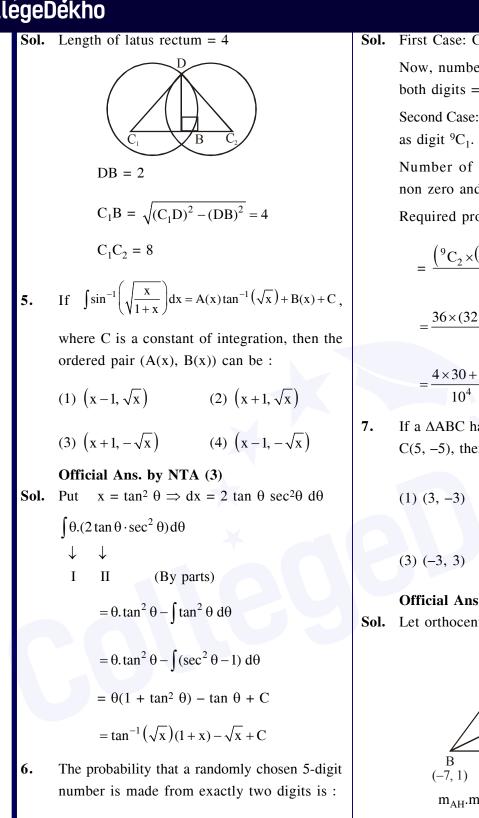
,∗***`** CollegeDekho

FINAL JEE-MAIN EXAMINATION - SEPTEMBER, 2020				
	(Held On Thursday 03 rd SEPTEM MATHEMATICS	BER,	2020) TIME : 3 PM to 6 PM TEST PAPER WITH SOLUTION	
1.	If the surface area of a cube is increasing at a rate of $3.6 \text{ cm}^2/\text{sec}$, retaining its shape; then the rate of change of its volume (in cm ³ /sec), when the length of a side of the cube is 10 cm, is : (1) 9 (2) 18	3.	Let R_1 and R_2 be two relations defined as follows : $R_1 = \{(a, b) \in R^2 : a^2 + b^2 \in Q\}$ and $R_2 = \{(a, b) \in R^2 : a^2 + b^2 \notin Q\},$	
Sol.	(3) 10 (4) 20 Official Ans. by NTA (1) $\frac{d}{dt}(6a^2) = 3.6 \Rightarrow 12a\frac{da}{dt} = 3.6$		 where Q is the set of all rational numbers. Then: (1) R₂ is transitive but R₁ is not transitive (2) R₁ is transitive but R₂ is not transitive (3) R₁ and R₂ are both transitive 	
	$a\frac{da}{dt} = 0.3$ $\frac{dv}{dt} = \frac{d}{dt}(a^3) = 3a\left(a\frac{da}{dt}\right)$	Sol.	(4) Neither R_1 nor R_2 is transitive Official Ans. by NTA (4)	
2.	at dt (dt) = 3 × 10 × 0.3 = 9 If the value of the integral $\int_0^{1/2} \frac{x^2}{(1-x^2)^{3/2}} dx$ is		eg. $a = 2 + \sqrt{3}$ & $b = 2 - \sqrt{3}$ $a^2 + b^2 = 14 \in Q$ Let $c = (1 + 2\sqrt{3})$	
	$\frac{k}{6}$, then k is equal to : (1) $2\sqrt{3} - \pi$ (2) $3\sqrt{2} + \pi$	2	$b^{2} + c^{2} = 20 \in Q$ But $a^{2} + c^{2} = (2 + \sqrt{3})^{2} + (1 + 2\sqrt{3})^{2} \notin Q$	
	(1) $2\sqrt{3} = \pi$ (2) $3\sqrt{2} = \pi$ (3) $3\sqrt{2} = \pi$ (4) $2\sqrt{3} = \pi$ Official Ans. by NTA (1)		for R ₂ Let $a^2 = 1$, $b^2 = \sqrt{3}$ & $c^2 = 2$ $a^2 + b^2 \notin Q$ & $b^2 + c^2 \notin Q$	
Sol.	$\int_{0}^{1/2} \frac{((x^{2} - 1) + 1)}{(1 - x^{2})^{3/2}} dx$ $\int_{0}^{1/2} \frac{dx}{(1 - x^{2})^{3/2}} - \int_{0}^{1/2} \frac{dx}{\sqrt{1 - x^{2}}}$	4.	But $a^2 + c^2 \in Q$ Let the latus ractum of the parabola $y^2 = 4x$ be the common chord to the circles C_1 and C_2 each of them having radius $2\sqrt{5}$. Then, the distance between the centres of the circles C_1 and C_2 is:	
	$\int_{0}^{1/2} \frac{x^{-3}}{(x^{-2} - 1)^{3/2}} dx - (\sin^{-1} x)_{0}^{1/2}$ Let $x^{-2} - 1 = t^{2} \Rightarrow x^{-3} dx = -t dt$		(1) 8 (2) $4\sqrt{5}$ (3) 12 (4) $8\sqrt{5}$	
	$\int_{\infty}^{\sqrt{3}} \frac{-t dt}{t^3} - \frac{\pi}{6} = \int_{\sqrt{3}}^{\infty} \frac{dt}{t^2} - \frac{\pi}{6} = \frac{1}{\sqrt{3}} - \frac{\pi}{6} = \frac{k}{6}$		Official Ans. by NTA (1)	



(1)
$$\frac{121}{10^4}$$
 (2) $\frac{150}{10^4}$

(3)
$$\frac{135}{10^4}$$
 (4) $\frac{13^4}{10^4}$

First Case: Choose two non-zero digits ⁹C₂

Now, number of 5-digit numbers containing both digits = $2^5 - 2$

Second Case: Choose one non-zero & one zero as digit ${}^{9}C_{1}$.

Number of 5-digit numbers containg one non zero and one zero both = $(2^4 - 1)$

Required prob.

$$= \frac{\left({}^{9}C_{2} \times (2^{5} - 2) + {}^{9}C_{1} \times (2^{4} - 1)\right)}{9 \times 10^{4}}$$
$$= \frac{36 \times (32 - 2) + 9 \times (16 - 1)}{9 \times 10^{4}}$$
$$= \frac{4 \times 30 + 15 - 135}{135}$$

If a $\triangle ABC$ has vertices A(-1, 7), B(-7, 1) and C(5, -5), then its orthocentre has coordinates:

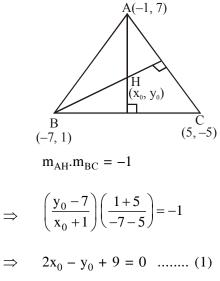
 10^{4}

(1)
$$(3, -3)$$
 (2) $\left(-\frac{3}{5}, \frac{3}{5}\right)$

(3) (-3, 3) (4)
$$\left(\frac{3}{5}, -\frac{3}{5}\right)$$

Official Ans. by NTA (3)

Sol. Let orthocentre is $H(x_0, y_0)$



$$\Rightarrow \left(\frac{y_{0}-1}{x_{0}+7}\right)\left(\frac{7-(-5)}{-1-5}\right) = -1$$

$$\Rightarrow x_{0}-2y_{0}+9=0 \dots(2)$$
Solving equation (1) and (2) we get
 $(x_{0}, y_{0}) = (-3, 3)$
8. If z_{1}, z_{2} are complex numbers such that
 $\operatorname{Re}(z_{1}) = |z_{1}-1|$. $\operatorname{Re}(z_{2}) = |z_{2}-1|$ and
 $\operatorname{arg}(z_{1}-z_{2}) = \frac{\pi}{6}$, then $\operatorname{Im}(z_{1}+z_{2})$ is equal to:
 $(1) \frac{\sqrt{3}}{2}$ (2) $\frac{2}{\sqrt{3}}$
(1) $\frac{\sqrt{3}}{2}$ (2) $\frac{2}{\sqrt{3}}$
(1) $\frac{\sqrt{3}}{2}$ (2) $\frac{2}{\sqrt{3}}$
(2) The plane which bisects the line joining the
points $(4, -2, 3)$ and $(2, 4, -1)$ at right angles
also passes through the point :
(1) $(4, 0, -1)$ (2) $(4, 0, 1)$
(3) $\frac{1}{\sqrt{3}}$ (4) $2\sqrt{3}$
Official Ans. by NTA (4)
Sol. $\operatorname{Re}(z) = |z-1|$
 $\Rightarrow x = \sqrt{(x-1)^{2} + (y-0)^{2}}$ (x > 0)
 $\Rightarrow y^{2} = 2x - 1 = 4\frac{1}{2}\left(x-\frac{1}{2}\right)$
 $\Rightarrow a parabola with focus (1, 0) & directrix as
imaginary axis.
 $\therefore \quad \operatorname{Vertex} = \left(\frac{1}{2}, 0\right)$
 $\operatorname{A}(z_{1}) & \operatorname{B}(z_{2})$ are two points on it such that
slope of AB = tan $\frac{\pi}{6} = \frac{1}{\sqrt{3}}$
 $(\operatorname{arg}(z_{1}-z_{2}) = \frac{\pi}{6})$
 $(\operatorname{arg}(z_{1}-z_{2}) = \frac{\pi}{6})$$

right angles

Sol. Required limit

$$L = \lim_{h \to 0} \frac{(a+2(a+h))^{1/3} - (3(a+h))^{1/3}}{(3a+a+h)^{1/3} - (4(a+h))^{1/3}}$$

$$= \lim_{h \to 0} \frac{(3a)^{1/3} \left(1 + \frac{2h}{3a}\right)^{1/3} - (3a)^{1/3} \left(1 + \frac{h}{a}\right)^{1/3}}{(4a)^{1/3} \left(1 + \frac{h}{4a}\right)^{1/3} - (4a)^{1/3} \left(1 + \frac{h}{a}\right)^{1/3}}$$

$$= \lim_{h \to 0} \left(\frac{3^{1/3}}{4^{1/3}} \right) \left[\frac{\left(1 + \frac{2h}{9a} \right) - \left(1 + \frac{h}{3a} \right)}{\left(1 + \frac{h}{12a} \right) - \left(1 + \frac{h}{3a} \right)} \right]$$

$$= \left(\frac{3}{4}\right)^{1/3} \frac{\left(\frac{2}{9} - \frac{1}{3}\right)}{\left(\frac{1}{12} - \frac{1}{3}\right)} = \left(\frac{3}{4}\right)^{1/3} \left(\frac{8 - 12}{3 - 12}\right)$$

$$= \left(\frac{3}{4}\right)^{1/3} \left(\frac{-4}{-9}\right) = \frac{4^{1-\frac{1}{3}}}{3^{2-\frac{1}{3}}} = \frac{4^{2/3}}{3^{5/3}}$$

$$=\frac{(8\times2)^{1/3}}{(27\times9)^{1/3}}=\frac{2}{3}\left(\frac{2}{9}\right)^{1/3}$$

11. Let A be a 3×3 matrix such that

adj A =
$$\begin{bmatrix} 2 & -1 & 1 \\ -1 & 0 & 2 \\ 1 & -2 & -1 \end{bmatrix}$$
 and

B = adj (adj A).

If $|A| = \lambda$ and $|(B^{-1})^T| = \mu$, then the ordered pair, $(|\lambda|, \mu)$ is equal to :

$$(1) \left(9, \frac{1}{9}\right) \qquad (2) \left(9, \frac{1}{81}\right)$$
$$(1)$$

Official Ans. by NTA (3)

Sol. C = adj A =
$$\begin{vmatrix} +2 & -1 & 1 \\ -1 & 0 & 2 \\ 1 & -2 & -1 \end{vmatrix}$$

$$|C| = |adj A| = +2(0 + 4) + 1.(1 - 2) + 1.(2, 4)$$

= +8 - 1 + 2
$$|adj A| = |A|^2 = 9 = 9$$

$$\lambda = |A| = \pm 3$$

$$|\lambda| = 3$$

B = adj C
$$|B| = |adj C| = |C|^2 = 81$$

$$|(B^{-1})^{T}| = |B|^{-1} = \frac{1}{81}$$

$$(|\lambda|, \mu) = \left(3, \frac{1}{81}\right)$$

12. Suppose f(x) is a polynomial of degree four, having critical points at -1, 0, 1. If $T = \{x \in R | f(x) = f(0)\}$, then the sum of squares of all the elements of T is :

(3) 4 (4) 2

Official Ans. by NTA (3)

Sol.
$$f'(x) = x(x + 1) (x - 1) = x^3 - x$$

$$\int df(x) = \int x^3 - x \, dx$$
$$f(x) = \frac{x^4}{4} - \frac{x^2}{2} + C$$
$$f(x) = f(0)$$
$$\frac{x^4}{4} - \frac{x^2}{2} = 0$$
$$x^2 (x^2 - 2) = 0$$
$$x = 0, 0, \sqrt{2}, -\sqrt{2}$$

Let a, b, $c \in R$ be such that $a^2 + b^2 + c^2 = 1$. 13. If a cos θ = b cos $\left(\theta + \frac{2\pi}{3}\right) = c \cos\left(\theta + \frac{4\pi}{3}\right)$, where $\theta = \frac{\pi}{9}$, then the angle between the vectors $\hat{ai} + \hat{bj} + c\hat{k}$ and $\hat{bi} + \hat{cj} + a\hat{k}$ is : (1) $\frac{\pi}{2}$ (2) 0(4) $\frac{2\pi}{2}$ (3) $\frac{\pi}{9}$ Official Ans. by NTA (1) **Sol.** $\cos\phi = \frac{\overline{p}.\overline{q}}{|\overline{p}||\overline{q}|} = \frac{ab+bc+ca}{a^2+b^2+c^2} = \frac{\Sigma ab}{1}$ $= \operatorname{abc}\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right)$ $=\frac{abc}{\lambda}\left(\cos\theta+\cos\left(\theta+\frac{2\pi}{3}\right)+\cos\left(\theta+\frac{4\pi}{3}\right)\right)$ $=\frac{abc}{\lambda}\left(\cos+2\cos(\theta+\pi)\cos\frac{\pi}{3}\right)$ $=\frac{abc}{\lambda}(\cos\theta-\cos\theta)=0$ $\phi = \frac{\pi}{2}$ 14. If the sum of the series $20+19\frac{3}{5}+19\frac{1}{5}+18\frac{4}{5}+\dots$ upto nth term is 488

and the nth term is negative, then :

(1) nth term is
$$-4\frac{2}{5}$$
 (2) n = 41
(3) nth term is -4 (4) n = 60
Official Ans. by NTA (3)
Sol. $S = \frac{100}{5} + \frac{98}{5} + \frac{96}{5} + \frac{94}{5} + \dots n$

$$S_{n} = \frac{n}{2} \left(2 \times \frac{100}{5} + (n-1)\left(-\frac{2}{5}\right) \right) = 188$$

n(100 - n + 1) = 488 × 5
n² - 101n + 488 × 5 = 0
n = 61, 40
$$T_{n} = a + (n-1)d = \frac{100}{5} - \frac{2}{5} \times 60$$

= 20 - 24 = -4

15. Let $x_i (1 \le i \le 10)$ be ten observations of a random

variable X. If
$$\sum_{i=1}^{10} (x_i - p) = 3$$
 and $\sum_{i=1}^{10} (x_i - p)^2 = 9$

where $0 \neq p \in R$, then the standard deviation of these observations is :

(1)
$$\sqrt{\frac{3}{5}}$$
 (2) $\frac{7}{10}$
(3) $\frac{9}{10}$ (4) $\frac{4}{5}$

Official Ans. by NTA (3)

Sol. Variance =
$$\frac{\Sigma(x_i - p)^2}{n} - \left(\frac{\Sigma(x_i - p)}{n}\right)^2$$

$$=\frac{9}{10} - \left(\frac{3}{10}\right)^2 = \frac{81}{100}$$

S.D. =
$$\frac{9}{10}$$

16. If $x^{3}dy + xy dx = x^{2} dy + 2y dx$; y(2) = e and x > 1, then y(4) is equal to :

(1)
$$\frac{3}{2} + \sqrt{e}$$
 (2) $\frac{3}{2}\sqrt{e}$

3)
$$\frac{1}{2} + \sqrt{e}$$
 (4) $\frac{\sqrt{e}}{2}$

Sol.
$$x^{3}dy + xy dx = x^{2} dy + 2y dx$$

$$\Rightarrow dy(x^{3} - x^{2}) = dx (2y - xy)$$

$$\Rightarrow -\int \frac{1}{y} dy = \int \frac{x-2}{x^{2}(x-1)} dx$$

$$\Rightarrow -\ell ny = \int \left(\frac{A}{x} + \frac{B}{x^{2}} + \frac{C}{(x-1)}\right) dx$$
Where A = 1, B = +2, C = -1

$$\Rightarrow -\ell ny = \ell n x - \frac{2}{x} - \ell n (x-1) + \lambda$$

$$\Rightarrow y(2) = e$$

$$\Rightarrow -1 = \ell n 2 - 1 - 0 + \lambda$$

$$\therefore \lambda = -\ell n 2$$

$$\Rightarrow \ell n y = -\ell nx + \frac{2}{x} + \ell n (x-1) + \ell n 2$$
Now put x = 4 in equation

$$\Rightarrow \ell n y = -\ell n 4 + \frac{1}{2} + \ell n 3 + \ell n 2$$

$$\Rightarrow \ell n y = \ell n \left(\frac{3}{2}\right) + \frac{1}{2}\ell n e$$

$$\Rightarrow y = \frac{3}{2}\sqrt{e}$$
17. Let e₁ and e₂ be the eccentricities of the e

17. llipse,

> $\frac{x^2}{25} + \frac{y^2}{b^2} = 1(b < 5)$ and the hyperbola,

> $\frac{x^2}{16} - \frac{y^2}{b^2} = 1$ respectively satisfying $e_1e_2 = 1$. If

 α and β are the distances between the foci of the ellipse and the foci of the hyperbola respectively, then the ordered pair (α, β) is equal to :

(1) (8, 10)(2) (8, 12)

(3)
$$\left(\frac{20}{3}, 12\right)$$
 (4) $\left(\frac{24}{5}, 10\right)$

Sol. For ellipse
$$\frac{x^2}{25} + \frac{y^2}{b^2} = 1$$
 (b < 5)

Let e₁ is eccentricity of ellipse $b^2 = 25 (1 - e_1^2) \dots (1)$ *.*.. Again for hyperbola

$$\frac{x^2}{16} - \frac{y^2}{b^2} = 1$$

Let e_2 is eccentricity of hyperbola.

:. $b^2 = 16(e_2^2 - 1)$ (2) by (1) & (2) $25(1 - e_1^2) = 16(e_2^2 - 1)$ Now $e_1 \cdot e_2 = 1$ (given)

:.
$$25(1 - e_1^2) = 16\left(\frac{1 - e_1^2}{e_1^2}\right)$$

or
$$e_1 = \frac{4}{5}$$
 $\therefore e_2 = \frac{5}{4}$

Now distance between foci is 2ae

 \therefore distance for ellipse = 2 × 5 × $\frac{4}{5}$ = 8 = α

distance for hyperbola = $2 \times 4 \times \frac{5}{4} = 10 = \beta$

 $\therefore (\alpha, \beta) \equiv (8, 10)$

18. The set of all real values of λ for which the quadratic equations,

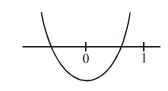
> $(\lambda^2 + 1)x^2 - 4\lambda x + 2 = 0$ always have exactly one root in the interval (0, 1) is :

(1) (-3, -1)	(2) (1, 3]

(3)(0,2)(4)(2,4]

Official Ans. by NTA (2)

Sol. If exactly one root in (0, 1) then



- $\Rightarrow \quad f(0).f(1) < 0$
- $\Rightarrow \quad 2(\lambda^2 4\lambda + 3) < 0$
- \Rightarrow 1 < λ < 3

Now for $\lambda = 1, 2x^2 - 4x + 2 = 0$

$$(x - 1)^2 = 0, x = 1, 1$$

So both roots doesn't lie between (0, 1)

$$\therefore \lambda \neq 1$$

Again for $\lambda = 3$

$$10x^2 - 12x + 2 = 0$$

 $\Rightarrow \quad x = 1, \frac{1}{5}$

so if one root is 1 then second root lie between (0, 1)so $\lambda = 3$ is correct. $\therefore \quad \lambda \in (1, 3].$

19. If the term independent of x in the expansion of

$$\left(\frac{3}{2}x^2 - \frac{1}{3x}\right)^9$$
 is k, then 18 k is equal to :

(1) 9 (2) 11 (3) 5 (4) 7

Official Ans. by NTA (4)

Sol.
$$T_{r+1} = {}^{9}C_r \left(\frac{3}{2}x^2\right)^{9-r} \left(-\frac{1}{3x}\right)^r$$

$$T_{r+1} = {}^{9}C_{r} \left(\frac{3}{2}\right)^{9-r} \left(-\frac{1}{3}\right)^{r} x^{18-3r}$$

For independent of x

$$18 - 3r = 0, r = 6$$

∴ $T_7 = {}^9C_6 \left(\frac{3}{2}\right)^3 \left(-\frac{1}{3}\right)^6 = \frac{21}{54} = k$
∴ $18k = \frac{21}{54} \times 18 = 7$

20. Let p, q, r be three statements such that the truth value of $(p \land q) \rightarrow (\neg q \lor r)$ is F. Then the truth values of p, q, r are respectively : (1) T, F, T (2) F, T, F (3) T, T, F (4) T, T, T Official Ans. by NTA (3) **Sol.** $(p \land q) \rightarrow (\neg q \lor r) =$ false when $(p \land q) = T$ and $(\sim q \lor r) = F$ $(p \land q) = T$ is possible when p = q = trueSo \therefore ~q = False (q = true) So $(\neg q \lor r)$ = False is possible if r is false \therefore p = T, q = T, r = F 21. If m arithmetic means (A.Ms) and three

geometric means (G.Ms) are inserted between 3 and 243 such that 4^{th} A.M. is equal to 2^{nd} G.M., then m is equal to _____.

Official Ans. by NTA (39)

Sol. 3, A₁, A₂ A_m, 243

$$d = \frac{243 - 3}{m + 1} = \frac{240}{m + 1}$$

Now 3, G₁, G₂, G₃, 243

$$r = \left(\frac{243}{3}\right)^{\frac{1}{3+1}} = 3$$

$$\therefore \quad A_4 = G_2$$
$$\Rightarrow \quad a + 4d = ar^2$$

$$3+4\left(\frac{240}{m+1}\right)=3(3)^2$$

If the tangent of the curve, $y = e^x$ at a point 22. (c, e^c) and the normal to the parabola, $y^2 = 4x$ at the point (1, 2) intersect at the same point on the x-axis, then the value of c is _____. Official Ans. by NTA (4) **Sol.** $y = e^x \Rightarrow \frac{dy}{dx} = e^x$ $m = \left(\frac{dy}{dx}\right)_{(c,e^c)} = e^c$ Tangent at (c, e^c) \Rightarrow $y - e^c = e^c (x - c)$ it intersect x-axis Put $y = 0 \Rightarrow x = c - 1$(1) Now $y^2 = 4x \implies \frac{dy}{dx} = \frac{2}{y} \implies \left(\frac{dy}{dx}\right)_{(1-2)} = 1$ \Rightarrow Slope of normal = -1 Equation of normal y - 2 = -1(x - 1)24. x + y = 3 it intersect x-axis Put $y = 0 \Rightarrow x = 3$(2) Points are same x = c - 1 = 3 \Rightarrow \Rightarrow c = 4 23. Let a plane P contain two lines

 $\vec{r} = \hat{i} + \lambda (\hat{i} + \hat{j}), \ \lambda \in R \text{ and}$

 $\vec{r} = -\hat{j} + \mu(\hat{j} - \hat{k}), \ \mu \in \mathbb{R}$

If $Q(\alpha, \beta, \gamma)$ is the foot of the perpendicular drawn from the point M(1, 0, 1) to P, then $3(\alpha + \beta + \gamma)$ equals _____.

Official Ans. by NTA (5)

Sol. Dr's normal to plane

$$= \begin{vmatrix} i & j & k \\ 1 & 1 & 0 \\ 0 & 1 & -1 \end{vmatrix} = -\hat{i} + \hat{j} + \hat{k}$$

Equation of plane

$$-1(x - 1) + 1(y - 0) + 1(z - 0) = 0$$

x - y - z - 1 = 0(1)

Now
$$\frac{\alpha - 1}{1} = \frac{\beta - 0}{-1} = \frac{\gamma - 1}{-1} = -\frac{(1 - 0 - 1 - 1)}{3}$$

$$\frac{\alpha - 1}{1} = \frac{\beta}{-1} = \frac{\gamma - 1}{-1} = \frac{1}{3}$$
$$\alpha = \frac{4}{3}, \beta = -\frac{1}{3}, \gamma = \frac{2}{3}$$

$$3(\alpha + \beta + \gamma) = 3\left(\frac{4}{3} - \frac{1}{3} + \frac{2}{3}\right) = 5$$

24. Let S be the set of all integer solutions, (x, y, z), of the system of equations x - 2y + 5z = 0 -2x + 4y + z = 0-7x + 14y + 9z = 0

such that $15 \le x^2 + y^2 + z^2 \le 150$. Then, the number of elements in the set S is equal to

Official Ans. by NTA (8)

Sol.
$$\Delta = \begin{vmatrix} 1 & -2 & 5 \\ -2 & 4 & 1 \\ -7 & 14 & 9 \end{vmatrix} = 0$$

Let $x = k$
 \Rightarrow Put in (1) & (2)
 $k - 2y + 5z = 0$
 $-2k + 4y + z = 0$
 $z = 0, y = \frac{k}{2}$
 \therefore x, y, z are integer
 \Rightarrow k is even integer
Now $x = k, y = \frac{k}{2}, z = 0$ put

$$15 \le k^2 + \left(\frac{k}{2}\right)^2 + 0 \le 150$$

in condition

$$12 \le k^2 \le 120$$

$$\Rightarrow \quad k = \pm 4, \pm 6, \pm 8, \pm 10$$

 \Rightarrow Number of element in S = 8.

25. The total number of 3-digit numbers, whose sum of digits is 10, is _____. Official Ans. by NTA (54) Sol. Let three digit number is xyz x + y + z = 10; $x \ge 1$, $y \ge 0$ $z \ge 0$ (1) Let $T = x - 1 \Rightarrow x = T + 1$ where $T \ge 0$ Put in (1) T + y + z = 9; $0 \le T \le 8$, $0 \le y$, $z \le 9$ No. of non negative integral solution $= {}^{9+3-1}C_{3-1} - 1$ (when T = 9) = 55 - 1 = 54