

FINAL JEE-MAIN EXAMINATION - JANUARY, 2023

(Held On Sunday 29th January, 2023)

TIME: 3:00 PM to 6:00 PM

SECTION-A

31. Given below are two statements:

Statement I: The decrease in first ionization enthalpy from B to Al is much larger than that from Al to Ga.

Statement II: The d orbitals in Ga are completely filled.

In the light of the above statements, choose the most appropriate answer from the options given below

- (1) Statement I is incorrect but statement II is correct.
- (2) Both the statements I and II are correct
- (3) Statement I is correct but statement II is incorrect
- (4) Both the statements I and II are incorrect

Official Ans. by NTA (2)

Ans. (1)

Sol. The first ionization energies (as in NCERT) are as follows:

B: 801 kJ/mol Al: 577 kJ/mol Ga: 579 kJ/mol

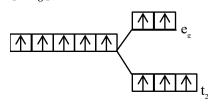
 $Ga: [Ar] 3d^{10} 4s^2 4p^1$

32. Correct order of spin only magnetic moment of the following complex ions is:

(Given At. No. Fe: 26, Co:27)

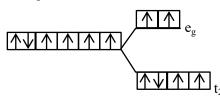
(1)
$$[FeF_6]^{3-} > [CoF_6]^{3-} > [Co(C_2O_4)_3]^{3-}$$

(2)
$$[Co(C_2O_4)_3]^{3-} > [CoF_6]^{3-} > [FeF_6]^{3-}$$

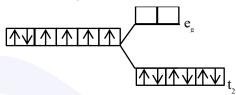

(3)
$$[FeF_6]^{3-} > [Co(C_2O_4)_3]^{3-} > [CoF_6]^{3-}$$

(4)
$$[CoF_6]^{3-} > [FeF_6]^{3-} > [Co(C_2O_4)_3]^{3-}$$

Official Ans. by NTA (1)


Ans. (1)

Sol. $[FeF_6]^{3-}$: $Fe^{3+} = 3d^5 \Delta_0 < P$


Number of unpaired $e^- = 5$: $\mu = \sqrt{35}$ BM

$$[\text{CoF}_6]^{3-}$$
: $\text{Co}^{3+} = 3\text{d}^6 \ (\Delta_0 < P)$

Number of unpaired $e^- = 4$: $\mu = \sqrt{24}$ BM

$$[Co(C_2O_4)_3]^{3-}$$
: $Co^{3+} = 3d^6 (\Delta_0 > P)$

Number of unpaired $e^- = 0$: $\mu = 0$ BM

33. Match List-I and List-II.

1.10.011 2.00 1 0.10 2.00 1.			
List-I	List-II		
A. Osmosis	I. Solvent molecules pass		
	through semi permeable		
	membrane towards solvent		
	side.		
B. Reverse osmosis	II. Movement of charged		
	colloidal particles under the		
	influence of applied electric		
	potential towards oppositely		
	charged electrodes.		
C. Electro osmosis	III. Solvent molecules pass		
	through semi permeable		
	membrane towards solution		
	side.		
D. Electrophoresis	IV. Dispersion medium		
	moves in an electric field.		
D. Electrophoresis	IV. Dispersion medium		

Choose the correct answer from the options given below:

- (1) A-I, B-III, C-IV, D-II
- (2) A-III, B-I, C-IV, D-II
- (3) A-III, B-I, C-II, D-IV
- (4) A-I, B-III, C-II, D-IV

Official Ans. by NTA (2) Ans. (2)

Sol. A. Osmosis III
B. Reverse osmosis I
C. Electro osmosis IV
D. Electrophoresis II

- **34.** The set of correct statements is:
 - (i) Manganese exhibits +7 oxidation state in its oxide.
 - (ii) Ruthenium and Osmium exhibit +8 oxidation in their oxides.
 - (iii) Sc shows +4 oxidation state which is oxidizing in nature.
 - (iv) Cr shows oxidising nature in +6 oxidation state.
 - (1) (ii) and (iii)
- (2) (i), (ii) and (iv)
- (3) (i) and (iii)
- (4) (ii), (iii) and (iv)

Official Ans. by NTA (2)

Ans. (2)

Sol. (i), (ii) and (iv) correct.

Manganese exhibits +7 oxidation state in its oxide. (Mn₂O₂)

Ru & Os from RuO₄ & OsO₄ oxide in +8 oxidation state

Cr in +6 oxidation act is oxidizing.

Sc does not show +4 oxidation state.

35. Match List-I and List-II.

List-I	List-II
A. Elastomeric	I. Urea formaldehyde
polymer	resin
B. Fibre polymer	II. Polystyrene
C. Thermosetting	III. Polyester
polymer	
D. Thermoplastic	IV. Neoprene
polymer	

Choose the correct answer from the options given below:

- (1) A-II, B-III, C-I, D-IV
- (2) A-II, B-I, C-IV, D-III
- (3) A-IV, B-III, C-I, D-II
- (4) A-IV, B-I, C-III, D-II

Official Ans. by NTA (3)

Ans. (3)

Sol. Neoprene: Elastomer

Polyester: Fibre

Polystyrene: Thermoplastic

Urea-Formaldhyde Resin: Thermosetting polymer

- **36.** An indicator 'X' is used for studying the effect of variation in concentration of iodide on the rate of reaction of iodide ion with H₂O₂ at room temp. The indicator 'X' forms blue colored complex with compound 'A' present in the solution. The indicator 'X' and compound 'A' respectively are
 - (1) Starch and iodine
 - (2) Methyl orange and H₂O₂
 - (3) Starch and H₂O₂
 - (4) Methyl orange and iodine

Official Ans. by NTA (1)

Ans. (1)

Sol.
$$I^- + H_2O_2 \longrightarrow I_2 + H_2O$$

$$I_2 + Starch \longrightarrow Blue$$
(Indicator)

- **37.** A doctor prescribed the drug Equanil to a patient. The patient was likely to have symptoms of which disease?
 - (1) Stomach ulcers
 - (2) Hyperacidity
 - (3) Anxiety and stress
 - (4) Depression and hypertension

Official Ans. by NTA (4)

Ans. (4)

Sol. Theory based.

38. Find out the major product for the following reaction.

Major Product

- (1)
- 2)
- (3)
- (4)

Official Ans. by NTA (2) Ans. (2)

Sol.

- **39.** The one giving maximum number of isomeric alkenes on dehydrohalogenation reaction is (excluding rearrangement)
 - (1) 1-Bromo-2-methylbutane
 - (2) 2-Bromopropane
 - (3) 2-Bromopentane
 - (4) 2-Bromo-3,3-dimethylpentane

Official Ans. by NTA (3)

Ans. (3)

Sol.
$$CH_3 - CH_2 - CH - CH_2 - Br \longrightarrow$$

$$C \\ | \\ C - C - C = C$$

$$\begin{array}{c}
\operatorname{Br} \\
| \\
\operatorname{CH}_{3} - \operatorname{CH} - \operatorname{CH}_{3} \longrightarrow \operatorname{CH}_{3} \operatorname{CH} = \operatorname{CH}_{2}
\end{array} (1)$$

$$CH_3 - CH_2 - CH_2 - CH - CH_3 \longrightarrow$$

$$C-C-C-C=C+C-C-C=C-C$$
, cis & trans (3)

$$\begin{array}{ccc}
CH_3 & C \\
 & | & | \\
C-C-C & -C-C & \longrightarrow & C-C-C-C = C \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\
 & | & | & | \\$$

- **40.** When a hydrocarbon A undergoes combustion in the presence of air, it requires 9.5 equivalents of oxygen and produces 3 equivalents of water. What is the molecular formula of A?
 - $(1) C_8 H_6$
- (2) C₉H₉
- $(3) C_6 H_6$
- $(4) C_9H_6$

Official Ans. by NTA (1)

Ans. (1)

Sol.
$$C_x H_y + \left(x + \frac{y}{4}\right) O_2 \rightarrow x C O_2 + \frac{y}{2} H_2 O$$

$$x + \frac{y}{4} = 9.5$$

$$\frac{y}{2} = 3$$

$$\Rightarrow$$
 x = 8, y = 6

41. Find out the major products from the following reaction sequence.

(1)
$$\mathbf{A} = \begin{array}{c} \text{CO}_{2}H & \text{OH} \\ \text{Cl} & \text{OH} & \text{OH} \\ \mathbf{B} = \text{Cl} & \text{OH} & \text{OH} \\ \text{Me Me} & \text{Me} \end{array}$$

(2)
$$\mathbf{A} = \begin{array}{c} \text{HO} \\ \text{CO}_2\text{Et} \\ \\ \mathbf{B} = \text{Cl} \\ \end{array} \begin{array}{c} \text{OH} \\ \text{Me} \\ \end{array} \begin{array}{c} \text{OH} \\ \text{Me} \\ \end{array}$$

(3)
$$\mathbf{A} = \begin{array}{c} \text{CN} & \text{OH} \\ \text{Cl} & \text{Me} & \text{Me} \\ \mathbf{B} = \text{Cl} & \text{OH} \end{array}$$

(4)
$$\mathbf{A} = \begin{array}{c} OH \\ OH \\ B = Me \end{array}$$
 OH OH OH Me CH Me

Official Ans. by NTA (2) Ans. (2) Sol.

- **42.** According to MO theory the bond orders for O₂²⁻, CO and NO⁺ respectively, are
 - (1) 1, 3 and 3
- (2) 1, 3 and 2
- (3) 1, 2 and 3
- (4) 2, 3 and 3

Official Ans. by NTA (1)

Ans. (1)

- Sol. Theory based.
- **43.** A solution of CrO₅ in amyl alcohol has a....colour
 - (1) Green
- (2) Orange-Red
- (3) Yellow
- (4) Blue

Official Ans. by NTA (4)

Ans. (4)

- **Sol.** A solution of CrO₅ in amyl alcohol has a blue colour. So, option (4) is correct.
- 44. The concentration of dissolved Oxygen in water for growth of fish should be more than X ppm and Biochemical Oxygen Demand in clean water should be less than Y ppm. X and Y in ppm are, respectively.
 - (1) $\stackrel{X}{\circ}$ $\stackrel{Y}{\circ}$
- (2) $\begin{array}{ccc} X & Y \\ 4 & 8 \end{array}$
- (3) $\begin{array}{c} X & Y \\ 4 & 15 \end{array}$
- $(4) \frac{X}{6} \frac{Y}{12}$

Official Ans. by NTA (1)

Ans. (1)

Sol. The growth of fish gets inhibited if the concentration of dissolved Oxygen in water is less than 6 ppm and Biochemical Oxygen demand in clean water should be less than 5 ppm.

- **45.** Reaction of propanamide with Br_2 / KOH (aq) produces :
 - (1) Ethylnitrile
- (2) Propylamine
- (3) Propanenitrile
- (4) Ethylamine

Official Ans. by NTA (4)

Ans. (4)

Sol.
$$NH_2$$
 Br_2/KOH NH_2 NH_2 NH_2 Bromamide Ethylamine

46. Following tetrapeptide can be represented as

$$\begin{array}{c|c} CH_2Ph & COOH \\ H_2N & H & CH_2 \\ \hline \\ H_3C & CH_3 \\ \end{array}$$

(F, L, D, Y, I, Q, P are one letter codes for amino acids)

- (1) FIQY
- (2) FLDY
- (3) YQLF
- (4) PLDY

Official Ans. by NTA (2)

Ans. (2)

Sol. Hydrolysis of the given tetrapeptide will give the following:

- **47.** Which of the following relations are correct?
 - (A) $\Delta U = q + p\Delta V$
- (B) $\Delta G = \Delta H T\Delta S$
- (C) $\Delta S = \frac{q_{rev}}{T}$
- (D) $\Delta H = \Delta U \Delta nRT$

Choose the most appropriate answer from the options given below:

- (1) C and D only
- (2) B and C only
- (3) A and B only
- (4) B and D only

Official Ans. by NTA (2)

Ans. (2)

- **Sol.** Only (B) and (C) are correct.
 - (B) G = H TS

At constant T

$$\Delta G = \Delta H - T\Delta S$$

(A) First law is given by

$$\Delta U = O + W$$

If we apply constant P and reversible work.

$$\Delta \mathbf{U} = \mathbf{Q} - \mathbf{P} \Delta \mathbf{V}$$

(C)By definition of entropy change

$$dS = \frac{dq_{rev}}{T}$$

At constant T

$$\Delta S = \frac{q_{rev}}{T}$$

(D) H = U + PV

For ideal gas

H = U + nRT

At constant T

 $\Delta H = \Delta U + \Delta nRT$

- **48.** The major component of which of the following ore is sulphide based mineral?
 - (1) Calamine
- (2) Siderite
- (3) Sphalerite
- (4) Malachite

Official Ans. by NTA (3)

Ans. (3)

Sol. Calamine: ZnCO₃

Siderite: FeCO₃

Sphalerite : ZnS

Malachite: CuCO₃.Cu(OH)₂

49. Given below are two statements:

Statement I: Nickel is being used as the catalyst for producing syn gas and edible fats.

Statement II: Silicon forms both electron rich and electron deficient hydrides.

In the light of the above statements, choose the most appropriate answer from the options given below:

- (1) Both the statements I and II are correct
- (2) Statement I is incorrect but statement II is correct
- (3) Both the statements I and II are incorrect
- (4) Statement I is correct but statement II is incorrect

Official Ans. by NTA (4)

Ans. (4)

Sol. Statement–I is correct.

Ni is used in Hydrogenation of unsaturated fat to make edible fats.

Statements-II is false as hydride of Silicon is electron precise & neither electron deficient nor electron rich.

50. Match List I with List II.

	List I		List II			
A.	van't Hoff	I.	Cryoscopic constant			
	factor, i					
B.	$k_{\rm f}$	II.	Isotonic solutions			
C.	Solutions with	III.	Normal molar mass			
	same osmotic		Abnormal molar mass			
	pressure					
D.	Azeotropes	IV.	Solutions with same			
			composition of vapour			
			above it			

Choose the correct answer from the options given below:

- (A) A-III, B-I, C-II, D-IV
- (B) A-III, B-II, C-I, D-IV
- (C) A-III, B-I, C-IV, D-II
- (D) A-I, B-III, C-II, D-IV

Official Ans. by NTA (1)

Ans. (1)

- Sol. (A) van't Hoff factor, i
 - i = Normal molar mass

Abnormal molar mass

- (B) k_f = Cryoscopic constant
- (C) Solutions with same osmotic pressure are known as isotonic solutions.

(D) Solutions with same composition of vapour over them are called Azeotrope.

SECTION-B

51. On heating, LiNO₃ gives how many compounds among the following?

Li₂O, N₂, O₂, LiNO₂, NO₂

Official Ans. by NTA (3)

Ans. (3)

Sol. 2 Li NO₃ $\stackrel{\Delta}{\longrightarrow}$ Li₂O + 2NO₂ + $\frac{1}{2}$ O₂

Hence three products Li₂O, NO₂ and O₂

52. At 298 K

$$N_2(g) + 3H_2(g) \Longrightarrow 2NH_2(g), K_1 = 4 \times 10^5$$

$$N_2(g) + O_2(g) \rightleftharpoons 2NO(g), K_2 = 1.6 \times 10^{12}$$

$$H_2(g) + \frac{1}{2} O_2(g) \rightleftharpoons H_2O(g), K_3 = 1.0 \times 10^{-13}$$

Based on above equilibria, the equilibrium constant of the reaction,

$$2NH_3(g) + \frac{5}{2}O_2(g) \rightleftharpoons 2NO(g) + 3H_2O(g)$$

is $\underline{} \times 10^{-33}$ (Nearest integer)

Official Ans. by NTA (4)

Ans. (4)

Sol. $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g), K_1 = 4 \times 10^5 ...(i)$

$$N_2(g) + O_2(g) \rightleftharpoons 2NO(g), K_2 = 1.6 \times 10^{12} ...(ii)$$

$$H_2(g) + \frac{1}{2}O_2(g) \rightleftharpoons H_2O(g), K_3 = 1.0 \times 10^{-13} ...(iii)$$

 $(ii) + 3 \times (iii) - (i)$

$$2NH_3(g) + \frac{1}{2}O_2(g) \rightleftharpoons 2NO(g) + 3H_2O(g)$$

$$k_{eq} = \frac{k_2 \times k_3^3}{k_1} = \frac{1.6 \times 10^{12} \times (10^{-13})^3}{4 \times 10^5}$$

$$=\frac{1.6}{4}\times10^{-32}=4\times10^{-33}$$

53. For conversion of compound A \rightarrow B, the rate constant of the reaction was found to be 4.6×10^{-5} L mol⁻¹ s⁻¹. The order of the reaction is

Official Ans. by NTA (2)

Ans. (2)

Sol. As unit of rate constant is $(conc.)^{1-n}$ time⁻¹

$$\Rightarrow$$
 (L mol⁻¹) \Rightarrow 1-n = -1 n = 2

54. Total number of acidic oxides among N₂O₃, NO₂, N₂O, Cl₂O₇, SO₂, CO, CaO, Na₂O and

Official Ans. by NTA (4)

Ans. (4)

- **Sol.** Acidic oxides are N₂O₃, NO₂, Cl₂O₇, SO₂
- 55. When 0.01 mol of an organic compound containing 60% carbon was burnt completely, 4.4 g of CO₂ was produced. The molar mass of compound is g mol⁻¹ (Nearest integer)

Official Ans. by NTA (200)

Ans. (200)

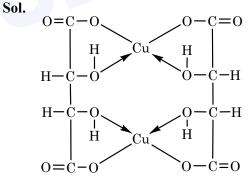
Sol. Let M is the molar mass of the compound (g/mol) mass of compound = 0.01 M gm

mass of carbon = 0.01 M
$$\times \frac{60}{100}$$

moles of carbon =
$$\frac{0.01M}{12} \times \frac{60}{100}$$

moles of CO_2 from combustion = $\frac{4.4}{44}$ = moles of

carbon


$$\frac{0.01M}{12} \times \frac{60}{100} = \frac{4.4}{44}$$

$$M = \frac{4.4}{44} \times \frac{100}{60} \times \frac{12}{0.01} = 200 gm \, / \, mol$$

56. The denticity of the ligand present in the Fehling's reagent is ______.

Official Ans. by NTA (4)

Ans. (4)

Copper tartarate complex Denticity = 2

57. A metal M forms hexagonal close-packed structure. The total number of voids in 0.02 mol of it is _____ \times 10²¹ (Nearest integer) (Given $N_A = 6.02 \times 10^{23}$)

Official Ans. by NTA (36)

Ans. (36)

Sol. One unit cell of hcp contains = 18 voids

No. of voids in 0.02 mol of hcp

$$= \frac{18}{6} \times 6.02 \times 10^{23} \times 0.02$$

$$\approx 3.6 \times 10^{22}$$

$$\approx 36 \times 10^{21}$$

58. Assume that the radius of the first Bohr orbit of hydrogen atom is 0.6 Å. The radius of the third Bohr orbit of He⁺ is ______ picometer. (Nearest Integer)

Official Ans. by NTA (270)

Ans. (270)

Sol.
$$r \propto \frac{n^2}{Z}$$

$$r_{He^+} = r_H \times \frac{n^2}{Z}$$

$$r_{He^+}^{}=0.6\times\frac{(3)^2}{2}$$

$$= 2.7 \text{ Å}$$

$$r_{_{\! He^{^+}}}=270pm$$

59. The equilibrium constant for the reaction

$$Zn(s) + Sn^{2+}(aq) \rightleftharpoons Zn^{2+}(aq) + Sn(s)$$
 is 1×10^{20}

at 298 K. The magnitude of standard electrode potential of Sn/Sn^{2+} if $E^o_{Zn^{2+}/Zn} = -0.76$ V is

Given:
$$\frac{2.303RT}{F} = 0.059V$$

Official Ans. by NTA (17)

Sol.
$$Zn(s) + Sn^{2+}(aq) \rightleftharpoons Zn^{2+}(aq) + Sn(s)$$

$$\Delta G^{\circ} = -2.303RT \log_{10} Keq$$

$$-nF(E_{cell}^{0}) = -2.303RT \log_{10} Keq$$

$$E_{Zn/Zn^{2+}}^{0} + E_{Sn^{2+}/Sn}^{0} = \frac{0.059}{2} log_{10} Keq$$

$$0.76 + E^0_{Sn^{2+}/Sn} = \frac{0.059}{2} log_{10} 10^{20}$$

$$0.76 + E_{\text{Sn}^{2+}/\text{Sn}}^{0} = \frac{0.059 \times 20}{2}$$

$$E_{Sn^{2+}/Sn}^0 = 0.59 - 0.76 = -0.17$$

$$E_{Sn/Sn^{2+}}^{0} = 17 \times 10^{-2} V$$

Ans.
$$= 17$$

60. The volume of HCl, containing 73 g L⁻¹, required to completely neutralise NaOH obtained by reacting 0.69 g of metallic sodium with water, is mL. (Nearest Integer)

(Given: molar Masses of Na, Cl, O, H are 23, 35.5, 16 and 1 g mol⁻¹ respectively)

Official Ans. by NTA (15)

Sol. Mole of Na = $\frac{0.69}{23}$ = 3×10^{-2}

$$Na + H_2O \longrightarrow NaOH + \frac{1}{2}H_2$$

By using POAC

Moles of NaOH = 3×10^{-2}

NaOH reacts with HCl

No. of equivalent of NaOH = No. of equivalent of HCl

$$3 \times 10^{-2} \times 1 = \frac{73}{36.5} \times \text{V(in L)} \times 1$$

$$V = 1.5 \times 10^{-2} L$$

Volume of HCl = 15 ml.