
## 

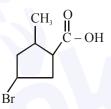


## CollegeDékho

Among statements (a) -(d), the correct ones So are : (a) Lime stone is decomposed to CaO during the extraction of iron from its oxides. (b) In the extraction of silver, silver is extracted as an anionic complex. (c) Nickel is purified by Mond's process. (d) Zr and Ti are purified by Van Arkel method. (1) (c) and (d) only (2) (a), (c) and (d) only (3) (b), (c) and (d) only (4) (a), (b), (c) and (d) Official Ans. by NTA (4) **Sol.** (a)  $CaCO_3 \xrightarrow{\Delta} CaO + CO_2$  {In Blast furnace} lime stone 6. (b) Ag form cyanide complex  $[Ag(CN)_2]^$ is : during cyaride process  $Ag/Ag_2S+CN^{\ominus} \rightarrow [Ag(CN)_2]^{-}$ (c) Ni is purified by mond's process (d) Zr and Ti are purified by van arkel method All (a), (b), (c), (d) are correct statements Thus correct option is (4)

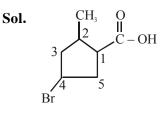


Identify the incorrect statement from the options below for the above cell :


- (1) If  $E_{ext} > 1.1$  V, Zn dissolves at Zn electrode and Cu deposits at Cu electrode
- (2) If  $E_{ext} > 1.1$  V, e<sup>-</sup> flows from Cu to Zn
- (3) If  $E_{ext} = 1.1$  V, no flow of  $e^-$  or current occurs
- (4) If  $E_{ext} < 1.1$  V, Zn dissolves at anode and Cu deposits at cathode

**bl.** 
$$E_{cell}^{o} = 0.34 - (-0.76)$$

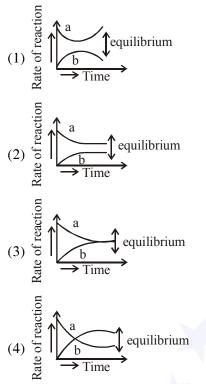
- = 1.10 volt
- If  $E_{ext} > 1.10$  volt
- $Cu \rightarrow Anode$
- $Zn \rightarrow Cathode$


If  $E_{ext} = 1.10$  volt

- $Zn \rightarrow Anode$
- $Cu \rightarrow Cathode$
- The IUPAC name of the following compound



- (1) 4-Bromo-2-methylcyclopentane carboxylic acid
- (2) 5-Bromo-3-methylcyclopentanoic acid
- (3) 3-Bromo-5-methylcyclopentane carboxylic acid
- (4) 3-Bromo-5-methylcyclopentanoic acid

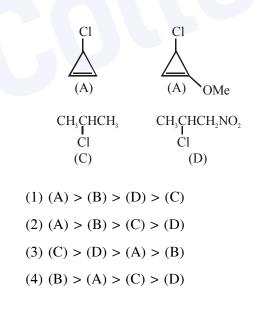

Official Ans. by NTA (1)

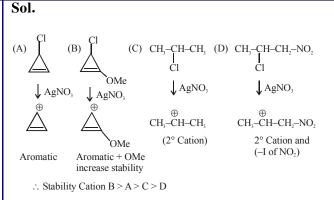


4-bromo-2-methyl cyclopentane carboxylic Acid

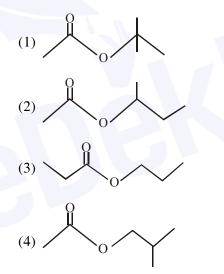


For the equilibrium A ⇒ B, the variation of the rate of the forward (a) and reverse (b) reaction with time is given by





Official Ans. by NTA (3)

Sol. at equilibrium


 $r_a = r_b$ 

8. The decreasing order of reactivity of the following organic molecules towards AgNO<sub>3</sub> solution is :





9. An organic compound (A) (molecular formula C<sub>6</sub>H<sub>12</sub>O<sub>2</sub>) was hydrolysed with dil. H<sub>2</sub>SO<sub>4</sub> to give a carboxylic acid (B) and an alcohol (C). 'C' give white turbidity immediately when treated with anhydrous ZnCl<sub>2</sub> and conc. HCl. The organic compound (A) is :



Official Ans. by NTA (1)



Match the following : 10.

CollegeDékho

Sol.

|   | e                                          |                |  |  |
|---|--------------------------------------------|----------------|--|--|
|   | (i) Foam                                   | (a) smoke      |  |  |
|   | (ii) Gel                                   | (b) cell fluid |  |  |
|   | (iii) Aerosol                              | (c) jellies    |  |  |
|   | (iv) Emulsion                              | (d) rubber     |  |  |
|   |                                            | (e) froth      |  |  |
|   |                                            | (f) milk       |  |  |
|   | (1) (i)-(b), (ii)-(c), (iii)-(e), (iv)-(d) |                |  |  |
|   | (2) (i)-(d), (ii)-(b), (iii)-              | (e), (iv)-(f)  |  |  |
|   | (3) (i)-(e), (ii)-(c), (iii)-              | (a), (iv)-(f)  |  |  |
|   | (4) (i)-(d), (ii)-(b), (iii)-              | (a), (iv)-(e)  |  |  |
|   | Official Ans. by NTA                       | (3)            |  |  |
| , | Foam - Froth                               |                |  |  |
|   | $\text{Gel} \rightarrow \text{Jellies}$    |                |  |  |
|   | Aerosol $\rightarrow$ Smoke                |                |  |  |
|   | Sol $\rightarrow$ Cell fluids              |                |  |  |
|   | Solid sol $\rightarrow$ rubber             |                |  |  |

11. The elements with atomic numbers 101 and 104 belong to, respectively :

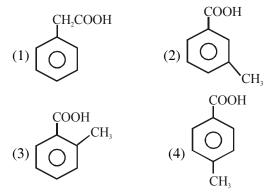
- (1) Group 11 and Group 4
- (2) Actinoids and Group 4
- (3) Actinoids and Group 6
- (4) Group 6 and Actinoids
- **Official Ans. by NTA (2)**

Sol. Element with atomic no. 101 is an Actinoid element.

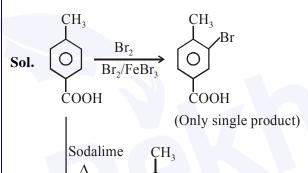
12. On combustion Li, Na and K in excess of air, the major oxides formed, respectively, are :

> (1)  $Li_2O$ ,  $Na_2O$  and  $K_2O_2$ (2)  $Li_2O$ ,  $Na_2O_2$  and  $K_2O$ (3)  $Li_2O$ ,  $Na_2O_2$  and  $KO_2$

(4)  $Li_2O_2$ ,  $Na_2O_2$  and  $K_2O_2$ 


- Official Ans. by NTA (3)
- **Sol.** Li +  $O_2 \rightarrow Li_2O$  (Major Oxides) excess

$$Na + " \rightarrow Na_2O_2$$
 (")


$$\mathbf{K} + " \to \mathbf{KO}_2 (")$$

13. [P] on treatment with Br<sub>2</sub>/FeBr<sub>3</sub> in CCl<sub>4</sub> produced a single isomer C<sub>8</sub>H<sub>7</sub>O<sub>2</sub> Br while heating [P] with sodalime gave toluene.

The compound [P] is :



Official Ans. by NTA (4)



1 r  $[Pt(en)(NO_2)_2]$  is :

| (1) 3 | (2) 2 |
|-------|-------|
| (3) 1 | (4) 4 |

## Official Ans. by NTA (1)

Sol.  $[Pt (en) (NO_2)_2] \Rightarrow$  does not show G.I. as well as optical isomerism.

$$\underbrace{\overset{NO_2}{\longrightarrow}}_{NO_2} \underbrace{\overset{2+}{\swarrow}}_{Pt} \underbrace{\overset{N}{\swarrow}}_{N}$$

This complex will have three linkage isomers as follows :-

 $[Pt (en) (NO_2)_2] I$ [Pt (en) (NO<sub>2</sub>)(ONO)] II [Pt (en) (ONO)<sub>2</sub>] III

CollegeDekho

| 15.  | The ionic radii of O <sub>2</sub> <sup>-</sup> , F <sup>-</sup> , Na <sup>+</sup> and Mg <sup>2+</sup> are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sol. | From the given graph, potential energy of A-B                                                                                                                                                                                                                                                 |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | in the order :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      | molecule is minimum.                                                                                                                                                                                                                                                                          |
|      | (1) $F^- > O^{2-} > Na^+ > Mg^{2+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | Thus A-B bond is most stable and have                                                                                                                                                                                                                                                         |
|      | (2) $Mg^{2+} > Na^+ > F^- > O^{2-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | strongest bond amongst these.                                                                                                                                                                                                                                                                 |
|      | (3) $O^{2-} > F^- > Mg^{2+} > Na^+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      | $B \rightarrow Most$ electronegative                                                                                                                                                                                                                                                          |
|      | <ul> <li>(4) O<sup>2-</sup> &gt; F<sup>-</sup> &gt; Na<sup>+</sup> &gt; Mg<sup>2+</sup></li> <li>Official Ans. by NTA (4)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      | $D \rightarrow Least electronegative$                                                                                                                                                                                                                                                         |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | $A-B \rightarrow$ Shortest bond length                                                                                                                                                                                                                                                        |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | $A-B \rightarrow Largest bond enthalpy$                                                                                                                                                                                                                                                       |
| Sol. | $O^{-2}$ F <sup>-</sup> Na <sup>+</sup> Mg <sup>2+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | Therefore correct option is (3).                                                                                                                                                                                                                                                              |
|      | z 8 9 11 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 18.  | What are the functional groups present in the                                                                                                                                                                                                                                                 |
|      | e <sup>-</sup> 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 200  | structure of maltose ?                                                                                                                                                                                                                                                                        |
|      | $\frac{z}{e}$ 0.8 0.9 1.1 1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | (1) One ketal and one hemiketal                                                                                                                                                                                                                                                               |
|      | as $\frac{z}{a}$ ratio increases size decreases.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | (2) One acetal and one hemiacetal                                                                                                                                                                                                                                                             |
|      | e<br>Thus correct ionic radii order is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | (3) Two acetals                                                                                                                                                                                                                                                                               |
|      | $O^{-2} > F^- > Na^+ > Mg^{2+}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | (4) One acetal and one ketal                                                                                                                                                                                                                                                                  |
|      | Therefore correct option is (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | Official Ans. by NTA (2)                                                                                                                                                                                                                                                                      |
| 16.  | The region in the electromagnetic spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sol. |                                                                                                                                                                                                                                                                                               |
|      | <ul> <li>where the Balmer series lines appear is</li> <li>(1) Visible</li> <li>(2) Microwave</li> <li>(3) Ultraviolet</li> <li>(4) Infrared</li> <li>Official Ans. by NTA (1)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HO   | CH <sub>2</sub> OH<br>H<br>OH<br>H<br>OH<br>H<br>OH<br>Maltose<br>CH <sub>2</sub> OH<br>O<br>H<br>H<br>OH<br>H<br>OH<br>H<br>H<br>OH<br>H<br>H<br>OH<br>H<br>H<br>OH<br>H<br>H<br>H<br>H<br>OH<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H |
| Sol. | Balmer series give visible lines For H-atom                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 19.  | For one mole of an ideal gas, which of these                                                                                                                                                                                                                                                  |
| 17.  | The intermolecular potential energy for the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17.  | statements must be true ?                                                                                                                                                                                                                                                                     |
|      | molecules A, B, C and D given below suggests                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |                                                                                                                                                                                                                                                                                               |
|      | that :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | <ul><li>(a) U and H each depends only on temperature</li><li>(b) Compressibility factor z is not equal to 1</li></ul>                                                                                                                                                                         |
|      | Interatomic distance (pm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      | (c) $C_{P,m} - C_{V,m} = R$                                                                                                                                                                                                                                                                   |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                                                                                                                                                                                                                                                                                               |
|      | 0 50 100 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |                                                                                                                                                                                                                                                                                               |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | (d) $dU = C_V dT$ for any process                                                                                                                                                                                                                                                             |
|      | 0<br>-100<br>Potential -200<br>Energy -300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | (d) dU = C <sub>V</sub> dT for any process<br>(1) (a), (c) and (d) (2) (b), (c) and (d)                                                                                                                                                                                                       |
|      | Potential $-200$ $100$ $150$ $100$ $150$ $100$ $150$ $100$ $150$ $100$ $150$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ $100$ |      | (d) $dU = C_V dT$ for any process                                                                                                                                                                                                                                                             |

# Z = 1

 $\# C_P - C_V = R$ 

# U = f(T), H = f(T)

(1) D is more electronegative than other atoms

- (2) A-D has the shortest bond length
- (3) A-B has the stiffest bone

(4) A-A has the largest bond enthalpy

## 

20. The pair in which both the species have the same 22. The number of chiral centres present in [B] is magnetic moment (spin only) is : (1)  $[Mn(H_2O)_6]^{2+}$  and  $[Cr(H_2O)]^{2+}$  $CH-C \equiv N \xrightarrow{(i) C_2H_5MgBr} [A]$   $CH. \xrightarrow{(ii) H_3O^+} [A]$ (2)  $[Cr(H_2O)_6]^{2+}$  and  $[CoCl_4]^{2-}$ (3)  $[Cr(H_2O)_6]^{2+}$  and  $[Fe(H_2O)_6]^{2+}$ (4)  $[Co(OH)_4]^{2-}$  and  $[Fe(NH_3)_6]^{2+}$  $\xrightarrow{(i)CH_3MgBr}_{(ii)H_2O} \rightarrow [B]$ Official Ans. by NTA (3) Official Ans. by NTA (4) e<sup>-</sup> configuration no. of unpaired e<sup>-</sup> Complex Sol. Sol.  $[Mn(H_2O)_6]^{2+}$ **11**eg 5 WFL **1 1** t2g  $[Cr(H_2O)_6]^{2+}$ eg 4 WFL C,H,  $[COCl_4]^{2-}$ **1**]t, 3 Tetrahedral (i) CH<sub>3</sub>MgBr  $[Fe(H_2O)_6]^{2+}$ **1** eg 4 (ii) H<sub>2</sub>O WFL **1** t,g  $[Co(OH)_4]^{2-}$ 11t 3 WFL CH. Tetrahedral 4  $[Fe(NH_3)_6]^{2+}$ A 20.0 mL solution containing 0.2 g impure 23.  $H_2O_2$  reacts completely with 0.316 g of KMnO<sub>4</sub> Thus complex  $[Cr(H_2O)_6]^{2+}$  and  $[Fe(H_2O)_6]^{2+}$ in acid solution. The purity of  $H_2O_2$  (in %) is have same no. of unpaired e- and hence same magnetic moment (spin only). \_ (mol. wt. of  $H_2O_2 = 34$ ; mol. wt. of 21. The mass of ammonia in grams produced when  $KMnO_4 = 158)$ 2.8 kg of dinitrogen quantitatively reacts with Official Ans. by NTA (85) 1 kg of dihydrogen is \_\_\_\_\_. **Sol.** Eq of  $H_2O_2 = Eq$  of  $KMnO_4$ Official Ans. by NTA (3400) Sol. +  $3H_2 \rightarrow$  $2NH_3$  $N_2$  $x \times 2 = \frac{0.316}{158} \times 5$  $\frac{2.8}{28}$  K mol  $\frac{1}{2}$  K mol  $x = 5 \times 10^{-3} \text{ mol}$ 0.5 K mol = 0.1 K mol0 0.2 K mol 0.2 K mol  $m_{H_2O_2} = 5 \times 10^{-3} \times 34 = 0.17 \text{gm}$ mass (NH<sub>3</sub>) =  $0.2 \times 17$  Kg  $\%H_2O_2 = \frac{0.17}{0.2} \times 100 = 85$ = 3.4 Kg

\_\_\_\_

25. At 300 K, the vapour pressure of a solution containing 1 mole of n-hexane and 3 moles of n-heptane is 550 mm of Hg. At the same temperature, if one more mole of n-heptane is added to this solution, the vapour pressure of the solution increases by 10 mm of Hg. What is the vapour pressure in mm Hg of n-heptane in its pure state \_\_\_\_\_ ?

Official Ans. by NTA (600)

**Sol.** 
$$550 = P_A^o \times \frac{1}{4} + P_B^o \times \frac{3}{4}$$

$$2200 = P_A^o + 3P_B^o \qquad .....(i)$$

 $2800 = P_A^o + 4P_B^o$  ....(ii)

$$560 = P_A^o \times \frac{1}{5} + P_B^o \times \frac{4}{5}$$

$$P_B^o = 600, P_A^o = 400$$