14+35)}{14\times35\beta\gamma}$
	$=\frac{49\times12\times5}{490\times\frac{3}{2}\times\frac{4}{5}}=5$

Product of roots

$$=\frac{3\alpha}{\beta}\times\frac{4\alpha}{\gamma}=\frac{12\alpha^2}{\beta\gamma}=\frac{12\times\frac{25}{49}}{\frac{3}{2}\times\frac{4}{5}}=\frac{250}{49}$$

So, required equation is $x^2 - 5x + \frac{250}{49} = 0$

$$\Rightarrow 49x^2 - 245x + 250 = 0$$

65. Consider the following system of questions

$$\alpha x + 2y + z = 1$$

 $2\alpha x + 3y + z = 1$

 $3x + \alpha y + 2z = \beta$

For some $\alpha, \beta \in \mathbb{R}$. Then which of the following

- is NOT correct.
- (1) It has no solution if $\alpha = -1$ and $\beta \neq 2$
- (2) It has no solution for $\alpha = -1$ and for all $\beta \in \mathbb{R}$
- (3) It has no solution for $\alpha = 3$ and for all $\beta \neq 2$
- (4) It has a solution for all $\alpha \neq -1$ and $\beta = 2$

Official Ans. by NTA (2) Ans. (2) Sol. $D = \begin{vmatrix} \alpha & 2 & 1 \\ 2\alpha & 3 & 1 \\ 3 & \alpha & 2 \end{vmatrix} = 0 \Rightarrow \alpha = -1, 3$ $D_x = \begin{vmatrix} 2 & 1 & 1 \\ 3 & 1 & 1 \\ \alpha & 2 & \beta \end{vmatrix} = 0 \Rightarrow \beta = 2$ $D_y = \begin{vmatrix} \alpha & 1 & 1 \\ 2\alpha & 1 & 1 \\ 3 & 2 & \beta \end{vmatrix} = 0$ $D_z = \begin{vmatrix} \alpha & 2 & 1 \\ 2\alpha & 3 & 1 \\ 3 & \alpha & \beta \end{vmatrix} = 0$ $\beta = 2, \alpha = -1$ $\alpha = -1, \beta = 2$ Infinite solution

- 66. Let α and β be real numbers. Consider a 3 × 3 matrix A such that $A^2 = 3A + \alpha I$. If $A^4 = 21A + \beta I$, then
 - (1) $\alpha = 1$ (2) $\alpha = 4$

(3)
$$\beta = 8$$
 (4) $\beta = -8$

Official Ans. by NTA (4) Ans. (4)

Sol.
$$A^{2} = 3A + \alpha I$$
$$A^{3} = 3A^{2} + \alpha A$$
$$A^{3} = 3(3A + \alpha I) + \alpha A$$
$$A^{3} = 9A + \alpha A + 3\alpha I$$
$$A^{4} = (9 + \alpha)A^{2} + 3\alpha A$$
$$= (9 + \alpha)(3A + \alpha I) + 3\alpha A$$
$$= A(27 + 6\alpha) + \alpha(9 + \alpha)$$
$$\Rightarrow 27 + 6\alpha = 21 \Rightarrow \alpha = -1$$
$$\Rightarrow \beta = \alpha(9 + \alpha) = -8$$

67. Let x = 2 be a root of the equation $x^2 + px + q = 0$ $\int (1 - \cos(x^2 - 4px + q^2 + 8q + 16))$

and
$$f(x) = \begin{cases} \frac{1-\cos(x^2-4px+q^2+6q+10)}{(x-2p)^4}, & x \neq 2p \\ 0 & , & x = 2p \end{cases}$$

Then
$$\lim_{x\to 2p^+} [f(x)]$$

where [.] denotes greatest integer function, is (1) 2 (2) 1 (3) 0 (4) -1

Official Ans. by NTA (3)

Ans. (3)

Sol.

$$\lim_{x \to 2p^{+}} \left(\frac{1 - \cos\left(x^{2} - 4px + q^{2} + 8q + 16\right)}{\left(x^{2} - 4px + q^{2} + 8q + 16\right)^{2}} \right) \left(\frac{\left(x^{2} - 4px + q^{2} + 8q + 16\right)^{2}}{\left(x - 2p\right)^{2}} \right)$$
$$\lim_{h \to 0} \frac{1}{2} \left(\frac{\left(2p + h\right)^{2} - 4p\left(2p + h\right) + q^{2} + 82 + 16}{h^{2}} \right)^{2} = \frac{1}{2}$$

Using L'Hospital's

$$\lim_{x\to 2p^+} [f(x)] = 0$$

68.

Let
$$f(x) = x + \frac{a}{\pi^2 - 4} \sin x + \frac{b}{\pi^2 - 4} \cos x$$
,
 $x \in \mathbb{R}$ be a function which satisfies
 $f(x) = x + \int_{0}^{\pi/2} \sin(x + y) f(y) dy$. Then (a + b)

is equal to

(1)
$$-\pi(\pi+2)$$
 (2) $-2\pi(\pi+2)$
(3) $-2\pi(\pi-2)$ (4) $-\pi(\pi-2)$

Official Ans. by NTA (2)

Ans. (2)

Sol.
$$f(x) = x + \int_{0}^{\pi/2} (\sin x \cos y + \cos x \sin y) f(y) dy$$

 $f(x) = x + \int_{0}^{\pi/2} ((\cos y f(y) dy) \sin x + (\sin y f(y) dy) \cos x) \dots (1)$

On comparing with

$$f(x) = x + \frac{a}{\pi^2 - 4} \sin x + \frac{b}{\pi^2 - 4} \cos x, \ x \in \mathbb{R} \text{ then}$$
$$\Rightarrow \frac{a}{\pi^2 - 4} = \int_0^{\pi/2} \cos y f(y) dy \qquad \dots (2)$$
$$\Rightarrow \frac{b}{\pi^2 - 4} = \int_0^{\pi/2} \sin y f(y) dy \qquad \dots (3)$$

Add (2) and (3)

$$\frac{a+b}{\pi^2 - 4} = \int_0^{\pi/2} (\sin y + \cos y) f(y) dy \dots (4)$$
$$\frac{a+b}{2} = \int_0^{\pi/2} (\sin y + \cos y) f\left(\frac{\pi}{2} - y\right) dy \dots (5)$$

Add (4) and (5)

$$\frac{2(a+b)}{\pi^2 - 4} = \int_0^{\pi/2} (\sin y + \cos y) \left(\frac{\pi}{2} + \frac{(a+b)}{\pi^2 - 4} (\sin y + \cos y)\right) dy$$

$$= \pi + \frac{a+b}{\pi^2 - 4} \left(\frac{\pi}{2} + 1\right)$$

$$(a+b) = -2\pi (\pi + 2)$$

69. Let

r_____

and
$$\mathbf{B} = \left\{ (\mathbf{x}, \mathbf{y}) \in \mathbb{R} \times \mathbb{R} : 0 \le \mathbf{y} \le \min\left\{ 2\mathbf{x}, \sqrt{4 - (\mathbf{x} - 1)^2} \right\} \right\}$$

Then the ratio of the area of A to the area of B is

(1)
$$\frac{\pi - 1}{\pi + 1}$$
 (2) $\frac{\pi}{\pi - 1}$

(3)
$$\frac{\pi}{\pi+1}$$
 (4) $\frac{\pi+1}{\pi-1}$

Official Ans. by NTA (1)

Ans. (1)

Sol.
$$y^2 + (x-1)^2 = 4$$

2x

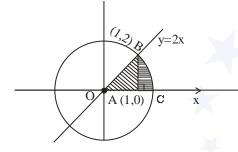
 \overrightarrow{x}

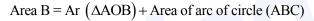
shaded portion = circular (OABC)

 $-Ar(\Delta OAB)$

$$=\frac{\pi(4)}{4}-\frac{1}{2}(2)(1)$$

$$A = (\pi - 1)$$





$$= \frac{1}{2}(1)(2) + \frac{\pi(2)^2}{4} = \pi + 1$$
$$\frac{A}{B} = \frac{\pi - 1}{\pi + 1}$$

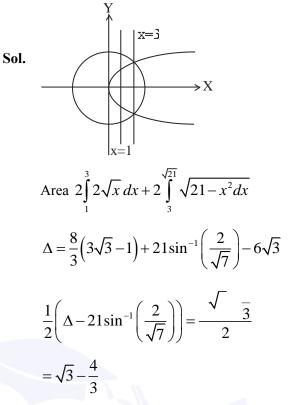
70. Let Δ be the area of the region

$$\{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 21, y^2 \le 4x, x \ge 1\}.$$
 Then

$$\frac{1}{2} \left(\Delta - 21 \sin^{-1} \frac{2}{\sqrt{7}} \right) \text{ is equal to}$$
(1) $2\sqrt{3} - \frac{1}{3}$ (2) $\sqrt{3} - \frac{2}{3}$
(3) $2\sqrt{3} - \frac{2}{3}$ (4) $\sqrt{3} - \frac{4}{3}$

Official Ans. by NTA (4)

Ans. (4)



71. A light ray emits from the origin making an angle 30° with the positive x-axis. After getting reflected by the line x + y = 1, if this ray intersects x-axis at Q, then the abscissa of Q is

(1)
$$\frac{2}{\left(\sqrt{3}-1\right)}$$
 (2) $\frac{2}{3+\sqrt{3}}$

(3)
$$\frac{2}{3-\sqrt{3}}$$
 (4) $\frac{\sqrt{3}}{2(\sqrt{3}+1)}$

Official Ans. by NTA (2)

Ans. (2)

Sol. Slope of reflected ray = $\tan 60^\circ = \sqrt{3}$

Line
$$y = \frac{x}{\sqrt{3}}$$
 intersect $y + x = 1$ at $\left(\frac{\sqrt{3}}{\sqrt{3}+1}, \frac{1}{\sqrt{3}+1}\right)$

Equation of reflected ray is

$$y - \frac{1}{\sqrt{3} + 1} = \sqrt{3} \left(x - \frac{\sqrt{3}}{\sqrt{3} + 1} \right)$$

Put
$$y = 0 \Rightarrow x = \frac{2}{3 + \sqrt{3}}$$

72. Let B and C be the two points on the line y + x = 0such that B and C are symmetric with respect to the origin. Suppose A is a point on y - 2x = 2 such that $\triangle ABC$ is an equilateral triangle. Then, the area of the $\triangle ABC$ is

(1)
$$3\sqrt{3}$$
 (2) $2\sqrt{3}$
(3) $\frac{8}{\sqrt{3}}$ (4) $\frac{10}{\sqrt{3}}$

Official Ans. by NTA (3)

Sol.
Ans. (3)

$$(-t,t) \xrightarrow{B} y = x$$

 $y = x$
 $y = x$
 $(-t,t) \xrightarrow{C} (t, -t)$

- At A x = y
- Y 2x = 2
- (-2, -2)

Height from line x + y = 0

 $\sqrt{}$

Area of
$$\Delta = \frac{\sqrt{3}}{4} \frac{h^2}{\sin^2 60} = \frac{8}{\sqrt{3}}$$

73. Let the tangents at the points A (4, -11) and B(8, -5) on the circle $x^2 + y^2 - 3x + 10y - 15 = 0$, intersect at the point C. Then the radius of the circle, whose centre is C and the line joining A and B is its tangent, is equal to

(1)
$$\frac{3\sqrt{3}}{4}$$
 (2) $2\sqrt{13}$

(3)
$$\sqrt{13}$$
 (4) $\frac{2\sqrt{13}}{3}$

Sol. Equation of tangent at A (4, -11) on circle is

$$\Rightarrow 4x - 11y - 3\left(\frac{x+4}{2}\right) + 10\left(\frac{y-11}{2}\right) - 15 = 0$$
$$\Rightarrow 5x - 12y - 152 = 0 \dots (1)$$

Equation of tangent at B (8, -5) on circle is

$$\Rightarrow 8x - 5y - 3\left(\frac{x+8}{2}\right) + 10\left(\frac{y-5}{2}\right) - 15 = 0$$
$$\Rightarrow 13 x - 104 = 0 \Rightarrow x = 8$$

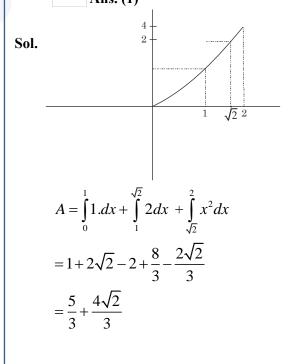
put in (1)
$$\Rightarrow$$
 y = $\frac{28}{2}$

$$\mathbf{r} = \left| \frac{3.8 + \frac{2.28}{3} - 34}{\sqrt{13}} \right| = \frac{2\sqrt{13}}{3}$$

74. Let [x] denote the greatest integer $\leq x$. Consider the function $f(x) = \max \{x^2, 1+[x]\}$. Then the value of the integral $\int_{1}^{2} f(x) dx$ is :

(1)
$$\frac{5+4\sqrt{2}}{3}$$
 (2) $\frac{8+4\sqrt{2}}{3}$
(3) $\frac{1+5\sqrt{2}}{3}$ (4) $\frac{4+5\sqrt{2}}{3}$

Official Ans. by NTA (1) Ans. (1)



75.	If the vectors $\vec{a} = \lambda \hat{i} + \mu$	$\hat{j} + 4\hat{k}, \ \vec{b} = 2\hat{k}$	$\hat{j} + 4\hat{j} - 2\hat{k}$			
	and $\vec{c} = 2\hat{i} + 3\hat{j} + \hat{k}$ a	re coplanar	and the			
	projection of \vec{a} on the vector \vec{b} is $\sqrt{54}$ units, then					
	the sum of all possible values of $\lambda + \mu$ is equal to					
	(1) 0	(2) 6				
	(3) 24	(4) 18				
	Official Ans. by NTA (3)					
	Ans. (3)					
	λ μ 4					
Sol.	$\begin{vmatrix} \lambda & \mu & 4 \\ -2 & 4 & -2 \\ 2 & 3 & 1 \end{vmatrix} = 0$					
	2 3 1					
	$\lambda(10) = \mu(2) + 4(-14) = 0$)				
	$10\lambda - 2\mu = 56$					
	$5\lambda - \mu = 28$		(1)			
	$\frac{\vec{a} \cdot \vec{b}}{\left \vec{b} \right } = \sqrt{54}$					
	$\frac{-2\lambda+4\mu-8}{\sqrt{24}} = \sqrt{54}$					
	$-2\lambda+4\mu-8=\sqrt{54\times24}$		(2)			
	By solving equation (1) &	(2)				
	$\Rightarrow \lambda + \mu = 24$					
-		c 11.				

76. Fifteen football players of a club-team are given 15 T-shirts with their names written on the backside. If the players pick up the T-shirts randomly, then the probability that at least 3 players pick the correct T-shirt is

(1)
$$\frac{5}{24}$$
 (2) $\frac{2}{15}$
(3) $\frac{1}{6}$ (4) $\frac{5}{36}$
Official Ans. by NTA (3)

Ans. (Bonus)

Sol.

Required probability =
$$1 - \frac{D_{(15)} + {}^{15} C_1 \cdot D_{(14)} + {}^{15} C_2 D_{(13)}}{15!}$$

Taking D₍₁₅₎ as $\frac{15!}{e}$
D₍₁₄₎ as $\frac{14!}{e}$
D₍₁₃₎ as $\frac{13!}{e}$

We get,
$$1 - \left(\frac{15!}{e} + 15.\frac{14!}{e} + \frac{15 \times 14}{2} \times \frac{13!}{e}\right)$$

 $= 1 - \left(\frac{1}{e} + \frac{1}{e} + \frac{1}{2e}\right) = 1 - \frac{5}{2e} \approx .08$
77. Let $f(\theta) = 3\left(\sin^4\left(\frac{3\pi}{2} - \theta\right) + \sin^4(3\pi + \theta)\right) - 2(1 - \sin^2 2\theta)$ and
 $S = \left\{\theta \in [0, \pi]: f'(\theta) = -\frac{\sqrt{3}}{2}\right\}$. If $4\beta = \sum_{\theta \in S} \theta$,
then $f(\beta)$ is equal to
(1) $\frac{11}{8}$ (2) $\frac{5}{4}$
(3) $\frac{9}{8}$ (4) $\frac{3}{2}$
Official Ans. by NTA (2)
Ans. (2)
Sol.
 $f(\theta) = 3\left(\sin^4\left(\frac{3\pi}{2} - \theta\right) + \sin^4(3x + \theta)\right) - 2(1 - \sin^2 2\theta)$
 $\left\{\theta \in [0 - \frac{\sqrt{3}}{2}\right\}$
 $\Rightarrow f(\theta) = 3(\cos^4 \theta + \sin^4 \theta) - 2\cos^2 2\theta$
 $\Rightarrow f(\theta) = 3\left(1 - \frac{1}{2}\sin^2 2\theta\right) - 2\cos^2 2\theta$
 $\Rightarrow f(\theta) = 3 - \frac{3}{2}\sin^2 2\theta - 2\cos^2 \theta$
 $= \frac{3}{2} - \frac{1}{2}\cos^2 2\theta = \frac{3}{2} - \frac{1}{2}\left(\frac{1 + \cos 4\theta}{2}\right)$
 $f(\theta) = \frac{5}{4} - \frac{\cos 4\theta}{4}$

$$f'(\theta) = \sin 4\theta$$

$$\Rightarrow f'(\theta) = \sin 4\theta = -\frac{\sqrt{3}}{2}$$

$$\Rightarrow 4\theta = n\pi + (-1)^n \frac{\pi}{3}$$
$$\Rightarrow \theta = \frac{n\pi}{4} + (-1)^n \frac{\pi}{12}$$

$$\Rightarrow \theta = \frac{\pi}{12}, \left(\frac{\pi}{4} - \frac{\pi}{12}\right), \left(\frac{\pi}{2} + \frac{\pi}{12}\right), \left(\frac{3\pi}{4} - \frac{\pi}{12}\right)$$
$$\Rightarrow 4\beta = \frac{\pi}{4} + \frac{\pi}{2} + \frac{3\pi}{4} = \frac{3\pi}{2}$$
$$\Rightarrow \beta = \frac{3\pi}{8} \Rightarrow f(\beta) = \frac{5}{4} - \frac{\cos\frac{3\pi}{2}}{4} = \frac{5}{4}$$

78. If p, q and r are three propositions, then which of the following combination of truth values of p, q and r makes the logical expression $\{(p \lor q) \land ((\sim p) \lor r)\} \rightarrow ((\sim q) \lor r)$ false ? (1) p = T, q = F, r = T (2) p = T, q = T, r = F (3) p = F, q = T, r = F (4) p = T, q = F, r = F Official Ans. by NTA (3) Ans. (3)

Sol.

	р	q	r	$(p \lor q) \land ((\sim p) \lor r)$	$\sim q \lor r$
(1)	Т	F	Т	Т	Т
(2)	Т	Т	F	F	F
(3)	F	Т	F	Т	F
(4)	Т	F	F	F	Т
Option (3) $(n \lor q) \land (\sim q \lor r) \rightarrow (\sim n \lor r)$ will be					

Option (3) $(p \lor q) \land (\sim q \lor r) \rightarrow (\sim p \lor r)$ will be False.

79. There rotten apples are mixed accidently with seven good apples and four apples are drawn one by one without replacement. Let the random variable X denote the number of rotten apples. If μ and σ^2 represent mean and variance of X, respectively, then 10 ($\mu^2 + \sigma^2$) is equal to

(1) 20

(2) 250

(3) 25

(4) 30

Official Ans. by NTA (1)

Ans. (1)

Sol.

Х	P(x)	XP(X)	X ² P(X)		
0	1/6	0	0		
1	1/2	1/2	1/2		
2	3/10	6/10	12/10		
3	1/30	1/10	9/30		
$\sum p(z) = \frac{6}{2}$					

$$\sum x P(x) = \frac{6}{2} = \mu$$

$$\sigma^2 = \sum x^2 P(x) - \mu^2$$

$$\sigma^2 + \mu^2 = 0 + \frac{1}{2} + \frac{12}{10} + \frac{9}{30} = 2$$

$$10(\sigma^2 + \mu^2) = 20$$
 Ans.

80. Let y = f(x) be the solution of the differential equation $y(x + 1) dx - x^2 dy = 0$, y(1) = e. Then $\lim_{x \to 0^+} f(x)$ is equal to

(1) 0 (2)
$$\frac{1}{e}$$

(3)
$$e^2$$

Official Ans. by NTA (1) Ans. (1) Sol. $\frac{x+1}{x^2} dx = \frac{dy}{y}$ $\ln x - \frac{1}{x} = \ln y + c$ (1, e) c = -2 $\ln x - \frac{1}{x} = \ln y - 2$ $y = e^{\ln x} - \frac{1}{x} + 2$ $\lim_{x \to 0^+} e^{\ln x - 1} - \frac{1}{x} + 2$ $= e^{-\infty}$ = 0

SECTION-B

81. Let the co-ordinates of one vertex of $\triangle ABC$ be $A(0, 2, \alpha)$ and the other two vertices lie on the line $\frac{x+\alpha}{5} = \frac{y-1}{2} = \frac{z+4}{3}$. For $\alpha \in \mathbb{Z}$, if the area of $\triangle ABC$ is 21 sq. units and the line segment BC has length $2\sqrt{21}$ units, then α^2 is equal to _____.

Official Ans. by NTA (9)

Sol. A.
$$(O_1 2, \alpha)$$

$$(-\alpha_{1}1,-4) \qquad B \qquad C \quad (5i+2j+3k)$$

$$\left|\frac{1}{2} \cdot 2\sqrt{21} \cdot \begin{vmatrix} i & j & k \\ \alpha & 1 & \alpha+4 \\ 5 & 2 & 3 \end{vmatrix} \left|\frac{1}{\sqrt{25+4+9}}\right| = 21\sqrt{21}$$

$$\sqrt{(2\alpha+5)^{2} + (2\alpha+20)^{2} + (2\alpha-5)^{2}} = \sqrt{21}\sqrt{38}$$

$$\Rightarrow 12\alpha^{2} + 80\alpha + 450 = 798$$

$$\Rightarrow 12\alpha^{2} + 80\alpha - 348 = 0$$

$$\Rightarrow \alpha = 3 \Rightarrow \alpha^{2} = 9$$

82. Let the equation of the plane P containing the line $x + 10 = \frac{8 - y}{2} = z$ be ax + by + 3z = 2(a+b) and the distance of the plane P from the point (1, 27, 7) be c. Then $a^2 + b^2 + c^2$ is equal to ____.

Official Ans. by NTA (355)

Ans. (355)

Sol. The line
$$\frac{x+10}{1} = \frac{y-8}{-2} = \frac{z}{1}$$
 have a point (-10, 8, 0)
with d. r. (1, -2, 1)
 \therefore the plane ax + by + 3z = 2 (a + b)
 \Rightarrow b = 2a
& dot product of d.r.'s is zero
 \therefore a - 2b + 3 = 0

 $\therefore a = 1 \& b = 2$ Distance from (1, 27, 7) is $c = \frac{1+54+21-6}{\sqrt{14}} = \frac{70}{\sqrt{14}} = 5\sqrt{14}$ $\therefore a^2 + b^2 + c^2 = 1 + 4 + 350$ = 355 Suppose f is a function satisfying f(x + y) = f(x) + f(y)83. $x, y \in \mathbb{N}$ and $f(1) = \frac{1}{5}$. If for all $\sum_{n=1}^{m} \frac{f(n)}{n(n+1)(n+2)} = \frac{1}{12}$, then m is equal to_____. **Official Ans. by NTA (10)** Ans. (10) **Sol.** :: $f(1) = \frac{1}{5}$:: $f(2) = f(1) + f(1) = \frac{2}{5}$ $f(2) = \frac{2}{5} f(3) = f(2) + f(1) = \frac{3}{5}$ $f(3) = \frac{3}{5}$ $_{n=1}$ $\overline{n(n+1)(n+2)}$ $\overline{5}_{n-1}(\overline{n+1},\overline{n+2})$ $=\frac{1}{5}\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\ldots+\frac{1}{m+1}-\frac{1}{m+2}\right)$ $=\frac{1}{5}\left(\frac{1}{2}-\frac{1}{m+2}\right)=\frac{m}{10(m+2)}=\frac{1}{12}$ $\therefore m = 10$

84. Let a_1, a_2, a_3, \dots be a GP of increasing positive numbers. If the product of fourth and sixth terms is 9 and the sum of fifth and seventh terms is 24, then $a_1a_9 + a_2a_4a_9 + a_5 + a_7$ is equal to

Official Ans. by NTA (60)

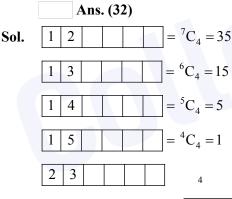
Ans. (60)

Sol.
$$a_4 \cdot a_6 = 9 \Rightarrow (a_5)^2 = 9 \Rightarrow a_5 = 3$$

& $a_5 + a_7 = 24 \Rightarrow a_5 + a_5 r^2 = 24 \Rightarrow (1 + r^2) = 8 \Rightarrow r = \sqrt{7}$
 $\Rightarrow a = \frac{3}{49}$
 $\Rightarrow a_1 a_9 + a_2 a_4 a_9 + a_5 + a_7 = 9 + 27 + 3 + 21 = 60$

- Let $\vec{a} = \vec{b}$ 85. ċ non-zero non-coplanar vectors. Let the position vectors of four points A, B, C and D be $\vec{a} - \vec{b} + \vec{c}$, $\lambda \vec{a} - 3\vec{b} + 4\vec{c}$, $-\vec{a}+2\vec{b}-3\vec{c}$ and $2\vec{a}-4\vec{b}+6\vec{c}$ respectively. If \overrightarrow{AB} , AC and \overrightarrow{AD} are coplanar, then λ is : Official Ans. by NTA (2) Ans. (2) $\overline{AB} = (\lambda - 1)\overline{a} - 2\overline{b} + 3\overline{c}$ Sol. $\overline{AC} = 2\overline{a} + 3\overline{b} - 4\overline{c}$ $\overline{AD} = \overline{a} - 3\overline{b} + 5\overline{c}$ $\lambda - 1 - 2 - 3$ $\begin{vmatrix} -2 & 3 & -4 \\ 1 & -3 & 5 \end{vmatrix} = 0$ $\Rightarrow (\lambda - 1)(15 - 12) + 2(-10 + 4) + 3(6 - 3) = 0$ $\Rightarrow (\lambda - 1) = 1 \Rightarrow \lambda = 2$
- 86. If all the six digit numbers $x_1 x_2 x_3 x_4 x_5 x_6$ with $0 < x_1 < x_2 < x_3 < x_4 < x_5 < x_6$ are arranged in the increasing order, then the sum of the digits in the 72th number is _____.

Official Ans. by NTA (32)



71 words

$$245678 \rightarrow 72^{\text{th}} \text{ word}$$

 $2+4+5+6+7+8=32$

87. Let $f : \mathbb{R} \to \mathbb{R}$ be a differentiable function that satisfies the relation f(x + y) = f(x) + f(y) - 1, $\forall x$, $y \in \mathbb{R}$. If f'(0) = 2, then |f(-2)| is equal to _____.

Official Ans. by NTA (3)

Ans. (3)

Sol.
$$f(x + y) = f(x) + f(y) - 1$$

 $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$
 $f'(x) = \lim_{h \to 0} \frac{f(h) - f(0)}{h} = f'(0) = 2$
 $f'(x) = 2 \Longrightarrow dy = 2dx$
 $y = 2x + C$
 $x = 0, y = 1, c = 1$
 $y = 2x + 1$
 $|f(-2)| = |-4+1| = |-3| = 3$

- **88.** If the co-efficient of x^9 in $\left(\alpha x^3 + \frac{1}{\beta x}\right)^{11}$ and the
 - co-efficient of x^{-9} in $\left(\alpha x \frac{1}{\beta x^3}\right)^{11}$ are equal, then

 $(\alpha\beta)^2$ is equal to _____.

Official Ans. by NTA (1)

Ans. (1)

Sol. Coefficient of x⁹ in
$$\left(\alpha x^3 + \frac{1}{\beta x}\right) = {}^{11}C_6 \cdot \frac{\alpha^5}{\beta^6}$$

: Both are equal

$$\therefore \frac{11}{C_6} \cdot \frac{\alpha^5}{\beta^6} = -\frac{11}{C_5} \cdot \frac{\alpha^6}{\beta^5}$$
$$\Rightarrow \frac{1}{\beta} = -\alpha$$
$$\Rightarrow \alpha\beta = -1$$
$$\Rightarrow (\alpha\beta)^2 = 1$$

89. Let the coefficients of three consecutive terms in the binomial expansion of (1 + 2x)ⁿ be in the ratio 2 : 5 : 8. Then the coefficient of the term, which is in the middle of these three terms, is _____.

Official Ans. by NTA (1120)

Ans. (1120)

Sol.
$$t_{r+1} = {}^{n}C_{r}(2x)^{r}$$

$$\Rightarrow \frac{{}^{n}C_{r-1}(2)^{r-1}}{{}^{n}C_{r}(2)^{r}} = \frac{2}{5}$$

$$\Rightarrow \frac{\overline{r}}{\frac{r+1}{r(n-r)!}} = \frac{2}{5}$$

$$\Rightarrow \frac{r}{n-r+1} = \frac{4}{5} \Rightarrow 5r = 4n - 4r + 4$$

$$\Rightarrow 9r = 4(n+1) \qquad \dots (1)$$

$$\Rightarrow \frac{{}^{n}C_{r}(2)^{r}}{{}^{n}C_{r+1}(2)^{r+1}} = \frac{5}{8}$$

$$\Rightarrow \frac{\frac{n!}{r!(n-r)!}}{\frac{n!}{(r+1)!(n-r-1)!}} = \frac{5}{4} \Rightarrow \frac{r+1}{n-r} = \frac{5}{4}$$

$$\Rightarrow 4r + 4 = 5n - 5r \Rightarrow 5n - 4 = 9r \dots (2)$$
From (1) and (2)
$$\Rightarrow 4n + 4 = 5n - 4 \Rightarrow n = 8$$

$$(1) \Rightarrow r = 4$$

so, coefficient of middle term is

$${}^{8}C_{4}2^{4} = 16 \times \frac{8 \times 7 \times 6 \times 5}{4 \times 3 \times 2 \times 1} = 16 \times 70 = 1120$$

90. Five digit numbers are formed using the digits 1, 2, 3, 5, 7 with repetitions and are written in descending order with serial numbers. For example, the number 77777 has serial number 1. Then the serial number of 35337 is _____.

Official Ans. by NTA (1436)

Ans. (1436)

Sol. No of 5 digit numbers starting with digit 1 $= 5 \times 5 \times 5 \times 5 = 625$ No of 5 digit numbers starting with digit 2 $= 5 \times 5 \times 5 \times 5 = 625$ No of 5 digit numbers starting with 31 $= 5 \times 5 \times 5 = 125$ No of 5 digit numbers starting with 32 $= 5 \times 5 \times 5 = 125$ No of 5 digit numbers starting with 33 $= 5 \times 5 \times 5 = 125$ No of 5 digit numbers starting with 351 $= 5 \times 5 = 25$ No of 5 digit numbers starting with 352 $= 5 \times 5 = 25$ No of 5 digit numbers starting with 3531 = 5 No of 5 digit numbers starting with 3532 = 5 Before 35337 will be 4 numbers, So rank of 35337 will be 1690

> So, in descending order serial number will be 3125 - 1690 + 1 = 1436