<u>...</u> <u>Colleg</u>eDekho

> FINAL JEE-MAIN EXAMINATION - SEPTEMBER, 2020 (Held On Friday 04th SEPTEMBER, 2020) TIME : 3 PM to 6 PM TEST PAPER WITH SOLUTION MATHEMATICS **DIFFERENTIABILITY-XII** R.H.L. =  $\frac{\pi}{4} + \frac{\pi}{4} = \frac{\pi}{2}$ The function f(x) =  $\begin{cases} \frac{\pi}{4} + \tan^{-1} x, |x| \le 1\\ \frac{1}{2}(|x|-1), |x| > 1 \end{cases}$  is : so, not continuous at x = 1For differentiability at x = -11. L.H.D. =  $\frac{1}{1+1} = \frac{1}{2}$ R.H.D. =  $-\frac{1}{2}$ (1) continuous on  $R-\{1\}$  and differentiable on  $R - \{-1, 1\}.$ so, non differentiable at x = -1(2) both continuous and differentiable on **SET-XI**  $R - \{-1\}.$ 2. Let  $\bigcup_{i=1}^{50} X_i = \bigcup_{i=1}^{n} Y_i = T$ , where each  $X_i$  contains (3) continuous on  $R - \{-1\}$  and differentiable on  $R - \{-1, 1\}.$ (4) both continuous and differentiable on 10 elements and each Y<sub>i</sub> contains 5 elements. If each  $R - \{1\}$ element of the set T is an element of exactly 20 of sets  $X_i$ 's and exactly 6 of sets  $Y_i$ 's, then n is equal to : फलन f(x) =  $\begin{cases} \frac{\pi}{4} + \tan^{-1} x, |x| \le 1\\ \frac{1}{2}(|x|-1), |x| > 1 \end{cases}$ (1) 45(2) 15(3) 50 (4) 301. माना  $\bigcup_{i=1}^{50} X_i = \bigcup_{i=1}^n Y_i = T$  है, जहाँ प्रत्येक  $X_i$  में 10 अवयव 2. (1) R-{1} में संतत तथा R - {-1, 1} में अवकलनीय है। हैं तथा प्रत्येक  $\mathbf{Y}_{i}$  में 5 अवयव में है। यदि T का प्रत्येक अवयव (2) R - {-1} में संतत और अवकलनीय, दोनों, है। ठीक 20, X, समुच्चयों का एक अवयव है तथा ठीक 6, Y, (3) R - {-1} में संतत तथा R - {-1, 1} में अवकलनीय है। समुच्चयों का एक अवयव है, तो n का मान है : (4) R -{1}में संतत और अवलकनीय, दोनों, है। (1) 45(2) 15Official Ans. by NTA (1) (3) 50(4) 30Official Ans. by NTA (4) Sol.  $f(x) = \begin{cases} \frac{\pi}{4} + \tan^{-1} x & , & x \in (-\infty, -1] \cup [1, \infty) \\ -\frac{(x+1)}{2} & , & x \in (-1, 0] \end{cases}$ **Sol.**  $n(X_i) = 10$ .  $\bigcup_{i=1}^{50} X_i = T, \Rightarrow n (T) = 500$ each element of T belongs to exactly 20 elements of  $X_i \Rightarrow \frac{500}{20} = 25$  distinct elements so  $\frac{5n}{6} = 25$  $\frac{x-1}{2} , \qquad x \in (0,1)$  $\Rightarrow$  n = 30 **Q.E.-XI** for continuity at x = -13. Let  $\lambda \neq 0$  be in R. If  $\alpha$  and  $\beta$  are the roots of the equation, L.H.L. =  $\frac{\pi}{4} - \frac{\pi}{4} = 0$  $x^2 - x + 2\lambda = 0$  and  $\alpha$  and  $\gamma$  are the roots of the equation,  $3x^2-10x+27\lambda = 0$ , then  $\frac{\beta\gamma}{\lambda}$  is equal to : R.H.L. = 0so, continuous at x = -1for continuity at x = 1

CollegeDekho

 $\lambda \neq 0, R$ 4. 3.  $x^2 - x + 2\lambda = 0$  के मूल हैं और  $\alpha$  तथा  $\gamma$ , समीकरण  $\frac{dy}{dx} - \frac{y + 3x}{\log_2(y + 3x)} + 3 = 0$  का हल है:  $3x^2-10x+27\lambda = 0$  के मूल हैं, तो  $\frac{\beta\gamma}{\lambda}$  बराबर है : (जहाँ C एक समाकलन अचर है।) (1) 36(2) 27(1)  $x - 2 \log_{e}(y + 3x) = C$ (3)9(4) 18(2)  $x-\log_e(y+3x)=C$ Official Ans. by NTA (4) **Sol.**  $\alpha + \beta = 1$ ,  $\alpha\beta = 2\lambda$ (3)  $x - \frac{1}{2} (\log_e(y+3x))^2 = C$  $\alpha + \beta = \frac{10}{3}, \qquad \alpha \gamma = \frac{27\lambda}{3} = 9\lambda$ (4)  $y + 3x - \frac{1}{2} (\log_e x)^2 = C$  $\gamma - \beta = \frac{7}{3},$ Official Ans. by NTA (3) **Sol.** ln(y + 3x) = z (let)  $\frac{\gamma}{\beta} = \frac{9}{2} \Rightarrow \gamma = \frac{9}{2}\beta = \frac{9}{2} \times \frac{2}{3} \Rightarrow \gamma = 3$  $\frac{1}{v+3x} \cdot \left(\frac{dy}{dx} + 3\right) = \frac{dz}{dx}$  $\frac{9}{2}\beta - \beta = \frac{7}{3}$  $\frac{dy}{dx} + 3 = \frac{y + 3x}{\ell n(y + 3x)}$  (given)  $\frac{9}{2}\beta = \frac{7}{3} \Longrightarrow \beta = \frac{2}{3}$  $\frac{dz}{dx} = \frac{1}{z}$  $\alpha = 1 - \frac{2}{3} = \frac{1}{3}$  $\Rightarrow$  z dz = dx  $\Rightarrow \frac{z^2}{2} = x + C$  $2\lambda = \frac{2}{9} \Longrightarrow \lambda = \frac{1}{9}$  $\Rightarrow \frac{1}{2}\ell n^2(y+3x) = x+C$  $\frac{\beta\gamma}{\lambda} = \frac{\frac{2}{3} \times 3}{1} = 18$  $\Rightarrow x - \frac{1}{2} (\ell n(y + 3 x))^2 = C$ S.S.-XI D.E.-XII 5. Let  $a_1, a_2..., a_n$  be a given A.P. whose common The solution of the differential equation 4. difference is an integer and  $S_n = a_1 + a_2 + ..+ a_n$ .  $\frac{dy}{dx} - \frac{y+3x}{\log_2(y+3x)} + 3 = 0$  is :-If  $a_1 = 1$ ,  $a_n = 300$  and  $15 \le n \le 50$ , then the ordered pair ( $S_{n-4}a_{n-4}$ 

(1)(2480, 249)(where C is a constant of integration.) (3) (2490, 248 5. माना a1, a2,..., (3)  $x - \frac{1}{2} (\log_e(y+3x))^2 = C$ 

(1

a) is equal to :  
(2) (2490, 249)  
(3) (4) (2480, 248)  
(4) 
$$(2480, 248)$$
  
(4)  $(2480, 248)$   
(5)  $a_n$  एक दी गई समांतर श्रेढ़ी है, जिसका  
 $S_n = a_1 + a_2 + \dots + a_n$   
= 300  $15 \le n \le 50$ ,

an

..(1)

$$a_{1} = 1, a_{n} = 300 \qquad 15 \le n \le 50,$$
  
(S<sub>n-4</sub>, a<sub>n-4</sub>) :  
) (2480, 249) (2) (2490, 249)

1

(1)  $x-2 \log_{e}(y+3x)=C$ 

(2)  $x-\log_e(y+3x)=C$ 



|      | Official Ans. by NTA (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LIMIT- |               |  |  |  |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------|--|--|--|
| Sol. | $\mathbf{a_n} = \mathbf{a_1} + (\mathbf{n} - 1)\mathbf{d}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.     | Le            |  |  |  |
|      | $\Rightarrow 300 = 1 + (n - 1) d$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | su            |  |  |  |
|      | $\Rightarrow (n-1)d = 299 = 13 \times 23$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |        | ~             |  |  |  |
|      | since, $n \in [15, 50]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | li            |  |  |  |
|      | $\therefore$ n = 24 and d = 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |               |  |  |  |
|      | $a_{n-4} = a_{20} = 1 + 19 \times 15 = 248$<br>$a_{n-4} = -248$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | 11            |  |  |  |
|      | $\rightarrow a_{n-4} - 2 + 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | (1            |  |  |  |
|      | $S_{-4} = \frac{20}{1+248} = 2490$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        |               |  |  |  |
|      | $S_{n-4} = 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |               |  |  |  |
| 3D-X | D-XII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |               |  |  |  |
| 6.   | The distance of the point $(1, -2, 3)$ from the plane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | 14            |  |  |  |
|      | x-y+z = 5 measured parallel to the line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |               |  |  |  |
|      | $\frac{x}{2} = \frac{y}{2} = \frac{z}{6}$ is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | मा            |  |  |  |
|      | 2 3 -0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | (1            |  |  |  |
|      | (1) 7 (2) 1 (3) $\frac{1}{7}$ (4) $\frac{7}{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | (1            |  |  |  |
| 6    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | 0             |  |  |  |
| 0.   | x = y = z, $y = y = x$ , $y = z$ , $y = y = z$ , $y = z$ , |        |               |  |  |  |
|      | $\frac{\Lambda}{2} = \frac{y}{3} = \frac{z}{6}$ के समांतर मापी गई दूरी है :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sol.   | L             |  |  |  |
|      | 1 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | us            |  |  |  |
|      | (1) 7 (2) 1 (3) $\frac{1}{7}$ (4) $\frac{7}{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |               |  |  |  |
|      | Official Ans. by NTA (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        | L             |  |  |  |
|      | x y z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        | _             |  |  |  |
| Sol. | equation of line parallel to $\frac{1}{2} = \frac{1}{3} = \frac{1}{-6}$ passes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | _             |  |  |  |
|      | through $(1, -2, 3)$ is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | $\Rightarrow$ |  |  |  |
|      | x - 1 $y + 2$ $z - 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |               |  |  |  |
|      | $\frac{1}{2} = \frac{1}{3} = \frac{1}{-6} = r$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | ⇒             |  |  |  |
|      | $\mathbf{x} = 2\mathbf{r} + 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |               |  |  |  |
|      | y = 3r - 2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        | $\Rightarrow$ |  |  |  |
|      | z = -6r + 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DET    |               |  |  |  |
|      | So $2r + 1 - 3r + 2 - 6r + 3 = 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DEI    | EK<br>1C      |  |  |  |
|      | $\Rightarrow$ $-7r + 1 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ð.     |               |  |  |  |
|      | $r = \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | х<br>Эл       |  |  |  |
|      | - 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | ∠∧<br>2 v     |  |  |  |
|      | $x = \frac{9}{2}, y = \frac{-11}{2}, z = \frac{15}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | ha            |  |  |  |
|      | 7 7 7 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | (1            |  |  |  |
|      | Distance is = $(9 + 1)^2 + (2 + 11)^2 + (2 + 15)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | (1            |  |  |  |
|      | Distance is $=\sqrt{\left(\frac{7}{7}-1\right)}+\left(\frac{2}{7}-\frac{7}{7}\right)+\left(\frac{3}{7}-\frac{7}{7}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8      | ्ड<br>राहि    |  |  |  |
|      | $(2)^2 (2)^2 (c)^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.     | 91<br>V       |  |  |  |
|      | $=\sqrt{\left(\frac{2}{7}\right)}+\left(\frac{3}{7}\right)+\left(\frac{6}{7}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        | х<br>Эл       |  |  |  |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | ∠∧<br>2 v     |  |  |  |
|      | $=\frac{1}{-}\sqrt{4+9+36}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        | 38            |  |  |  |
|      | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |               |  |  |  |
|      | $\sqrt{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |               |  |  |  |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |               |  |  |  |

### -XII

| 7.   | • Let $f: (0, \infty) \to (0, \infty)$ be a differentia<br>such that $f(1) = c$ and   |                            |                      |                   |  |  |  |
|------|---------------------------------------------------------------------------------------|----------------------------|----------------------|-------------------|--|--|--|
|      | $\lim_{t \to x} \frac{t^2 f^2(x) - x}{t - x}$                                         | $\frac{f^2 f^2(t)}{t} = 0$ | I                    |                   |  |  |  |
|      | If $f(x) = 1$ , then x is equal to :                                                  |                            |                      |                   |  |  |  |
|      | (1) 2e (2                                                                             | 2) $\frac{1}{2e}$          | (3) e                | (4) $\frac{1}{e}$ |  |  |  |
| 7.   | माना f : (0, ∞) -<br>कि f(1) = e तथ                                                   | → (0, ∞) ע<br>ח            | रक ऐसा अवव           | कलनीय फलन है      |  |  |  |
|      | $\lim_{t \to x} \frac{t^2 f^2(x) - x}{t - x}$ मान है                                  | $\frac{f^2f^2(t)}{t} = 0$  | ) हैं। यदि f(x)      | = 1, है, तो x क   |  |  |  |
|      | (1) 2e (2                                                                             | $\frac{1}{2}$              | (3) e                | $(4) \frac{1}{-}$ |  |  |  |
|      | Official Ans.                                                                         | bv NTA                     | (4)                  | e                 |  |  |  |
|      | $t^2 f^2$                                                                             | $x) - x^2 f^2$             | (-)<br>t)            |                   |  |  |  |
| Sol. | $L = \lim_{t \to x} \frac{1}{t \to x}$                                                | t – x                      | <u>··</u>            |                   |  |  |  |
|      | using L.H. rule                                                                       | e                          |                      |                   |  |  |  |
|      | $L = \lim_{t \to x} \frac{2tf^{2}(x) - x^{2} \cdot 2f'(t) \cdot f(t)}{1}$             |                            |                      |                   |  |  |  |
|      | $\Rightarrow L = 2xf(x) (f(x) - x f'(x)) = 0 (given)$                                 |                            |                      |                   |  |  |  |
|      | $\Rightarrow f(x) = xf'(x) \Rightarrow \int \frac{f'(x)dx}{f(x)} = \int \frac{dx}{x}$ |                            |                      |                   |  |  |  |
|      | $\Rightarrow \ln  \mathbf{f}(\mathbf{x})  = \ln  \mathbf{x}  + C$                     |                            |                      |                   |  |  |  |
|      | $\therefore f(1) = e, x > 0$                                                          | > 0, f(x)                  | > 0                  |                   |  |  |  |
|      | $\Rightarrow$ f(x) = ex,                                                              | if f(x)                    | $=1 \Rightarrow x =$ | $=\frac{1}{e}$    |  |  |  |
| DET  | ERMINANT-X                                                                            | XI                         |                      |                   |  |  |  |
| 8.   | 8. If the system of equations                                                         |                            |                      |                   |  |  |  |
|      | x + y + z = 2                                                                         | 6                          |                      |                   |  |  |  |
|      | $2x + 4y - 2 =$ $3x + 2y + \lambda z =$                                               | 0<br>= 11                  |                      |                   |  |  |  |
|      | has infinitely many solutions, then :                                                 |                            |                      |                   |  |  |  |
|      | (1) $\lambda - 2\mu = -$                                                              | -5                         | (2) 2λ –             | μ = 5             |  |  |  |
|      | $(3) 2\lambda + \mu = 1$                                                              | 4                          | (4) $\lambda + 2$    | $\mu = 14$        |  |  |  |
| 8.   | यदि समीकरणों व                                                                        | र्नकाय                     |                      |                   |  |  |  |
|      | x + y + z = 2                                                                         | 6                          |                      |                   |  |  |  |
|      | 2x + 4y - 2 =<br>$3x + 2y + \lambda z =$                                              | 0<br>= 11                  |                      |                   |  |  |  |
|      |                                                                                       | ۳<br>:                     |                      |                   |  |  |  |
|      |                                                                                       |                            |                      |                   |  |  |  |
|      |                                                                                       |                            |                      |                   |  |  |  |



Official Ans. by NTA (3) Sol. For infinite solutions  $\Delta = \Delta_{\rm x} = \Delta_{\rm y} = \Delta_{\rm z} = 0$ Now  $\Delta = 0 \Rightarrow \begin{vmatrix} 1 & 1 & 1 \\ 2 & 4 & -1 \\ 3 & 2 & \lambda \end{vmatrix} = 0$  $\Rightarrow \lambda = \frac{9}{2}$  $\Delta_{x=0} \implies \begin{vmatrix} 2 & 1 & 1 \\ 6 & 4 & -1 \\ \mu & 2 & -\frac{9}{2} \end{vmatrix} = 0$  $\Rightarrow \mu = 5$ For  $\lambda = \frac{9}{2}$  &  $\mu = 5$ ,  $\Delta_y = \Delta_z = 0$ Now check option  $2\lambda + \mu = 14$ S.S.-XII 9. The minimum value of  $2^{sinx} + 2^{cosx}$  is :-(1)  $2^{1-\frac{1}{\sqrt{2}}}$ (2)  $2^{-1+\sqrt{2}}$  $(4) \ 2^{-1+\frac{1}{\sqrt{2}}}$ (3)  $2^{1-\sqrt{2}}$ 9. 2<sup>sinx</sup> + 2<sup>cosx</sup> का न्यूनतम मान है : (1)  $2^{1-\frac{1}{\sqrt{2}}}$ (2)  $2^{-1+\sqrt{2}}$ (4)  $2^{-1+\frac{1}{\sqrt{2}}}$ (3)  $2^{1-\sqrt{2}}$ Official Ans. by NTA (1) **Sol.** Usnign  $AM \ge GM$  $\Rightarrow \frac{2^{\sin x} + 2^{\cos x}}{2} \ge \sqrt{2^{\sin x} \cdot 2^{\cos x}}$  $\Longrightarrow 2^{\sin x} + 2^{\cos x} \ge 2^{1 + \left(\frac{\sin x + \cos x}{2}\right)}$  $\Rightarrow \min(2^{\sin x} + 2^{\cos x}) = 2^{1 - \frac{1}{\sqrt{2}}}$ D.I.-XII **10.**  $\int_{\pi/2}^{\pi/3} \tan^3 x \cdot \sin^2 3x (2 \sec^2 x \cdot \sin^2 3x + 3 \tan x \cdot \sin 6x) dx$ is equal to :

9

1

1

7

$$\int_{\frac{\pi}{6}}^{\frac{\pi}{6}} \tan^{3} x \cdot \sin^{2} 3x(2 \sec^{2} x \cdot \sin^{2} 3x + 3 \tan x \cdot \sin 6x) dx$$
For HIF  $\frac{\pi}{6}$ :  
(1)  $\frac{9}{2}$  (2)  $-\frac{1}{9}$  (3)  $-\frac{1}{18}$  (4)  $\frac{7}{18}$   
Official Ans. by NTA (3)  
Sol. I =  $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} d((\sin 3x)^{4} (\tan x)^{4})$   
 $\Rightarrow I = \frac{1}{2} \int_{\frac{\pi}{6}}^{\frac{\pi}{3}} d((\sin 3x)^{4} (\tan x)^{4})$   
 $\Rightarrow I = ((\sin 3x)^{4} (\tan x)^{4})_{\frac{\pi}{6}}^{\frac{\pi}{3}}$   
 $\Rightarrow I = -\frac{1}{18}$   
CIRCLE-XI  
11. The circle passing through the intersection of the circles,  $x^{2} + y^{2} - 6x = 0$  and  $x^{2} + y^{2} - 4y = 0$ , having its centre on the line,  $2x - 3y + 12 = 0$ , also passes through the point :  
(1) (1, -3) (2) (-1, 3)  
(3) (-3, 1) (4) (-3, 6)  
11.  $q \pi \tilde{1} x^{2} + y^{2} - 6x = 0 \pi q x^{2} + y^{2} - 4y = 0, \tilde{\pi} q \pi \bar{\pi} \bar{x}^{2} + \bar{y}^{2} - 6x = 0 \pi q x^{2} + y^{2} - 4y = 0, \tilde{\pi} q \pi \bar{q} \bar{\pi} \bar{x}^{2} + y^{2} - 6x = 0 \pi q x^{2} + y^{2} - 4y = 0, \tilde{\pi} q \pi \bar{q} \bar{\pi} \bar{x}^{2} + y^{2} - 6x = 0 \pi q x^{2} + y^{2} - 4y = 0, \tilde{\pi} q \pi \bar{q} \bar{\pi} \bar{x}^{2} + y^{2} - 6x = 0 \pi q x^{2} + y^{2} - 4y = 0, \tilde{\pi} q \pi \bar{q} \bar{\pi} \bar{x}^{2} + y^{2} - 6x = 0 \pi q x^{2} + y^{2} - 4y = 0, \tilde{\pi} q \pi \bar{q} \bar{\pi} \bar{x}^{2} + y^{2} - 6x = 0 \pi q x^{2} + y^{2} - 4y = 0, \tilde{\pi} q \pi \bar{q} \bar{\pi} \bar{x}^{2} + y^{2} - 6x = 0 \pi q x^{2} + y^{2} - 4y = 0, \tilde{\pi} q \pi \bar{q} \bar{\pi} \bar{q} \bar{\pi} \bar{x}^{2} + 12 = 0 q q R \bar{q} \pi \bar{q} \bar{\pi} \bar{x}^{2} + 12 = 0 q q R \bar{q} \pi \bar{q} \bar{\pi} \bar{x}^{2} + 12 = 0 q q R \bar{q} \pi \bar{q} \bar{\pi} \bar{x}^{2} + 12 = 0 q q R \bar{q} \pi \bar{q} \bar{\pi} \bar{x}^{2} + 12 = 0 q \bar{q} \bar{x}^{2} + 12 = 0 q \bar{x}^{2} + 12 = 0 q \bar{q} \bar{x}^{2} + 12 = 0 q \bar{x}^{2$ 

10.

$$\Rightarrow S : (x^2 + y^2 - 6x) + \lambda (x^2 + y^2 - 4y) = 0$$
$$\Rightarrow S : x^2 + y^2 - \left(\frac{6}{1+\lambda}\right)x - \left(\frac{4\lambda}{1+\lambda}\right) y = 0 \dots (1)$$

Centre 
$$\left(\frac{3}{1+\lambda}, \frac{2\lambda}{1+\lambda}\right)$$
 lies on

 $2x - 3y + 12 = 0 \Rightarrow \lambda = -3$ put in (1)  $\Rightarrow$  S :  $x^2 + y^2 + 3x - 6y = 0$ Now check options point (-3, 6)





 $= a + b\omega$  $16 + 32 \omega + 24 \omega^2 + 8 + \omega = a + b\omega$  $24 + 24 \omega^2 + 33\omega = a + b\omega$  $\Rightarrow -24\omega + 33\omega = a + b\omega$ In a game two players A and B take turns in throwing a pair of fair dice starting with player A and total of scores on the two dice,

 $(\omega^3 = 1)$ 

in each throw is noted. A wins the game if he throws a total of 6 before B throws a total of 7 and B wins the game if he throws a total of 7 before A throws a total of six The game stops as soon as either of the players wins. The probability of A winning the game is :

(1) 
$$\frac{31}{61}$$
 (2)  $\frac{5}{6}$  (3)  $\frac{5}{31}$  (4)  $\frac{30}{61}$ 

एक खेल में दो खिलाड़ी A तथा B बारी बारी से अनभिनत पासों के युग्म को फेंकते हैं, जबकि खिलाडी A खेल आरम्भ करता है, तथा प्रत्येक बार दोनों पासों पर आए अंकों का योग नोट किया जाता है यदि B द्वारा फेंके गए पासों के अंको का योग 7 आने से पहले A द्वारा फेंके एक पासों के अंकों का योग 6 आ जाता है, तो A जीतता है जबकि A द्वारा फेंके गए पासों के अंकों का योग 6 आने से पहले. B द्वारा फेंके गए पासों के अंकों का योग 7 आ जाता है, तो B जीतता है। किसी भी एक खिलाडी का जीतने पर खेल समाप्त हो जाता है। A के खेल को जीतने की प्रायिक्रता है :

$$\frac{31}{61} \qquad (2) \ \frac{5}{6} \qquad (3) \ \frac{5}{31} \qquad (4) \ \frac{30}{61}$$

Official Ans. by NTA (4)

Sol. 
$$P(6) = \frac{5}{36}$$
,  $P(7) = \frac{1}{6}$   
 $P(A) = W + FFW + FFFFW + .....$   
 $= \frac{5}{36} + \left(\frac{31}{36} \times \frac{5}{6}\right) \times \frac{5}{36} + \left(\frac{31}{36} \times \frac{5}{6}\right)^2 \times \frac{5}{36} + ...$   
 $= \frac{\frac{5}{36}}{155} = \frac{5}{36} \times \frac{216}{61} = \frac{30}{61}$ 

# 

## ELLIPSE-XI Let x = 4 be a directrix to an ellipse whose centre 15. is at the origin and its eccentricity is $\frac{1}{2}$ . If P (1, $\beta$ ), $\beta > 0$ is a point on this ellipse, then the equation of the normal to it at P is :-(1) 7x - 4y = 1(2) 4x - 2y = 1(4) 8x - 2y = 5(3) 4x - 3y = 2माना x = 4 एक ऐसे दीर्घवृत की एक नियता है, जिसका केन्द्र 15. मूल बिंदु पर है तथा जिसकी उत्केन्द्रता $\frac{1}{2}$ है, यदि P (1, $\beta$ ), β > 0 इस दीर्घवृत्त पर स्थित एक बिंदु है, तो इसके P पर खींचे गए अभिलंब का समीकरण है : (1) 7x - 4y = 1(2) 4x - 2y = 1(4) 8x - 2y = 5(3) 4x - 3y = 2Official Ans. by NTA (2) **Sol.** Ellipse : $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ directrix : $x = \frac{a}{e} = 4$ & $e = \frac{1}{2}$ $\Rightarrow$ a = 2 & b<sup>2</sup> = a<sup>2</sup> (1-e<sup>2</sup>) = 3 $\Rightarrow$ Ellipse is $\frac{x^2}{4} + \frac{y^2}{3} = 1$ P is $\left(1,\frac{3}{2}\right)$ Normal is : $\frac{4x}{1} - \frac{3y}{3/2} = 4 - 3$ $\Rightarrow 4x - 2y = 1$ MATHEMATICAL REASONING-XII 16. Contrapositive of the statement:

'If a function f is differentiable at a, then it is also continuous at a', is :-

- (1) If a function f is continuous at a, then it is not differentiable at a.
- (2) If a function f is not continuous at a, then it is differentiable at a.
- (3) If a function f is not continuous at a, then it is not differentiable at a.
- (4) If a function f is continuous at a, then it is

'यदि एक फलन f, a पर अवकलनीय है तो संतत भी है' यह а पर कथन है प्रतिधनात्मक का :-(1) यदि एक फलन f, a पर संतत है तो यह a पर अवकलनीय नहीं है। (2) यदि एक फलन f, a पर संतत नहीं है तो यह a पर अवकलनीय है। (3) यदि एक फलन f, a पर संतत नहीं है तो यह a पर अवकलनीय नहीं है । (4) यदि एक फलन f, a पर संतत है तो यह a पर अवकलनीय है। Official Ans. by NTA (3) p = function is differentiable at a

Sol. p = function is differentiable at a q = function is continuous at a contrapositive of statement  $p \rightarrow q$  is  $\sim q \rightarrow \sim p$ 

#### PARABOLA-XI

17. The area (in sq. units) of the largest rectangle ABCD whose vertices A and B lie on the x-axis and vertices C and D lie on the parabola,  $y=x^2-1$  below the x-axis, is :

(1) 
$$\frac{4}{3\sqrt{3}}$$
 (2)  $\frac{1}{3\sqrt{3}}$  (3)  $\frac{4}{3}$  (4)  $\frac{2}{3\sqrt{3}}$ 

17. उस सबसे बड़ी आयत ABCD, जिसकें शीर्ष बिंदु A तथा B, x-अक्ष पर स्थित हैंतथा शीर्ष बिंदु C तथा D, x-अक्ष के नीचे, परवलय y = x<sup>2</sup> -1 पर स्थित हैं, का क्षेत्रफल (वर्ग इकाइयों में) है :

(1) 
$$\frac{4}{3\sqrt{3}}$$
 (2)  $\frac{1}{3\sqrt{3}}$  (3)  $\frac{4}{3}$  (4)  $\frac{2}{3\sqrt{3}}$ 

Official Ans. by NTA (1)

**Sol.** Area (A) = 
$$2t \cdot (1 - t^2)$$

$$(0 < t < 1)$$

$$A = 2t - 2t^{3}$$

$$\frac{dA}{dt} = 2 - 6t^{2}$$

$$t = \frac{1}{\sqrt{3}}$$

$$(-t, t^{2} - 1)$$

$$(t, 0)$$

$$(-t, t^{2} - 1)$$

$$(-t, t^{2} - 1)$$

$$(-t, t^{2} - 1)$$

$$(-t, t^{2} - 1)$$

16.



#### **OMIAL THEOREM-XII** 18. If for some positive integer n, the coefficients of three consecutive terms in the binomial expansion $(1+x)^{n+5}$ are in the of ratio 5:10:14, then the largest coefficient in this expansion is :-(1)792(2) 252 (3) 462 (4) 330 माना किसी धनपूर्णाक n के लिए, (1+x)<sup>n+5</sup> के द्विपद प्रसार 18. में तीन क्रमागत पदों के गुणांक 5 : 10 : 14 के अनुपात में हैं, 20. तो इस प्रसार में सब से बड़ा गुणांक है :-(2) 252(4) 330 (1)792(3) 462Official Ans. by NTA (3) **Sol.** Let n + 5 = N $N_{C_{r-1}}: N_{C_r}: N_{C_{r-1}} = 5:10:14$ $\Rightarrow \frac{N_{C_r}}{N_C} = \frac{N+1-r}{r} = 2$

19. If the perpendicular bisector of the line segment joining the points P (1, 4) and Q (k, 3) has y-intercept equal to -4, then a value of k is :-

 $\frac{N_{C_{r+1}}}{N_{C}} = \frac{N-r}{r+1} = \frac{7}{5}$ 

Largest coefficient =  ${}^{11}C_6 = 462$ 

 $\Rightarrow$  r = 4, N = 11

 $\Rightarrow (1 + x)^{11}$ 

**STRAIGHT LINE-XI** 

(2) -2 (3)  $\sqrt{14}$ (1)  $\sqrt{15}$ (4) -4

**19.** यदि बिंदुओं P (1, 4) तथा Q (k, 3) को मिलाने वाले रेखाखण्ड के लंबसमद्विभाजक का y-अंत: खण्ड –4, है, तो k का एक मान है :-

> (1)  $\sqrt{15}$ (2) - 2 $(3) \sqrt{14}$ (4) - 4

Official Ans. by NTA (4)



Equation of 
$$\perp^{r}$$
 bisector is

$$y + 4 = (k - 1) (x - 0)$$
  

$$\Rightarrow y + 4 = x(k - 1)$$
  

$$\Rightarrow \frac{7}{2} + 4 = \frac{k + 1}{2} (k - 1)$$
  

$$\Rightarrow \frac{15}{2} = \frac{k^2 - 1}{2} \Rightarrow k^2 = 16 \Rightarrow k = 4, -4$$

#### **MATRIX-XII**

Suppose the vectors  $x_1, x_2$  and  $x_3$  are the solutions of the system of linear equations, Ax = b when the vector b on the right side is equal to  $b_1$ ,  $b_2$  and  $b_3$  respectively. If

$$\mathbf{x} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \mathbf{x}_2 = \begin{bmatrix} 0 \\ 2 \\ 1 \end{bmatrix}, \mathbf{x}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \mathbf{b}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

 $\mathbf{b}_2 = \begin{bmatrix} 0\\2\\0 \end{bmatrix}$  and  $\mathbf{b}_3 = \begin{bmatrix} 0\\0\\2 \end{bmatrix}$ , then the determinant of

A is equal to :-

(1) 
$$\frac{1}{2}$$
 (2) 4 (3)  $\frac{3}{2}$  (4) 2

माना सदिश  $x_1, x_2$  तथा  $x_3,$  रैखिक समीकरण निकाय 20. Ax = b के हल हैं, जबकि दांई ओर का सदिश b, क्रमश:  $b_1, b_2$  तथा  $b_3$  के बराबर है। यदि





Sol.

**Official Ans. by NTA (4)** 

$$Ax_{1} = b_{1}$$

$$Ax_{2} = b_{2}$$

$$Ax_{3} = b_{3}$$

$$\Rightarrow |A| \begin{vmatrix} 1 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 1 & 1 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{vmatrix}$$

$$\Rightarrow |A| = \frac{4}{2} = 2$$

#### P & C-XI

- 21. A test consists of 6 multiple choice questions, each having 4 alternative answers of which only one is correct. The number of ways, in which a candidate answers all six questions such that exactly four of the answers are correct, is \_\_\_\_\_
- 21. एक परीक्षा में 6 बहुविकल्पी प्रश्न हैं तथा प्रत्येक प्रश्न के उत्तर के लिए 4 विकल्प हैं जिसमें से केवल एक सही है। एक परीक्षार्थी द्वारा सभी 6 प्रश्नों के उत्तर इस प्रकार देने, ताकि उसके ठीक 4 प्रश्नों के उत्तर सही हों, के तरीकों की संख्या है \_\_\_\_

Official Ans. by NTA (135)

**Sol.** Ways =  ${}^{6}C_{4} \cdot 1^{4} \cdot 3^{2}$ = 15 × 9 = 135

#### CIRCLE-XI

- 22. Let PQ be a diameter of the circle  $x^2+y^2=9$ . If  $\alpha$  and  $\beta$  are the lengths of the perpendiculars from P and Q on the straight line, x + y = 2 respectively, then the maximum value of  $\alpha\beta$  is \_\_\_\_\_
- 22. माना PQ वृत्त  $x^2+y^2=9$  का एक व्यास है। यदि P तथा Q से रेखा x + y = 2 पर खींचे गए लंबों की लंबाइयाँ क्रमश:  $\alpha$  तथा  $\beta$  हैं, तो  $\alpha\beta$  का अधिकतम मान है \_\_\_\_\_| Official Ans. by NTA (7)



Let P  $(3\cos\theta, 3\sin\theta)$ Q  $(-3\cos\theta, -3\sin\theta)$ 

$$\Rightarrow \alpha\beta = \frac{\left|(3\cos\theta + 3\sin\theta)^2 - 4\right|}{2}$$

$$5+9\sin 2\theta$$

#### D.I.-XII

23. Let  $\{x\}$  and [x] denote the fractional part of x and the greatest integer  $\leq x$  respectively of a real

number x. If  $\int_0^n \{x\} dx$ ,  $\int_0^n [x] dx$  and  $10(n^2 - n)$ ,  $(n \in N, n > 1)$  are three consecutive terms of a G.P., then n is equal to\_\_\_\_\_

 माना {x} तथा [x], क्रमश: एक वास्तविक संख्या x के भिन्नात्मक भाग तथा महत्तम पूर्णाक ≤ x, को दर्शाते हैं। यदि

$$\begin{split} &\int_{0}^{n} \{x\} dx, \int_{0}^{n} [x] dx \; \pi \mbox{all $n$} 10(n^{2} - n), \; (n \in N, \; n > 1) \\ & \mbox{एक गुणोत्तर श्रेढी के तीन क्रमागत पद हैं, तो n का मान है} \\ & \mbox{Official Ans. by NTA (21)} \end{split}$$

Sol. 
$$\int_{0}^{n} \{x\} dx = n \int_{0}^{1} \{x\} dx = n \int_{0}^{1} x \ dx = \frac{n}{2}$$
$$\int_{0}^{n} [x] dx = \int_{0}^{n} (x - \{x\}) dx = \frac{n^{2}}{2} - \frac{n}{2}$$
$$\Rightarrow \left(\frac{n^{2} - n}{2}\right)^{2} = \frac{n}{2} \cdot 10 \cdot n(n - 1) \text{ (where } n > 1)$$
$$\Rightarrow \frac{n - 1}{4} = 5 \Rightarrow n = 21$$

#### **VECTOR-XII**

- 24. If  $\vec{a} = 2\hat{i} + \hat{j} + 2\hat{k}$ , then the value of  $\left|\hat{i} \times (\vec{a} \times \hat{i})\right|^2 + \left|\hat{j} \times (\vec{a} \times \hat{j})\right|^2 + \left|\hat{k} \times (\vec{a} \times \hat{k})\right|^2$  is equal to
- **24.**  $\overline{a} = 2\hat{i} + \hat{j} + 2\hat{k}$ ,  $\hat{e}$ ,  $\hat{n}$ 
  - $|\hat{i} \times (\vec{a} \times \hat{i})|^2 + |\hat{j} \times (\vec{a} \times \hat{j})|^2 + |\hat{k} \times (\vec{a} \times \hat{k})|^2$  का मान है \_\_\_\_\_| Official Ans. by NTA (18)

Sol. 
$$\Sigma |\vec{a} - (\vec{a} \cdot i)i|^2$$
  
 $\Rightarrow \Sigma (|a|^2 + (\vec{a} \cdot i)^2 - 2(\vec{a} \cdot i)^2$   
 $\Rightarrow 3|\vec{a}|^2 - \Sigma (\vec{a} \cdot i)^2$   
 $\Rightarrow 2|\vec{a}|^2$ 

# ,\*\***™** CollegeDekho

#### **STATISTICS-XII 25.** If the variance of the following frequency distribution: Class : 10–20 20-30 30-40 Frequency : 2 2 х is 50, then x is equal to \_\_\_\_\_ यदि निम्न बारंबारता बंटन : 25. वर्ग : 10–20 20-30 30-40 बारंबारता : 2 2 х का प्रसरण 50 है, तो x का मान है \_\_\_\_| Official Ans. by NTA (4) **Sol.** : Variance is independent of shifting of origin $\Rightarrow \quad x_i: 15 \qquad 25 \quad 35 \quad \text{or} \ -10 \quad 0$ 10 x 2 2 x 2 f<sub>i</sub> : 2 Variance $(\sigma^2) = \frac{\Sigma x_i^2 f_i}{\Sigma f_i} - (\vec{x})^2$ $\Rightarrow$ $50 = \frac{200 + 0 + 200}{x + 4} - 0 \qquad \{\overline{x} = 0\}$ $\Rightarrow$ 200 + 50x = 200 + 200 $\Rightarrow$ x = 4 $\Rightarrow$