,∗***™** CollegeDekho

FINAL JEE-MAIN EXAMINATION - SEPTEMBER, 2020					
	(Held On Thursday 03 rd SEPTEME MATHEMATICS	BER, 2020) TIME : 9 AM to 12 PM TEST PAPER WITH SOLUTION			
1. Sol.	A die is thrown two times and the sum of the scores appearing on the die is observed to be a multiple of 4. Then the conditional probability that the score 4 has appeared atleast once is : (1) $\frac{1}{8}$ (2) $\frac{1}{9}$ (3) $\frac{1}{3}$ (4) $\frac{1}{4}$ Official Ans. by NTA (2) A : Sum obtained is a multiple of 4. A = {(1, 3), (2, 2), (3, 1), (2, 6), (3, 5), (4, 4), (5, 3), (6, 2), (6, 6)} B : Score of 4 has appeared at least once. B = {(1, 4), (2, 4), (3, 4), (4, 4), (5, 4), (6, 4), (4, 1), (4, 2), (4, 3), (4, 5), (4, 6)} Required probability = $P\left(\frac{B}{A}\right) = \frac{P(B \cap A)}{P(A)}$ $= \frac{1/36}{9/36} = \frac{1}{9}$ The lines $\vec{r} = (\hat{i} - \hat{j}) + \ell(2\hat{i} + \hat{k})$ and $\vec{r} = (2\hat{i} - \hat{j}) + m(\hat{i} + \hat{j} - \hat{k})$ (1) Intersect when $\ell = 1$ and $m = 2$ (2) Intersect when $\ell = 2$ and $m = \frac{1}{2}$ (3) Do not intersect for any values of ℓ and m (4) Intersect for all values of ℓ and m Official Ans. by NTA (3) $\vec{r} = \hat{i}(1+2\ell) + \hat{j}(-1) + \hat{k}(\ell)$	TEST PAPER WITH SOLUTION For intersection $1 + 2 \ell = 2 + m$ (i) -1 = m - 1 (ii) $\ell = -m$ (iii) from (ii) $m = 0$ from (iii) $\ell = 0$ These values of m and ℓ do not satisfy equation (1). Hence the two lines do not intersect for any values of ℓ and m. 3. The foot of the perpendicular drawn from the point (4, 2, 3) to the line joining the points (1, -2, 3) and (1, 1, 0) lies on the plane : (1) $x + 2y - z = 1$ (2) $x - 2y + z = 1$ (3) $x - y - 2z = 1$ (4) $2x + y - z = 1$ Official Ans. by NTA (4) P(4,2,3) Equation of AB = $\vec{r} = (\hat{i} + \hat{j}) + \lambda(\hat{3} - 3\hat{k})$ Let coordinates of M = (1, (1 + 3 λ), -3λ). $\vec{PM} = -3\hat{i} + (3\lambda - 1)\hat{j} - 3(\lambda + 1)\hat{k}$ $\vec{AB} = 3\hat{j} - 3\hat{k}$ $\therefore \vec{PM} \perp \vec{AB} \Rightarrow \vec{PM} \cdot \vec{AB} = 0$ $\Rightarrow 3(3\lambda - 1) + 9(\lambda + 1) = 0$ $\Rightarrow \lambda = -\frac{1}{3}$			
	$\vec{r} = \hat{i}(2+m) + \hat{j}(m-1) + \hat{k}(-m)$	\therefore M = (1, 0, 1)			

901			
4.	A hyperbola having the transverse axis of		
	length $\sqrt{2}$ has the same foci as that of the ellipse		
	$3x^2 + 4y^2 = 12$, then this hyperbola does not		
	pass through which of the following points ?		
	(1) $\left(1, -\frac{1}{\sqrt{2}}\right)$ (2) $\left(\sqrt{\frac{3}{2}}, \frac{1}{\sqrt{2}}\right)$		
	$(3)\left(\frac{1}{\sqrt{2}},0\right) \qquad (4)\left(-\sqrt{\frac{3}{2}},1\right)$	5.	
	Official Ans. by NTA (2)		
Sol.	Ellipse : $\frac{x^2}{4} + \frac{y^2}{3} = 1$		
	_		
	eccentricity = $\sqrt{1 - \frac{3}{4}} = \frac{1}{2}$		
	v 4 2		
	:. foci = $(\pm 1, 0)$		
	for hyperbola, given $2a = \sqrt{2} \implies a = \frac{1}{\sqrt{2}}$	So	
	∴ hyperbola will be		
	$\frac{x^2}{1/2} - \frac{y^2}{b^2} = 1$		
	eccentricity = $\sqrt{1+2b^2}$		
	eccentricity = $\sqrt{1+26}$		
	$\therefore \text{ foci} = \left(\pm \sqrt{\frac{1+2b^2}{2}}, 0\right)$		
	: Ellipse and hyperbola have same foci		
	$\Rightarrow \sqrt{\frac{1+2b^2}{2}} = 1$		
	$\Rightarrow b^2 = \frac{1}{2}$		

 \therefore Equation of hyperbola : $\frac{x^2}{1/2} - \frac{y^2}{1/2} = 1$ \Rightarrow $x^2 - y^2 = \frac{1}{2}$ Clearly $\left(\sqrt{\frac{3}{2}}, \frac{1}{\sqrt{2}}\right)$ does not lie on it. The area (in sq. units) of the region $\{(x, y) : 0 \le y \le x^2 + 1, 0 \le y \le x + 1, \\$ $\frac{1}{2} \le x \le 2\}$ is : (1) $\frac{79}{16}$ (2) $\frac{23}{6}$ (3) $\frac{79}{24}$ (4) $\frac{23}{16}$ Official Ans. by NTA (3) Sol. $0 \le y \le x^2 + 1, \ 0 \le y \le x + 1, \ \frac{1}{2} \le x \le 2$ (2,3) 2 2 0 Required area = $\int_{1/2}^{1} (x^2 + 1) dx + \frac{1}{2} (2+3) \times 1$ $=\frac{19}{24}+\frac{5}{2}=\frac{79}{24}$

6. If the first term of an A.P. is 3 and the sum of its first 25 terms is equal to the sum of its next 15 terms, then the common difference of this A.P. is :

(1)
$$\frac{1}{4}$$
 (2) $\frac{1}{5}$

(3)
$$\frac{1}{7}$$
 (4) $\frac{1}{6}$

Official Ans. by NTA (4) Sol. Sum of 1st 25 terms = sum of its next 15 terms

 $\Rightarrow (T_1 + \dots + T_{25}) = (T_{26} + \dots + T_{40})$ $\Rightarrow (T_1 + \dots + T_{40}) = 2(T_1 + \dots + T_{25})$ $\Rightarrow \frac{40}{2} [2 \times 3 + (39d)] = 2 \times \frac{25}{2} [2 \times 2 + 24d]$ $\Rightarrow d = \frac{1}{6}$

7. Let P be a point on the parabola, $y^2 = 12x$ and N be the foot of the perpendicular drawn from P on the axis of the parabola. A line is now drawn through the mid-point M of PN, parallel to its axis which meets the parabola at Q. If the

y-intercept of the line NQ is $\frac{4}{3}$, then :

(1)
$$MQ = \frac{1}{3}$$
 (2) PN

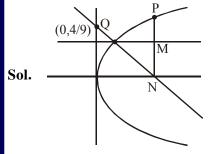
(3) MQ =
$$\frac{1}{4}$$

(4)
$$PN =$$

= 3

4

Official Ans. by NTA (3)



Let $P = (3t^2, 6t); N = (3t^2, 0)$

 $M = (3t^2, 3t)$

Equation of MQ : y = 3t

$$\therefore \quad \mathbf{Q} = \left(\frac{3}{4}t^2, 3t\right)$$

Equation of NQ

$$y = \frac{3t}{\left(\frac{3}{4}t^2 - 3t^2\right)} (x - 3t^2)$$

y-intercept of NQ = 4t = $\frac{4}{3} \Rightarrow t = \frac{1}{3}$

 $\therefore MQ = \frac{9}{4}t^2 = \frac{1}{4}$ PN = 6t = 2

8. For the frequency distribution :

 Variate (x) :
 x_1 x_2 x_3 x_{15}

 Frequency (f) :
 f_1 f_2 f_3 f_{15}

 where $0 < x_1 < x_2 < x_3 < \dots < x_{15} = 10$ and

 $\sum_{i=1}^{15} f_i > 0$, the standard deviation cannot be :

 (1) 2
 (2) 1

 (3) 4
 (4) 6

 Official Ans. by NTA (4)

Sol.
$$:: \sigma^2 \leq \frac{1}{4}(M-m)^2$$

Where M and m are upper and lower bounds of values of any random variable.

$$\therefore \quad \sigma^2 < \frac{1}{4}(10 - 0)^2$$
$$\Rightarrow \quad 0 < \sigma < 5$$
$$\therefore \quad \sigma \neq 6.$$

	π				
9.	$\int_{-\pi} \pi - x dx \text{ is equal to } :$				
	(1) π^2	(2) $2\pi^2$			
	$(3) \sqrt{2}\pi^2$	(2) $2\pi^2$ (4) $\frac{\pi^2}{2}$			
	Official Ans. by NTA (1)				
Sol.	$\int_{-\pi}^{\pi} \pi - x dx = 2 \int_{0}^{\pi} \pi - x dx$				
$=2\int_{0}^{\pi}(\pi-x)dx$					
	$=2\left[\pi x-\frac{x^2}{2}\right]_0^{\pi}=\pi^2$				
10.	Consider the two sets :				
	A = {m \in R : both the roots of				
	$x^{2} - (m + 1)x + m + 4 = 0$ are real}				
	B = [-3, 5).				
	Which of the following is not true ?				
	(1) A – B = ($-\infty$, -3) \cup (5, ∞)				
	$(2) \mathbf{A} \cap \mathbf{B} = \{-3\}$				
	(3) $B - A = (-3, 5)$				
	$(4) A \cup B = R$				
a .	Official Ans. by NTA (1)				
Sol. $A: D \ge 0$					
	$\Rightarrow (m+1)^2 - 4(m+4)$ $\Rightarrow m^2 + 2m + 1 - 4m$				
	$\Rightarrow m^2 + 2m + 1 - 4m - 16 \ge 0$ $\Rightarrow m^2 - 2m - 15 \ge 0$				
	$\Rightarrow m^2 - 2m - 15 \ge 0$ $\Rightarrow (m - 5) (m + 3) \ge 0$				
	$\Rightarrow (m - 3) (m + 3) \ge 0$ $\Rightarrow m \in (-\infty, -3] \cup [5, \infty)$				
	$\therefore \mathbf{A} = (-\infty, -3] \cup [5, \infty)$				
	B = [-3, 5]	, ,			
	L - / - /				

and

 $A \cap B = \{-3\}$ B - A = (-3, 5) $A \cup B = R$ 11. If $y^2 + \log_e (\cos^2 x) = y$, $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, then : (2) |y'(0)| + |y''(0)| = 3(1) |y''(0)| = 2(3) |y'(0)| + |y''(0)| = 1 (4) y''(0) = 0Official Ans. by NTA (1) **Sol.** $y^2 + \ln(\cos^2 x) = y$ $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ for x = 0y = 0 or 1Differentiating wrt x $\Rightarrow 2yy' - 2 \tan x = y'$ At (0, 0) y' = 0 At (0, 1) y' = 0 Differentiating wrt x $2yy'' + 2(y')^2 - 2 \sec^2 x = y''$ At (0, 0) y" = -2At (0, 1) y" = 2 |y''(0)| = 2*.*:. 12. The function, $f(x) = (3x - 7)x^{2/3}$, $x \in R$, is increasing for all x lying in : (1) $(-\infty, 0) \cup \left(\frac{3}{7}, \infty\right)$ (2) $(-\infty, 0) \cup \left(\frac{14}{15}, \infty\right)$

$$(3)\left(-\infty,\frac{14}{15}\right)$$

$$(4)\left(-\infty,-\frac{14}{15}\right)\,\cup\,(0,\,\infty)$$

Official Ans. by NTA (2)

Sol.
$$f(x) = (3x - 7)x^{2/3}$$

 $\Rightarrow f(x) = 3x^{5/3} - 7x^{2/3}$
 $\Rightarrow f'(x) = 5x^{2/3} - \frac{14}{3x^{1/3}}$
 $= \frac{15x - 14}{3x^{1/3}} > 0$
 $\frac{+}{-0} - \frac{+}{14/15}$
 $\therefore f'(x) > 0 \forall x \in (-\infty, 0) \cup (\frac{14}{15}, \infty)$
13. The value of $(2.^{1}P_0 - 3.^{2}P_1 + 4.^{3}P_2 - up to 51^{th} term) + (1! - 2! + 3! - up to 51^{th} term) is equal to :
(1) 1 + (51)! (2) 1 - 51(51)! (3) 1 + (52)! (4) 1
Official Ans. by NTA (3)
Sol. $S = (2.^{1}p_0 - 3.^{2}p_1 + 4.^{3}p_2 - up to 51 terms)$
 $+ (1! + 2! + 3! - up to 51 terms)$
 $[\because ^n p_{n-1} = n!]$
 $\therefore S = (2 \times 1! - 3 \times 2! + 4 \times 3! + 52.51!)$
 $+ (1! - 2! + 3! - (51)!)$
 $= (2! - 3! + 4! - (51)!)$
 $= 1! + 52!.$
14. If $\Delta = \begin{vmatrix} x - 2 & 2x - 3 & 3x - 4 \\ 2x - 3 & 3x - 4 & 4x - 5 \\ 3x - 5 & 5x - 8 & 10x - 17 \end{vmatrix} =$
 $Ax^3 + Bx^2 + Cx + D$, then B + C is equal to :$

(1) -1 (2) 1 (3) - 3(4) 9

Official Ans. by NTA (3)

1

Sol.
$$\Delta = \begin{vmatrix} x-2 & 2x-3 & 3x-4 \\ 2x-3 & 3x-4 & 4x-5 \\ 3x-5 & 5x-8 & 10x-17 \end{vmatrix}$$
$$= Ax^3 + Bx^2 + Cx + D.$$
$$R_2 \rightarrow R_2 - R_1 \qquad R_3 \rightarrow R_3 - R_2$$
$$\Delta = \begin{vmatrix} x-2 & 2x-3 & 3x-4 \\ x-1 & x-1 & x-1 \\ x-2 & 2(x-2) & 6(x-2) \end{vmatrix}$$
$$= (x-1)(x-2) \begin{vmatrix} x-2 & 2x-3 & 3x-4 \\ 1 & 1 & 1 \\ 1 & 2 & 6 \end{vmatrix}$$

$$= -3(x - 1)^2 (x - 2) = -3x^3 + 12x^2 - 15x + 6$$

∴ B + C = 12 - 15 = -3

 $(1 + e^{-x}) (1 + y^2) \frac{dy}{dx} = y^2$, which passes through the point (0, 1), is :

(1)
$$y^{2} = 1 + y \log_{e} \left(\frac{1 + e^{x}}{2}\right)$$

(2) $y^{2} + 1 = y \left(\log_{e} \left(\frac{1 + e^{x}}{2}\right) + 2\right)$

(3)
$$y^2 = 1 + y \log_e \left(\frac{1 + e^{-x}}{2}\right)$$

(4)
$$y^2 + 1 = y \left(\log_e \left(\frac{1 + e^{-x}}{2} \right) + 2 \right)$$

Official Ans. by NTA (1)

Sol.
$$(1 + e^{-x}) (1 + y^2) \frac{dy}{dx} = y^2$$

 $\Rightarrow (1 + y^{-2}) dy = \left(\frac{e^x}{1 + e^x}\right) dx$
 $\Rightarrow \left(y - \frac{1}{y}\right) = \ell n (1 + e^x) + c$
 \therefore It passes through $(0, 1) \Rightarrow c = -\ell n 2$
 $\Rightarrow y^2 = 1 + y \ell n \left(\frac{1 + e^x}{2}\right)$
16. If the number of integral terms in the expansion
of $(3^{1/2} + 5^{1/8})^n$ is exactly 33, then the least value
of n is :
(1) 264 (2) 256
(3) 128 (4) 248
Official Ans. by NTA (2)
Sol. $T_{r+1} = {}^nC_r (3)^{\frac{n-r}{2}} (5)^{\frac{r}{8}} (n \ge r)$
Clearly r should be a multiple of 8.
 \therefore there are exactly 33 integral terms
Possible values of r can be

0, 8, 16,, 32 × 8

- least value of n = 256. *.*..
- 17. If α and β are the roots of the equation $x^{2} + px + 2 = 0$ and $\frac{1}{\alpha}$ and $\frac{1}{\beta}$ are the roots of the equation $2x^2 + 2qx + 1 = 0$, then $\left(\alpha - \frac{1}{\alpha}\right) \left(\beta - \frac{1}{\beta}\right) \left(\alpha + \frac{1}{\beta}\right) \left(\beta + \frac{1}{\alpha}\right)$ is equal to: (1) $\frac{9}{4}(9 + p^2)$ (2) $\frac{9}{4}(9 - q^2)$ (3) $\frac{9}{4}$ (9 - p²) (4) $\frac{9}{4}$ (9 + q²)

Sol.
$$\alpha$$
, β are roots of $x^2 + px + 2 = 0$
 $\Rightarrow \alpha^2 + p\alpha + 2 = 0$ & $\beta^2 + p\beta + 2 = 0$
 $\Rightarrow \frac{1}{\alpha} \cdot \frac{1}{\beta}$ are roots of $2x^2 + px + 1 = 0$
But $\frac{1}{\alpha} \cdot \frac{1}{\beta}$ are roots of $2x^2 + 2qx + 1 = 0$
 $\Rightarrow p = 2q$
Also $\alpha + \beta = -p$ $\alpha\beta = 2$
 $\left(\alpha - \frac{1}{\alpha}\right) \left(\beta - \frac{1}{\beta}\right) \left(\alpha + \frac{1}{\beta}\right) \left(\beta + \frac{1}{\alpha}\right)$
 $= \left(\frac{\alpha^2 - 1}{\alpha}\right) \left(\frac{\beta^2 - 1}{\beta}\right) \left(\frac{\alpha\beta + 1}{\beta}\right) \left(\frac{\alpha\beta + 1}{\alpha}\right)$
 $= \frac{(-p\alpha - 3)(-p\beta - 3)(\alpha\beta + 1)^2}{(\alpha\beta)^2}$
 $= \frac{9}{4}(p\alpha\beta + 3p(\alpha + \beta) + 9)$
 $= \frac{9}{4}(9 - p^2) = \frac{9}{4}(9 - 4q^2)$
18. Let [t] denote the greatest integer $\leq t$. If for some $\lambda \in R - \{0, 1\}, \lim_{x \to 0} \left|\frac{1 - x + |x|}{\lambda - x + [x]}\right| = L$, then L is

equal to :

18.

(1) 1 (2) 2
(3)
$$\frac{1}{2}$$
 (4) 0

Official Ans. by NTA (2)

Sol. LHL :
$$\lim_{x \to 0^{-}} \left| \frac{1 - x - x}{\lambda - x - 1} \right| = \left| \frac{1}{\lambda - 1} \right|$$

RHL : $\lim \left| \frac{1 - x + x}{\lambda - x} \right| = \left| \frac{1}{\lambda} \right|$

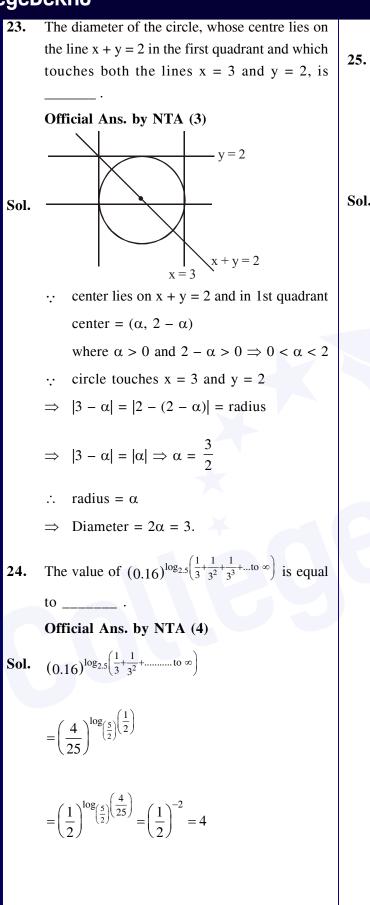
For existence of limit

LHL = RHL

$$\Rightarrow \frac{1}{|\lambda-1|} = \frac{1}{|\lambda|} \Rightarrow \lambda = \frac{1}{2}$$

$$\therefore L = \frac{1}{|\lambda|} = 2$$
19. $2\pi - \left(\sin^{-1}\frac{4}{5} + \sin^{-1}\frac{5}{13} + \sin^{-1}\frac{16}{65}\right)$ is equal to:
(1) $\frac{7\pi}{4}$ (2) $\frac{5\pi}{4}$
(3) $\frac{3\pi}{2}$ (4) $\frac{\pi}{2}$
Official Ans. by NTA (3)
Sol. $2\pi - \left(\sin^{-1}\left(\frac{4}{5}\right) + \sin^{-1}\left(\frac{5}{13}\right) + \sin^{-1}\left(\frac{16}{65}\right)\right)$
 $= 2\pi - \left(\tan^{-1}\left(\frac{4}{3}\right) + \tan^{-1}\left(\frac{5}{12}\right) + \tan^{-1}\left(\frac{16}{63}\right)\right)$
 $= 2\pi - \left(\tan^{-1}\left(\frac{63}{16}\right) + \tan^{-1}\left(\frac{16}{63}\right)\right)$
 $= 2\pi - \left(\frac{\pi}{2} = \frac{3\pi}{2}\right)$
20. The proposition $p \rightarrow \sim (p \land \neg q)$ is equivalent to:
(1) $(\neg p) \lor q$ (2) q
(3) $(\neg p) \land q$ (4) $(\neg p) \lor (\neg q)$
Official Ans. by NTA (1)
Sol. $p \rightarrow \sim (p \land q)$
 $= \gamma p \lor p \lor q$
 $= \gamma p \lor \neg p \lor q$
 $= \gamma p \lor \neg p \lor q$

21. Let
$$A = \begin{bmatrix} x & 1 \\ 1 & 0 \end{bmatrix}$$
, $x \in R$ and $A^4 = [a_{ij}]$. If
 $a_{11} = 109$, then a_{22} is equal to _______.
Official Ans. by NTA (10)
Sol. $A = \begin{bmatrix} x & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} x^2 + 1 & x \\ x & 1 \end{bmatrix}$
 $A^2 = \begin{bmatrix} x & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} x^2 + 1 & x \\ x & 1 \end{bmatrix}$
 $A^4 = \begin{bmatrix} x^2 + 1 & x \\ x & 1 \end{bmatrix} \begin{bmatrix} x^2 + 1 & x \\ x & 1 \end{bmatrix}$
 $= \begin{bmatrix} (x^2 + 1)^2 + x^2 & x(x^2 + 1) + x \\ x(x^2 + 1) + x & x^2 + 1 \end{bmatrix}$
 $a_{11} = (x^2 + 1)^2 + x^2 = 109$
 $\Rightarrow x = \pm 3$
 $a_{22} = x^2 + 1 = 10$
22. If $\lim_{x\to 0} \left\{ \frac{1}{x^8} \left(1 - \cos \frac{x^2}{2} - \cos \frac{x^2}{4} + \cos \frac{x^2}{2} \cos \frac{x^2}{4} \right) \right\} = 2^{-k}$,
then the value of k is _______.
Official Ans. by NTA (8)
Sol. $\lim_{x\to 0} \left\{ \frac{1}{x^8} \left(1 - \cos \frac{x^2}{2} - \cos \frac{x^2}{4} + \cos \frac{x^2}{2} \cos \frac{x^2}{4} \right) \right\} = 2^{-k}$
 $\Rightarrow \lim_{x\to 0} \frac{\left(1 - \cos \frac{x^2}{2} - \cos \frac{x^2}{4} + \cos \frac{x^2}{2} \cos \frac{x^2}{4} \right)}{16 \left(\frac{x^2}{4} \right)^2} = \frac{1}{8} \times \frac{1}{32} = 2^{-k}$



25. If
$$\left(\frac{1+i}{1-i}\right)^{\frac{m}{2}} = \left(\frac{1+i}{i-1}\right)^{\frac{n}{3}} = 1$$
, (m, $n \in N$) then the

greatest common divisor of the least values of m and n is _____.

Official Ans. by NTA (4)

bl.
$$\left(\frac{1+i}{1-i}\right)^{m/2} = \left(\frac{1+i}{i-1}\right)^{n/3} = 1$$

 $\Rightarrow \left(\frac{(1+i)^2}{2}\right)^{m/2} = \left(\frac{(1+i)^2}{-2}\right)^{n/3} = 1$
 $\Rightarrow (i)^{m/2} = (-i)^{n/3} = 1$
 $\Rightarrow \frac{m}{2} = 4k_1 \text{ and } \frac{n}{3} = 4k_2$
 $\Rightarrow m = 8k_1 \text{ and } n = 12k_2$

Least value of m = 8 and n = 12.

 \therefore GCD = 4