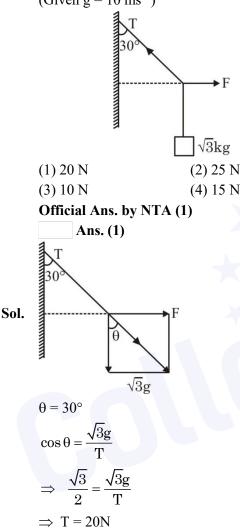


FINAL JEE-MAIN EXAMINATION - JANUARY, 2023

3.

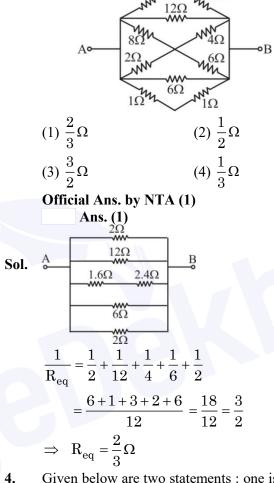
(Held On Monday 30th January, 2023)


TIME: 3:00 PM to 6:00 PM

TEST PAPER WITH SOLUTION

PHYSICS

1. A block of $\sqrt{3}$ kg is attached to a string whose other end is attached to the wall. An unknown force F is applied so that the string makes an angle of 30° with the wall. The tension T is : (Given g = 10 ms⁻²)



2. A flask contains hydrogen and oxygen in the ratio of 2 : 1 by mass at temperature 27°C. The ratio of average kinetic energy per molecule of hydrogen and oxygen respectively is :

> (1) 2 : 1 (2) 1 : 1 (3) 1 : 4 (4) 4 : 1 Official Ans. by NTA (2) Ans. (2) $K_{ex} = \frac{5}{2} kT$

Sol.
$$K_{av} = \frac{3}{2} kT$$

Ratio = 1 : 1

The equivalent resistance between A and B is 1.5Ω

Given below are two statements : one is labelled as Assertion A and the other is labelled as Reason R. Assertion A : The nuclear density of nuclides ¹⁰ B, ⁶₃Li, ⁵⁶₂₆Fe, ²⁰₁₀Ne and ²⁰⁹₈₃Bi can be arranged as $\rho_{Bi}^{N} > \rho_{Fe}^{N} > \rho_{Ne}^{N} > \rho_{B}^{N} > \rho_{Li}^{N}$.

Reason R : The radius R of nucleus is related to its mass number A as $R = R_0 A^{1/3}$, where R_0 is a constant.

In the light of the above statement, choose the **correct** answer from the options given below :

(1) Both A and R are true and R is the correct explanation of A

(2) A is false but **R** is true

(3) A is true but \mathbf{R} is false

(4) Both A and R are true but R is NOT the correct explanation of A

Official Ans. by NTA (2)

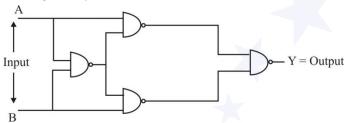
Ans. (2)

Sol. Nuclear density is independent of A.

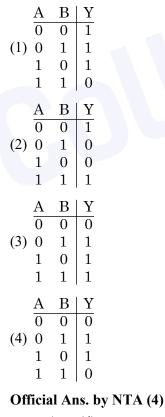
5. A thin prism P_1 with an angle 6° and made of glass of refractive index 1.54 is combined with another prism P_2 made from glass of refractive index 1.72 to produce dispersion without average deviation. The angle of prism P_2 is :

 $(2) 1.3^{\circ}$

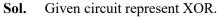
- (1) 6°
- (3) 7.8° (4) 4.5°


Official Ans. by NTA (4)

Ans. (4)

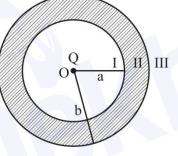

Sol. $\delta_1 = \delta_2$ [for no average deviation] $\Rightarrow 6^\circ (1.54 - 1) = A(1.72 - 1)$ $\Rightarrow A = \frac{6^\circ \times 0.54}{0.72}$

$$=\frac{18^{\circ}}{4}=4.5^{\circ}$$

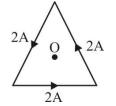

6. The output Y for the inputs A and B of circuit is given by

Truth table of the shown circuit is :

Ans. (4)


A vehicle travels 4 km with speed of 3 km/h and another 4 km with speed of 5 km/h, then its average speed is :

(1) 4.25 km/h (3) 4.00 km/h Official Ans. by NTA (4) Ans. (4)

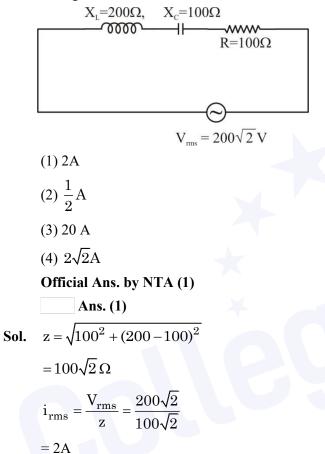

Sol.
$$\frac{2}{V_{av}} = \frac{1}{3} + \frac{1}{5} = \frac{8}{15}$$

 $\Rightarrow V_{av} = \frac{15}{4} = 3.75 \text{ km/h}$

8.

As shown in the figure, a point charge Q is placed at the centre of conducting spherical shell of inner radius a and outer radius b. The electric field due to charge Q in three different regions I, II and III is given by : (I : r < a, II : a < r < b, III : r > b)

- (1) $E_I = 0$, $E_{II} = 0$, $E_{III} \neq 0$ (2) $E_I \neq 0$, $E_{II} = 0$, $E_{III} \neq 0$ (3) $E_I \neq 0$, $E_{II} = 0$, $E_{III} = 0$ (4) $E_I = 0$, $E_{II} = 0$, $E_{III} = 0$ Official Ans. by NTA (2) Ans. (2)
- Sol. Electric field inside material of conductor is zero.
- 9. As shown in the figure, a current of 2A flowing in an equilateral triangle of side $4\sqrt{3}$ cm. The magnetic field at the centroid O of the triangle is :


(Neglect the effect of earth's magnetic field.)

(1)
$$4\sqrt{3} \times 10^{-4}$$
 T (2) $4\sqrt{3} \times 10^{-5}$ T
(3) $\sqrt{3} \times 10^{-4}$ T (4) $3\sqrt{3} \times 10^{-5}$ T
Official Ans. by NTA (4)
Ans. (4)

Sol.
$$d \tan 60^\circ = 2\sqrt{3}$$
$$d = 2 \text{ cm}$$
$$B = 3 \times \frac{\mu_0 i}{2\pi d} \sin 60^\circ$$
$$= 3 \times \frac{2 \times 10^{-7} \times 2}{2 \times 10^{-2}} \times \frac{\sqrt{3}}{2}$$
$$= 3\sqrt{3} \times 10^{-5}$$

10. In the given circuit, rms value of current (I_{rms}) through the resistor R is :

11. A machine gun of mass 10 kg fires 20 g bullets at the rate of 180 bullets per minute with a speed of 100 m s^{-1} each. The recoil velocity of the gun is :

Official Ans. by NTA (4)

Ans. (4)

Sol.
$$20 \times 10^{-3} \times \frac{180}{60} \times 100 = 10 \text{ V}$$

 $\Rightarrow \text{ v} = 0.6 \text{ m/s}$

12. Given below are two statements : one is labelled as Assertion A and the other is labelled as Reason R. Assertion A : Efficiency of a reversible heat engine will be highest at -273°C temperature of cold reservoir.

Reason R : The efficiency of Carnot's engine depends not only on temperature of cold reservoir but it depends on the temperature of hot reservoir

too and is given as
$$\eta = \left(1 - \frac{T_2}{T_1}\right)$$

In the light of the above statements, choose the **correct** answer from the options given below :

(1) \mathbf{A} is true but \mathbf{R} is false

(2) Both A and R are true but R is NOT the correct explanation of A

(3) \mathbf{A} is false but \mathbf{R} is true

(4) Both A and R are true and R is the correct explanation of A

Official Ans. by NTA (4) Ans. (4)

- Sol. Both A and R are true and R is the correct explanation of A
- **13.** Match List I with List II.

	List I		List II
А	Torque	I.	$kg m^{-1} s^{-2}$
В	Energy density	II.	kg ms ⁻¹
С	Pressure gradient	III.	$kg m^{-2} s^{-2}$
D	Impulse	IV.	kg m ² s ^{-2}

Choose the **correct** answer from the options given below :

(1) A-IV, B-III, C-I, D-II
 (2) A-I, B-IV, C-III, D-II
 (3) A-IV, B-I, C-II, D-III
 (4) A-IV, B-I, C-III, D-II
 Official Ans. by NTA (4)

Ans. (4)

14. For a simple harmonic motion in a mass spring system shown, the surface is frictionless. When the mass of the block is 1 kg, the angular frequency is ω_1 . When the mass block is 2 kg the angular frequency is ω_2 . The ratio ω_2/ω_1 is :

(1)
$$\sqrt{2}$$
 (2) $\frac{1}{\sqrt{2}}$
(3) 2 (4) $\frac{1}{2}$

Official Ans. by NTA (2) Ans. (2)

Sol.
$$\omega = \sqrt{\frac{k}{m}}$$

 $\frac{\omega_2}{\omega_1} = \sqrt{\frac{m_1}{m_2}} =$

15. An electron accelerated through a potential difference V_1 has a de-Broglie wavelength of λ . When the potential is changed to V_2 , its de-Broglie wavelength increases by 50%. The value of $\left(\frac{V_1}{V_2}\right)$

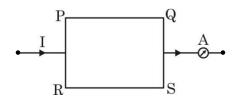
is equal to :

(1) 3 (2)
$$\frac{9}{4}$$

Official Ans. by NTA (2) Ans. (2)

Sol.
$$KE = \frac{P^2}{2m}, P = \frac{h}{\lambda}$$

 $eV_1 = \frac{\left(\frac{h}{\lambda}\right)^2}{2m}$
 $eV_2 = \frac{\left(\frac{h}{1.5\lambda}\right)^2}{2m}$
9


 $\mathbf{2}$

16. Match List I with List II :

	List I		List II
А.	Attenuation	Ι	Combination of a
			receiver and
			transmitter.
В.	Transducer	Π	Process of retrieval of
			information from the
			carrier wave at received
C.	Demodulation	III	Converts one form of
			energy into another
D.	Repeater	IV	Loss of strength of a
			signal while
			propagating through a
			medium

Choose the correct answer from the options given below :

 (1) A-I, B-II, C-III, D-IV
 (2) A-II, B-III, C-IV, D-I
 (3) A-IV, B-III, C-I, D-II
 (4) A-IV, B-III, C-II, D-I
 Official Ans. by NTA (4) Ans. (4) 17. A current carrying rectangular loop PQRS is made of uniform wire. The length PR = QS = 5 cm and PQ = RS = 100 cm. If ammeter current reading changes from I to 2I, the ratio of magnetic forces per unit length on the wire PQ due to wire RS in the two cases respectively f_{PO}^{I} : f_{PO}^{2I} is :

Official Ans. by NTA (2)

Sol. $F \propto I_1I_2$

$$F_{I}: F_{2I} = 1:4$$

18. A force is applied to a steel wire 'A', rigidly clamped at one end. As a result elongation in the wire is 0.2 mm. If same force is applied to another steel wire 'B' of double the length and a diameter 2.4 times that of the wire 'A', the elongation in the wire 'B' will be (wires having uniform circular cross sections)

(1)
$$6.06 \times 10^{-2} \text{ mm}$$

(2)
$$2.77 \times 10^{-2} \text{ mm}$$

(3) $3.0 \times 10^{-2} \text{ mm}$

(4) $6.9 \times 10^{-2} \text{ mm}$

Official Ans. by NTA (4)

Sol.
$$Y = \frac{\Gamma/A}{\frac{\Delta \ell}{\ell}}$$

$$\Rightarrow \mathbf{F} = \frac{\mathbf{Y}\mathbf{A}}{\ell}\Delta\ell$$

$$\left(\frac{\mathbf{A}\Delta\ell}{\ell}\right)_1 = \left(\frac{\mathbf{A}\Delta\ell}{\ell}\right)_2$$

$$\Rightarrow \frac{\Delta \iota_2}{\Delta \ell_1} = \frac{A_1}{A_2} \times \frac{\iota_2}{\ell_1}$$
$$\Rightarrow \frac{\Delta \ell_2}{0.2} = \frac{1}{2.4 \times 2.4} \times \frac{2}{12}$$

$$\Rightarrow \Delta \ell_2 = 6.9 \times 10^{-2} \,\mathrm{mm}$$

19. An object is allowed to fall from a height R above the earth, where R is the radius of earth. Its velocity when it strikes the earth's surface, ignoring air resistance, will be :

(1)
$$2\sqrt{gR}$$
 (2) \sqrt{gR}
(3) $\sqrt{\frac{gR}{2}}$ (4) $\sqrt{2gR}$

Official Ans. by NTA (2) Ans. (2)

Sol. Loss in PE = Gain in KE

$$\left(-\frac{GMm}{2R}\right) - \left(-\frac{GMm}{R}\right) = \frac{1}{2}mv^{2}$$
$$\Rightarrow v^{2} = \frac{GM}{R} = gR$$
$$\Rightarrow v = \sqrt{gR}$$

20. A point source of 100 W emits light with 5% efficiency. At a distance of 5 m from the source, the intensity produced by the electric field component is :

(1)
$$\frac{1}{2\pi} \frac{W}{m^2}$$
 (2) $\frac{1}{40\pi} \frac{W}{m^2}$
(3) $\frac{1}{10\pi} \frac{W}{m^2}$ (4) $\frac{1}{20\pi} \frac{W}{m^2}$

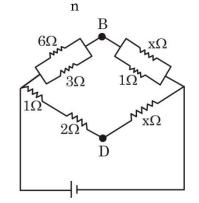
Official Ans. by NTA (2)

Ans. (2)

Sol.
$$I_{\rm EF} = \frac{1}{2} \times \frac{5}{4\pi \times 5^2}$$

$$=\frac{1}{40\pi}\,\mathrm{W/m^2}$$

SECTION-B


 A faulty thermometer reads 5°C in melting ice and 95°C in steam. The correct temperature on absolute scale will be..... K when the faulty thermometer reads 41°C.

Official Ans. by NTA (313)

Ans. (313)

Sol.
$$\frac{41^{\circ} - 5^{\circ}}{95^{\circ} - 5^{\circ}} = \frac{C - 0^{\circ}}{100^{\circ} - 0^{\circ}}$$

 $\Rightarrow C = \frac{36}{90} \times 100 = 40^{\circ}C = 313 \text{ K}$

22. If the potential difference between B and D is zero, the value of x is $\frac{1}{n}\Omega$. The value of n is

Official Ans. by NTA (2)

Ans. (2)
Sol.
$$\frac{2}{3} = \frac{x}{x+1}$$

 $\Rightarrow \frac{2}{3} = \frac{1}{x+1}$
 $\Rightarrow x = 0.5 = \frac{1}{2}$

S

23. The velocity of a particle executing SHM varies with displacement (x) as $4v^2 = 50 - x^2$. The time period of oscillations is $\frac{x}{7}s$. The value of x is

$$\dots \dots \left(\text{Take } \pi = \frac{22}{7} \right)$$

Official Ans. by NTA (88)

ol. Ans. (88)

$$4v^2 = 50 - x^2$$

 $\Rightarrow v = \frac{1}{2}\sqrt{50 - x^2}$
 $\omega = \frac{1}{2}$
 $T = \frac{2\pi}{\omega} = 4$
 $x = 88$

24. In a Young's double slit experiment, the intensities at two points, for the path difference $\frac{\lambda}{4}$ and $\frac{\lambda}{3}$ (λ being the wavelength of light used) are I₁ and I₂ respectively. If I₀ denotes the intensity produced by each one of the individual slits, then $\frac{I_1 + I_2}{I_0} = \dots$

> Official Ans. by NTA (3) Ans. (3)

Sol.
$$I = 4I_0 \cos^2\left(\frac{\Delta\phi}{2}\right)$$

 $I_1 = 4I_0 \cos^2\left(\frac{\pi}{4}\right) = 2I_0$
 $I_2 = 4I_0 \cos^2\left(\frac{2\pi}{3}\right) = I_0$
 $\Rightarrow \frac{I_1 + I_2}{I_0} = 3$

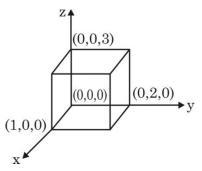
25. A radioactive nucleus decays by two different process. The half life of the first process is 5 minutes and that of the second process is 30s. The effective half-life of the nucleus is calculated

to be $\frac{\alpha}{11}$ s. The value of α is _____.

Official Ans. by NTA (300)

Sol.
$$\frac{dN_1}{dt} = -\lambda_1 N \qquad \frac{dN_2}{dt} = -\lambda_2 N$$
$$\frac{dN}{dt} = -(\lambda_1 + \lambda_2) N$$
$$\Rightarrow \lambda_{eq} = \lambda_1 + \lambda_2$$
$$\Rightarrow \frac{1}{t_{\frac{1}{2}}} = \frac{1}{300} + \frac{1}{30} = \frac{11}{300}$$
$$\Rightarrow t_{\frac{1}{2}} = \frac{300}{11}$$

26. A body of mass 2 kg is initially at rest. It starts moving unidirectionally under the influence of a source of constant power P. Its displacement in 4s


is $\frac{1}{3}\alpha^2\sqrt{P}$ m. The value of α will be

Official Ans. by NTA (4)

Ans. (4)
Sol.
$$\frac{1}{2}$$
 mV² = Pt
 $V = \sqrt{\frac{2Pt}{m}}$
dx $\sqrt{\frac{2Pt}{2}}$

$$\overline{dt} = \sqrt{m}$$
$$x \quad \sqrt{\frac{1}{m}} \frac{2}{3} [t^{3/2}]_0^4$$
$$x = \frac{16\sqrt{P}}{3} = \frac{1}{3} \times 16\sqrt{P}$$
$$\alpha = 4$$

27. As shown in figure, a cuboid lies in a region with electric field $E = 2x^2\hat{i} - 4y\hat{j} + 6\hat{k}$ N/C. The magnitude of charge within the cuboid is $n \in_0 C$. The value of n is _____ (if dimension of cuboid is $1 \times 2 \times 3 \text{ m}^3$)

Official Ans. by NTA (12)

Sol.
$$\vec{E} = 2x^{2}\hat{i} - 4y\hat{j} + 6\hat{k}$$

 $\vec{E} = 2x^{2}\hat{i} - 4y\hat{j} + 6\hat{k}$
 $(0,0,3)$
 $(0,0,0)$
 $(0,2,0)$ y
 $(1,0,0)$
 $(0,0,0)$
 $(0,2,0)$ y
 $(1,0,0)$
 $(0,0,0)$
 $(0,2,0)$ y
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$
 $(1,0,0)$

28. In an ac generator, a rectangular coil of 100 turns each having area 14×10^{-2} m² is rotated at 360 rev/min about an axis perpendicular to a uniform magnetic field of magnitude 3.0 T. The maximum value of the emf produced will be

$$_$$
 V. $\left(\text{Take } \pi = \frac{22}{7} \right)$

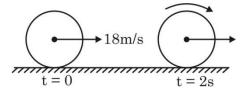
Official Ans. by NTA (1584)

Ans. (1584)

Sol.
$$\xi_{max} = NAB\omega$$

$$= 100 \times 14 \times 10^{-2} \times 3 \times \frac{360 \times 2\pi}{60}$$
$$= 1584 \text{V}$$

29. A stone tied to 180 cm long string at its end is making 28 revolutions in horizontal circle in every minute. The magnitude of acceleration of stone is $\frac{1936}{1000}$ ms⁻². The value of x _____.


x
$$\left(\text{Take } \pi = \frac{22}{7} \right)$$

Official Ans. by NTA (125)

Sol. a =
$$\omega^2 R = \left(\frac{28 \times 2\pi}{60}\right)^2 \times 1.8$$

= $\left(\frac{56}{60} \times \frac{22}{7}\right)^2 \times 1.8$
= $\frac{(44)^2}{225} \times 1.8$
= $\frac{1936 \times 1.8}{225}$
x = 125

30. A uniform disc of mass 0.5 kg and radius r is projected with velocity 18 m/s at t = 0 s on a rough horizontal surface. It starts off with a purely sliding motion at t = 0 s. After 2s it acquires a purely rolling motion (see figure). The total kinetic energy of the disc after 2s will be ______ J

(given, coefficient of friction is 0.3 and $g = 10 \text{ m/s}^2$).

Official Ans. by NTA (54)

Ans. (54)
Sol.
$$a = -\mu_k g = -3$$

 $V = 18 - 3 \times 2$
 $V = 12 \text{ m/s}$
 $KE = \frac{1}{2} \text{ mv}^2 + \frac{1}{2} \frac{\text{mr}^2}{2} \frac{\text{v}^2}{\text{r}^2}$
 $KE = \frac{3}{4} \text{ mv}^2$
 $KE = 3 \times 18 = 54 \text{ J}$