

FINAL JEE-MAIN EXAMINATION - SEPTEMBER, 2020

(Held On Thursday 03rd SEPTEMBER, 2020) TIME: 9 AM to 12 PM

CHEMISTRY

TEST PAPER WITH ANSWER & SOLUTION

- **1.** The complex that can show optical activity is:
 - (1) trans- $[Fe(NH_3)_2(CN)_4]^-$
 - (2) $cis-[Fe(NH_3)_2(CN)_4]^-$
 - (3) $cis-[CrCl_2(ox)_2]^{3-}$ (ox = oxalate)
 - (4) trans- $[Cr(Cl_2)(ox)_2]^{3-}$

Official Ans. by NTA (3)

Sol. (1) $\begin{bmatrix} NC & NH_3 \\ NC & CN \\ NC & CN \end{bmatrix}$ optically inactive

(2) $\begin{bmatrix} NC & NH_3 & \Theta \\ NC & Fe & CN \end{bmatrix}$ optically inactive

(3) $\begin{bmatrix} Cl & Cl \\ Cr & Cl \end{bmatrix}^{3-}$ optically active

(4) $\left[\begin{array}{c} Cl \\ OX \\ Cl \end{array} \right]^{3-}$ optically inactive

- 2. An organic compound [A], molecular formula C₁₀H₂₀O₂ was hydrolyzed with dilute sulphuric acid to give a carboxylic acid [B] and alcohol [C]. Oxidation of [C] with CrO₃ H₂SO₄ produced [B]. Which of the following structures are not possible for [A] ?
 - (1) (CH₃)₃-C-COOCH₂C(CH₃)₃
 - (2) CH₃CH₂CH₂COOCH₂CH₂CH₂CH₃

CH₃
|
(3) CH₃-CH₂-CH-OCOCH₂CH-CH₂CH₃
|
CH₃

(4) CH₃-CH₂-CH-COOCH₂-CH-CH₂CH₃

CH₃

CH₃

CH₂

CH₃

Official Ans. by NTA (3)

Sol. (1) $\underset{m_e}{\overset{m_e}{\longrightarrow}} C - \overset{O}{\overset{H}{\longrightarrow}} O - CH_2 - C \overset{m_e}{\underset{m_e}{\longrightarrow}} \overset{H^+/H_2O}{\longrightarrow} \overset{O}{\overset{H}{\longrightarrow}} C - OH$ $+ \overset{\uparrow}{\longleftarrow} KMnO_4$ $+O - CH_2 - CH$

Total 8 'C' \rightarrow so molecular formula not matched.

(3)
$$m_e$$
— CH_2 — CH — O — C — CH_2 — CH — Et
 m_e
 $H + /H_2O$
 m_e
 $H + /H_2O$
 m_e
 HO
 HO
 Et

not inter convertible by oxidation

(4)
$$m_e$$
— CH_2 — CH — C O — CH_2 — CH — Et (A)
$$\downarrow H^+/H_2O O \qquad m_e$$

$$m_e$$
— CH_2 — CH — C — OH $+$ HO — CH_2 — CH — Et
(B) m_e
(C)

- 3. If the boiling point of H_2O is 373 K, the boiling point of H_2S will be :
 - (1) Greater than 300 K but less than 373 K
 - (2) Less than 300 K
 - (3) Equal to 373 K
 - (4) More than 373 K

Official Ans. by NTA (2)

Sol. Boiling point of H_2S < Boiling point of H_2O

of P-OH, P=O and P-O-P bonds/ moiety(ies) respectivey are :

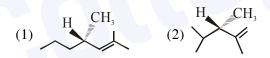
- (1) 3, 3 and 3
- (2) 2, 4 and 1
- (3) 4, 2 and 0
- (4) 4, 2 and 1

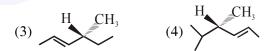
Official Ans. by NTA (4)

Sol. Pyrophosphoric acid.

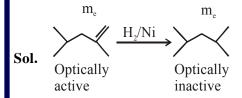
$$\begin{array}{c|c} O & O \\ \parallel & \parallel \\ P & P \\ OH & OH \end{array}$$

P - OH linkages = 4


P = O linkages = 2


P-O-P linkages = 1

- 5. It is true that:
 - (1) A zero order reaction is a single step reaction
 - (2) A second order reaction is always a multistep reaction
 - (3) A first order reaction is always a single step reaction
 - (4) A zero order reaction is a multistep reaction **Official Ans. by NTA (4)**


Sol. Zero order reaction is multiple step reaction.

6. Which of the following compounds produces an optically inactive compound on hydrogenation?

Official Ans. by NTA (2)

 γ and δ in water at 298 K is given below :

$$\begin{array}{c|ccccc} & \alpha & \beta & \gamma & \delta \\ \hline K_H & 50 & 2 & 2 \times 10^{-5} & 0.5 \end{array}$$

(density of water = 10^3 kg m⁻³ at 298 K) This table implies that :

- (1) The pressure of a 55.5 molal solution of γ is 1 bar
- (2) The pressure of a 55.5 molal solution of δ is 250 bar
- (3) Solubility of γ at 308 K is lower than at 298 K
- (4) α has the highest solubility in water at a given pressure

Official Ans. by NTA (2)

Sol. (1)
$$P_{\gamma} = K_{H}X_{Y}$$

$$P_{\gamma} = 2 \times 10^{-15} \times \frac{55.5}{55.5 + \frac{1000}{18}} = 2 \times 10^{-5} \text{ K bar}$$

$$= 2 \times 10^{-2} \text{ bar}$$

(2)
$$P_{\delta} = K_H X_{\delta}$$

$$P_{\delta} = 0.5 \times \frac{55.5}{55.5 + \frac{1000}{18}} = .249 \text{ K bar} = 249 \text{ bar}$$

- (3) On increasing temperature solubility of gases decreases
- (4) $K_H \downarrow$ solubility \uparrow and lowest K_H is for γ .
- **8.** Tyndall effect of observed when:
 - (1) The diameter of dispersed particles is much smaller than the wavelength of light used
 - (2) The diameter of dispersed particles is much larger than the wavelength of light used
 - (3) The diameter of dispersed particles is similar to the wavelength of light used
 - (4) The refractive index of dispersed phase is greater than that of the dispersion medium

Official Ans. by NTA (3)

Sol. The diameter of disperseed particles is similar to wavelength of light used.

CollegeDekho

- (1) Ozone layer depletion
- (2) Eutrophication
- (3) Acid rain
- (4) Blue baby syndrome

Official Ans. by NTA (3)

- Sol. Thermal power plants lead to acid rain.
- **10.** The electronic spectrum of [Ti(H₂O)₆]³⁺ shows a single broad peak with a maximum at 20,300 cm⁻¹. The crystal field stabilization energy (CFSE) of the complex ion, in kJ mol⁻¹, is:
 - (1) 242.5
 - (2) 83.7
 - (3) 145.5
 - (4) 97

Official Ans. by NTA (4)

Sol. CFSE = $0.4 \Delta_0$

$$=0.4\times\frac{20300}{83.7}$$

= 97 kJ/mol

- 11. Aqua regia is used for dissolving noble metals (Au, Pt, etc). The gas evolved in this process is:
 - (1) N_2
 - (2) N_2O_3
 - (3) NO
 - $(4) N_2O_5$

Official Ans. by NTA (3)

- **Sol.** Au + HNO₃ + 4HCl \rightarrow HAuCl₄ + NO + 2H₂O
- 12. The Kjeldahl method of Nitrogen estimation fails

(a)
$$\frac{\text{NO}_2}{\text{Sn/HCl}}$$
 (b) $\frac{\text{LiAlH}_4}{\text{LiAlH}_4}$

(c)
$$\frac{\text{CH}_2\text{CN}}{\text{(ii) SnCl}_2 + \text{HCl}}$$

(d)
$$NH_2 \longrightarrow NANO_2 \longrightarrow HCl$$

- (1) a and d
- (2) c and d
- (3) a, c and d
- (4) b and c

Official Ans. by NTA (2)

Sol. Kjeldahl method is used for N estimation But not given by 'Diazo' compounds

$$CH_{2}-C \equiv N$$

$$(i) SnCl_{2} + HCl$$

$$(ii) H_{2}O$$

$$NO^{+}$$
give

13. The mechanism of S_N^1 reaction is given as :

$$R - X \rightarrow R^{\oplus} X^{\circ} \rightarrow R^{\oplus} || X^{\circ} \xrightarrow{Y^{\circ}} R - Y + X^{\circ}$$

$$\begin{array}{cc} \text{Ion} & \text{Solvent} \\ \text{pair} & \text{separated ion} \\ \text{pair} & \end{array}$$

A student writes general characteristics based on the given mechanism as:

- (a) The reaction is favoured by weak nucleophiles
- (b) R[⊕] would be easily formed if the substituents are bulky
- (c) The reaction is accompained by recemization
- (d) The reaction is favoured by non-polar solvents.

Which observations are correct?

- (1) b and d
- (2) a and c
- (3) a, b and c
- (4) a and b

Official Ans. by NTA (2)

- **Sol.** S_N^1 favours
 - (a) The reaction is favoured by weak nucleophiles
 - (b) R[⊕] would be easily formed if the substituents are bulky
 - (c) The reaction is accompained by recemization
- 14. Which one of the following compounds possesses the most acidic hydrogen?

$$(1) \begin{array}{c} N \equiv C \\ K = N \end{array}$$

(2)
$$H_3C-C\equiv C-H$$

Official Ans. by NTA (4)

Due to presence of 3 (-R) groups

- (1) Steam distillation
- (2) Differential extraction
- (3) Distillation under reduced pressure
- (4) Fractional distillation

Official Ans. by NTA (3)

- Sol. Glycerol is separated by reduced pressure distillation in soap industries.
- **16.** Of the species, NO, NO+, NO²⁺, NO-, the one with minimum bond strength is:
 - $(1) NO^{2+}$
- (2) NO^{+}
- (4) NO-

Official Ans. by NTA (4)

Bond order of $NO^{2+} = 2.5$ Sol.

Bond order of $NO^+ = 3$

Bond order of NO = 2.5

Bond order of $NO^- = 2$

Bond order α bond strength.

- **17.** The atomic number of the element unnilennium is:
 - (1) 119(2) 108
- (3) 102
- (4) 109

Official Ans. by NTA (4)

Sol.

un nil enn

Hence correct name → unnilennium

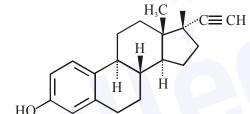
- 18. An acidic buffer is obtained on mixing:
 - (1) 100 mL of 0.1 M CH₃COOH and 200 mL of 0.1 M NaOH
 - (2) 100 mL of 0.1 M CH₃COOH and 100 mL of 0.1 M NaOH
 - (3) 100 mL of 0.1 M HCl and 200 mL of 0.1 M CH₃COONa
 - (4) 100 mL of 0.1 M HCl and 200 mL of 0.1 M NaCl

Official Ans. by NTA (3)

Sol.
$$HC1 + CH_3COONa \rightarrow CH_3COOH + NaC1 - COOH + NaC1 - C$$

So finally we get mixture of CH₃COOH + CH₃COONa that will work like acidic buffer solution.

measured for saturated aqueous solutions of NaCl and BaSO₄, respectively, at a temperature T. Which of the following is false ?


- (1) Ionic mobilities of ions from both salts increase with T
- (2) $C_{NaCl} >> C_{BaSO_4}$ at a given T
- (3) $C_{NaCl}(T_2) > C_{NaCl}(T_1)$ for $T_2 > T_1$
- (4) $C_{BaSO_4}(T_2) > C_{BaSO_4}(T_1)$ for $T_2 > T_1$

Official Ans. by NTA (3)

Official Ans. by (Bonus)

- **Sol.** Dissolution of BaSO₄ is an endothermic reaction 50 on increasing temperature number of ions of BaSO₄ decrease so it's conduction also decrease.
- **20.** The antifertility drug 'Novestrol" can react with :
 - (1) Br₂/water; ZnCl₂/HCl; FeCl₃
 - (2) Alcoholic HCN; NaOCl; ZnCl₂/HCl
 - (3) Br₂/water; ZnCl₂/HCl; NaOCl
 - (4) ZnCl₂/HCl; FeCl₃; Alcoholic HCN

Official Ans. by NTA (1)

Sol.

Ethynylestradiol (novestrol)

gives (1) $Br_2 + H_2O$ test

- (2) Lucas test with ZnCl₂ + HCl
- (3) FeCl₃ test of phenolic group.
- **21.** The volume strength of 8.9 M H_2O_2 solution calculated at 273 K and 1 atm is _____. (R=0.0821 L atm K⁻¹ mol⁻¹) (rounded off to the nearest integer)

Official Ans. by NTA (100)

Sol. Volume strength of H_2O_2 at 1 atm 273 kelvin = $M \times 11.2 = 8.9 \times 11.2 = 99.68$ aqueous binary solution is 0.1. The mass percentage of water in it, to the nearest integer, is

Official Ans. by NTA (47)

Sol. $X_{C_6H_{12}O_6} = 0.1$

Let total mole is 1 mol then mole of glucose will be 0.1 and mole of water will be 0.9

so mass % of water =
$$\frac{0.9 \times 18}{0.1 \times 180 + 0.9 \times 18} \times 100$$

= 47.36

Ans: 47

23. The photoelectric current from Na (work function, $w_0 = 2.3 \text{ eV}$) is stopped by the output voltage of the cell

Pt(s)|H₂(g, 1bar)|HCl(aq., pH = 1)|AgCl(s)|Ag(s) The pH of aq. HCl required to stop the photoelectric current from K(w₀ = 2.25eV), all other conditions remaining the same, is_____ \times 10⁻² (to the nearest integer).

Given,
$$2.303 \frac{RT}{F} = 0.06V$$
; $E_{AgCl|Ag|Cl^{-}}^{0} = 0.22V$

Official Ans. by NTA (58)
Official Ans. by (142)

Sol.
$$\frac{1}{2}H_{2} \to H^{+} + e^{\Theta}$$

$$\frac{e^{\Theta} + AgCl_{(s)} \to Ag_{(s)} + Cl^{\Theta}}{\frac{1}{2}H_{2} + AgCl_{(s)} \to H^{+}_{(aq)} + Ag_{(s)} + Cl^{\Theta}_{(aq)}}$$

$$E = \varepsilon^{0} - \frac{.06}{1} log \frac{\left[H^{+}\right] \left[Cl^{\Theta}\right]}{P_{H_{2}}^{\frac{1}{2}}}$$

$$E = 0.22 - .06 \log \frac{\left(10^{-1}\right)\left(10^{-1}\right)}{\frac{1}{12}}$$

E = 0.22 + .12 = .34 volt \Rightarrow total energy of photon will be (for Na) = 2.3 + 0.34 = 2.64 eV

$$= 2.64 - 2.25 = 0.39$$
 volt

$$E = \varepsilon^{0} - \frac{.06}{1} log \frac{\left[H^{+}\right] \left[Cl^{-}\right]}{P_{H_{2}}^{\frac{1}{2}}}$$

as
$$[H^+] = [Cl^{\odot}]$$
 so

$$0.39 = 0.22 - .06 \log \frac{\left[H^{+}\right]^{2}}{\frac{1}{1^{2}}}$$

$$0.17 = + .12 \text{ pH}$$

$$pH = 1.4166 \Rightarrow 1.42$$

24. An element with molar mass 2.7×10^{-2} kgmol⁻¹ forms a cubic unit cell with edge length 405 pm. If its density is 2.7×10^3 kgm⁻³, the radius of the element is approximately ____ × 10^{-12} m (to the nearest integer).

Official Ans. by NTA (143)

Sol.
$$d = \frac{z \left(\frac{M}{N_A}\right)}{a^3}$$

$$2.7 \times 10^{3} = z \frac{\left(\frac{2.7 \times 10^{-2}}{6 \times 10^{23}}\right)}{\left(405 \times 10^{-12}\right)^{3}}$$

$$2.7 \times 10^{3} = z \frac{\left(2.7 \times 10^{-2}\right)}{6 \times 10^{23} \left(4.05 \times 10^{-10}\right)^{3}}$$

$$2.7 \times 10^{3} = z \frac{\left(2.7 \times 10^{-2}\right)}{6 \times 10^{23} \times 66.43 \times 10^{-30}}$$

$$3.98 = z$$

 $z \approx 4$ structure is fcc

$$\frac{a}{\sqrt{2}} = 2r$$

$$r = \frac{a}{2\sqrt{2}} = \frac{\sqrt{2}a}{4} = \frac{1.414 \times 405 \times 10^{-12}}{4}$$

$$r = 143.16 \times 10^{-12}$$

25. The total number of monohalogenated organic products in the following (including stereoisomers) reaction is _____.

$$\begin{array}{c}
A \\
\text{(simplest optically active alkene)} & \xrightarrow{\text{(i)}H_2/Ni/\Delta} \\
& \xrightarrow{\text{(ii)}X_2/\Delta}
\end{array}$$

Official Ans. by NTA (8)

$$Ni/H_2$$
 m_e
 Cl_2
 hv

Sol. Simplest O.A. Alkene

$$\bigcap_{Cl}$$
 1

Alter

Str. of Tri peptide