,∗***`** CollegeDekho

	FINAL JEE-MAIN EXAMINATION – SEPTEMBER, 2020				
	(Held On Saturday 05th SEPTEM	BER, 2020) TIME : 3 PM to 6 PM			
	MATHEMATICS		TEST PAPER WITH SOLUTION		
1.	If the system of linear equations	3.	If the sum of the first 20 terms of the series		
	x + y + 3z = 0 $x + 3y + k^2z = 0$		$\log_{(7^{1/2})} x + \log_{(7^{1/3})} x + \log_{(7^{1/4})} x + \dots$ is 460, then		
	3x + y + 3z = 0		x is equal to :		
	has a non-zero solution (x, y, z) for some		(1) $7^{46/21}$ (2) $7^{1/2}$		
	$k \in \mathbb{R}$, then $x + \left(\frac{y}{y}\right)$ is equal to :		(3) e^2 (4) 7^2		
	(1) 9 (2) -3		Official Ans. by NTA (4)		
	(3) -9 $(4) 3$	Sol.	$460 = \log_7 x \cdot (2 + 3 + 4 + \dots + 20 + 21)$		
	Official Ans. by NTA (2)		$\Rightarrow 460 = \log_{10} x \cdot \left(\frac{21 \times 22}{100} - 1\right)$		
Sol.	x + y + 3z = 0(1) $x + 3y + k^2z = 0$ (ii)		\Rightarrow 400 $=$ 10g ₇ x $\begin{pmatrix} 2 \\ 2 \end{pmatrix}$		
	3x + y + 3z = 0(ii)		$\Rightarrow 460 = 230 \cdot \log_7 x$		
			$\Rightarrow \log_7 x = 2 \Rightarrow x = 49$		
	$\begin{bmatrix} 1 & 3 & k^2 \end{bmatrix} = 0$		$x(e^{(\sqrt{1+x^2+x^4}-1)/x}-1)$		
		4.	$\lim_{x \to 0} \frac{1}{\sqrt{1 + x^2 + x^4}} = 1$		
	$\Rightarrow 9 + 3 + 3k^2 - 27 - k^2 - 3 = 0$				
	\Rightarrow k ² = 9		(1) does not exist. (2) is equal to \sqrt{e} .		
	(i) - (iii) $\Rightarrow -2x = 0 \Rightarrow x = 0$ Now from (i) $\Rightarrow x + 3z = 0$		(3) is equal to 0. (4) is equal to 1.		
	Now from (1) \Rightarrow y + 52 = 0		Official Ans. by NTA (4)		
	$\Rightarrow \frac{y}{z} = -3$		$x \left(e^{(\sqrt{1+x^2+x^4}-1)/x} - 1 \right)$		
		Sol.	$\lim_{x \to 0} \frac{1}{\sqrt{1 + x^2 + x^4}} - 1$		
	$x + \frac{y}{z} = -3$				
2.	If α and β are the roots of the equation,		$\lim_{x \to 1} \frac{\sqrt{1 + x^2 + x^4} - 1}{1} (\frac{0}{1 - 1})$		
	$7x^2 - 3x - 2 = 0$, then the value of		$x \to 0$ $x \to 0$ $x \to 0$ $x \to 0$		
	$\frac{\alpha}{\alpha} + \frac{\beta}{\beta}$ is equal to :		$(1 + x^2 + x^4) - 1$		
	$1-\alpha^2$ $1-\beta^2$		$\lim_{x \to 0} \frac{1}{x(\sqrt{1+x^2+x^4}+1)}$		
	(1) $\frac{27}{16}$ (2) $\frac{1}{24}$				
	27		$\lim_{x \to 1} \frac{x(1+x^2)}{x(1+x^2)} = 0$		
	(3) $\frac{27}{32}$ (4) $\frac{3}{8}$		$\lim_{x \to 0} \left(\sqrt{1 + x^2 + x^4} + 1 \right)^{-5}$		
	Official Ans. by NTA (1)		/ / \ _ \		
Sol.	$7x^2 - 3x - 2 = 0$		$\mathbf{x}\left(e^{\left(\frac{\sqrt{1+x^2+x^4}-1}{x}\right)}-1\right) = 0$		
	$\alpha + \beta = \frac{3}{2}$ $\alpha \beta = \frac{-2}{2}$		So $\lim_{x \to 0} \frac{x(c)}{\sqrt{1 + x^2 + x^4}} = 1$ ($\frac{1}{0}$ from)		
	$\alpha + \beta = \frac{1}{7}$ $\alpha \beta = \frac{1}{7}$		VITA TA -I		
	$\alpha \beta = \frac{\alpha + \beta - \alpha \beta (\alpha + \beta)}{\alpha + \beta + \alpha \beta (\alpha + \beta)}$		$\sqrt{1+x^2+x^4}-1$		
	$\frac{1-\alpha^2}{1-\beta^2} + \frac{1-\beta^2}{1-\beta^2} = 1-\alpha^2-\beta^2+\alpha^2\beta^2$		$\lim_{x \to \infty} \frac{e^{-x} - 1}{x} = 1$		
	3 2(3)		$x \to 0 \left(\frac{\sqrt{1 + x^2 + x^4} - 1}{1 + x^2 + x^4} \right)^{-1}$		
	-+- - 27		(x)		

_.... CollegeDe<u>kho</u>

5.	If the sum of the second, third and fourth terms		
	of a positive term G.P. is 3 and the sum of its	7.	Th
	sixth, seventh and eighth terms is 243, then the		
	sum of the first 50 terms of this G.P. is :		
	$\frac{2}{1}$ (250 1) $\frac{1}{1}$ (250 1)		res
	(1) $\frac{1}{13}(3^{-1}-1)$ (2) $\frac{1}{26}(3^{-1}-1)$		
	$(3) \frac{1}{-}(3^{50}-1) \qquad (4) \frac{1}{-}(3^{49}-1)$		(1)
	13 26		
	Official Ans. by NTA (2)		(2)
Sol.	Let first term $= a > 0$		(3)
	Common ratio = $r > 0$		Of
	$ar + ar^2 + ar^3 = 3$ (i)		-
	$ar^5 + ar^6 + ar^7 = 243$ (ii)	Sal	Lat
	$r^4(ar + ar^2 + ar^3) = 243$	501.	LU
	$r^4(3) = 243 \implies r = 3 \text{ as } r > 0$		Put
	from (1)		
	3a + 9a + 27a = 3		f =
	1		
	$a = \frac{1}{13}$		
	15		f =
	$a(r^{50}-1)$ 1 (250 1)		
	$S_{50} = \frac{1}{(r-1)} = \frac{1}{26}(3^{30} - 1)$		f _
			1 -
($(-1+i\sqrt{3})^{30}$.		
0.	The value of $\left(\frac{1-i}{1-i}\right)$ is :		Let
	(1) 2^{15} i (2) -2^{15}		Let
	(1) 2 1 (2) 2 $(3) -2^{15} i (4) 6^5$		Put
	Official Ans. by NTA (3)		
			g =
a ı	$\left(-1+i\sqrt{3}\right)^{30}$ $(2\omega)^{30}$		
Sol.	$\left(\begin{array}{c} \hline 1-i \end{array}\right) = \left(\begin{array}{c} \hline 1-i \end{array}\right)$		g =
			g =
	$2^{30} \cdot \omega^{30}$		dg
	$-\frac{1}{((1-i)^2)^{30}}$		dx
	$2^{30} \cdot 1$		df
	$=\frac{2}{(1-1)^{15}}$		dg
	$(1+1^2-21)$		
	2^{30}		at .
	$=\frac{2}{2^{15};1^5}$		at 2
	-2 · 1		
	5. Sol.	5. If the sum of the second, third and fourth terms of a positive term G.P. is 3 and the sum of its sixth, seventh and eighth terms is 243, then the sum of the first 50 terms of this G.P. is : (1) $\frac{2}{13}(3^{50}-1)$ (2) $\frac{1}{26}(3^{50}-1)$ (3) $\frac{1}{13}(3^{50}-1)$ (4) $\frac{1}{26}(3^{49}-1)$ Official Ans. by NTA (2) Sol. Let first term = a > 0 Common ratio = r > 0 ar + ar ² + ar ³ = 3(i) ar ⁵ + ar ⁶ + ar ⁷ = 243(ii) r ⁴ (ar + ar ² + ar ³) = 243 r ⁴ (3) = 243 \Rightarrow r = 3 as r > 0 from (1) 3a + 9a + 27a = 3 a = $\frac{1}{13}$ S ₅₀ = $\frac{a(r^{50}-1)}{(r-1)} = \frac{1}{26}(3^{50}-1)$ 6. The value of $\left(\frac{-1+i\sqrt{3}}{1-i}\right)^{30}$ is : (1) 2 ¹⁵ i (2) -2 ¹⁵ (3) -2 ¹⁵ i (4) 6 ⁵ Official Ans. by NTA (3) Sol. $\left(\frac{-1+i\sqrt{3}}{1-i}\right)^{30} = \left(\frac{2\omega}{1-i}\right)^{30}$ $= \frac{2^{30} \cdot \omega^{30}}{((1-i)^2)^{30}}$ $= \frac{2^{30} \cdot 1}{(1+i^2-2i)^{15}}$	5. If the sum of the second, third and fourth terms of a positive term G.P. is 3 and the sum of its sixth, seventh and eighth terms is 243, then the sum of the first 50 terms of this G.P. is : (1) $\frac{2}{13}(3^{50}-1)$ (2) $\frac{1}{26}(3^{30}-1)$ (3) $\frac{1}{13}(3^{50}-1)$ (4) $\frac{1}{26}(3^{49}-1)$ Official Ans. by NTA (2) Sol. Let first term = a > 0 Common ratio = r > 0 ar + ar ² + ar ³ = 3(i) ar ⁵ + ar ⁶ + ar ⁷ = 243(ii) r ⁴ (ar + ar ² + ar ³) = 243 r ⁴ (3) = 243 \Rightarrow r = 3 as r > 0 from (1) 3a + 9a + 27a = 3 a = $\frac{1}{13}$ Sol. $\frac{a(r^{50}-1)}{(r-1)} = \frac{1}{26}(3^{50}-1)$ 6. The value of $\left(\frac{-1+i\sqrt{3}}{1-i}\right)^{30}$ is : (1) 2 ¹⁵ i (2) -2 ¹⁵ (3) -2 ¹⁵ i (4) 6 ⁵ Official Ans. by NTA (3) Sol. $\left(\frac{-1+i\sqrt{3}}{1-i}\right)^{30} = \left(\frac{2\omega}{1-i}\right)^{30}$ $= \frac{2^{30} \cdot \omega^{30}}{((1-i)^2)^{30}}$ $= \frac{2^{30} \cdot 1}{(1+i^2-2i)^{15}}$ $= \frac{2^{30}}{-2^{15} \cdot i^{15}}$

e derivative of $\tan^{-1}\left(\frac{\sqrt{1+x^2}-1}{x}\right)$ with spect to $\tan^{-1}\left(\frac{2x\sqrt{1-x^2}}{1-2x^2}\right)$ at $x = \frac{1}{2}$ is : $\frac{\sqrt{3}}{12}$ (2) $\frac{\sqrt{3}}{10}$ $\frac{2\sqrt{3}}{5}$ (4) $\frac{2\sqrt{3}}{3}$ ficial Ans. by NTA (2) $f = \tan^{-1} \left(\frac{\sqrt{1 + x^2} - 1}{x} \right)$ $x = \tan \theta \Rightarrow \theta = \tan^{-1} x$ $\tan^{-1}\left(\frac{\sec\theta-1}{\tan\theta}\right)$ $\tan^{-1}\left(\frac{1-\cos\theta}{\sin\theta}\right) = \frac{\theta}{2}$ $\frac{\tan^{-1}x}{2} \Rightarrow \frac{df}{dx} = \frac{1}{2(1+x^2)} \dots (i)$ $x = \tan^{-1}\left(\frac{2x\sqrt{1-x^2}}{1-2x^2}\right)$ $x = \sin \theta \Rightarrow \theta = \sin^{-1} x$ $\tan^{-1}\left(\frac{2\sin\theta\cos\theta}{1-2\sin^2\theta}\right)$ $\tan^{-1}(\tan 2\theta) = 2\theta$ 2 sin⁻¹ x $=\frac{2}{\sqrt{1-x^2}}$ (ii) $= \frac{1}{2(1+x^2)} \frac{\sqrt{1-x^2}}{2}$ $x = \frac{1}{2} \left(\frac{df}{dg} \right)_{x = \frac{1}{2}} = \frac{\sqrt{3}}{10}$

8.	The area (in sq. units) of the region	Sol.	Let chord
	A = {(x, y) : $(x - 1) [x] \le y \le 2\sqrt{x}$, $0 \le x \le 2$ }, where [t] denotes the greatest integer function, is :		AB = r $\therefore \Delta AOM$
	(1) $\frac{8}{3}\sqrt{2} - \frac{1}{2}$ (2) $\frac{8}{3}\sqrt{2} - 1$		∴ OM =
	(3) $\frac{4}{3}\sqrt{2} - \frac{1}{2}$ (4) $\frac{4}{3}\sqrt{2} + 1$		AB from $\left \frac{r\sqrt{3}}{2}\right = \left \frac{1}{2}\right $
	Official Ans. by NTA (1)		2 1
Sol.	$(x - 1) [x] \le y \le 2\sqrt{x}, \boxed{0 \le x \le 2}$		$\mathbf{r}^2 = \frac{12}{5}$
	Draw y = $2\sqrt{x} \Rightarrow y^2 = 4x x \ge 0 $ $\begin{bmatrix} 0 & 0 \le x \le 1 \end{bmatrix}$	10.	If $x = 1$ f(x) = (3x)
	y = (x - 1) [x] = $\begin{cases} x - 1, 1 \le x < 2 \\ 2, x = 2 \end{cases}$		(1) $x = 1$ is
			maxin
	$y=2\sqrt{x}$		(2) $x = 1$ is
	A (2, 2) A (2, 1)		minim
			(3) $x = 1$
			$(4) \mathbf{x} = 1$
			$(\mathbf{F}) \mathbf{X} = \mathbf{I}$
	$A = \int_{0}^{2} 2\sqrt{x} dx - \frac{1}{2} 1 \cdot 1$	Sol.	Official A f(x) = (3x) $f'(x) = (3x)$ $f'(x) = (3x)$
	A = $2 \cdot \left[\frac{x^{3/2}}{(3/2)}\right]_0^2 - \frac{1}{2} = \frac{8\sqrt{2}}{3} - \frac{1}{2}$		$f'(x) = 0 = 3$ $\Rightarrow 3 + (6)$
9.	If the length of the chord of the circle, $x^2 + y^2 = r^2$ (r > 0) along the line, $y - 2x = 3$ is r, then r^2 is equal to :		a = -7 $f'(x) = e^{x}(x - e^{x})$
	(1) $\frac{9}{5}$ (2) $\frac{12}{5}$		+ -2/3 x = 1 is r
	(3) 12 (4) $\frac{24}{5}$		$x = \frac{-2}{3} i$

Official Ans. by NTA (2)

 $\therefore \Delta AOM$ is right angled triangle

$$\therefore \text{ OM} = \frac{r\sqrt{3}}{2} = \text{perpendicular distance of line}$$
AB from (0,0)
$$\frac{r\sqrt{3}}{2} = \begin{vmatrix} 3 \\ \sqrt{5} \end{vmatrix}$$

$$r^{2} = \frac{12}{5}$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0, 0)$$

$$(0,$$

- 10. If x = 1 is a critical point of the function $f(x) = (3x^2 + ax - 2 - a) e^x$, then :
 - (1) x = 1 is a local minima and x = $-\frac{2}{3}$ is a local

maxima of f.

(2) x = 1 is a local maxima and x =
$$-\frac{2}{3}$$
 is a local minima of f.

(3)
$$x = 1$$
 and $x = -\frac{2}{3}$ are local minima of f.

(4)
$$x = 1$$
 and $x = -\frac{2}{3}$ are local maxima of f.

Official Ans. by NTA (1)

Sol.
$$f(x) = (3x^2 + ax - 2 - a)e^x$$

 $f'(x) = (3x^2 + ax - 2 - a)e^x + e^x (6x + a)$
 $= e^x(3x^2 + x(6 + a) - 2)$
 $f'(x) = 0 \text{ at } x = 1$
 $\Rightarrow 3 + (6 + a) - 2 = 0$
 $a = -7$
 $f'(x) = e^x(3x^2 - x - 2)$
 $= e^x (x - 1) (3x + 2)$
 $\frac{+}{-2/3} \frac{-}{1}$
 $x = 1$ is point of local minima
 $x = \frac{-2}{3}$ is point of local maxima

CollegeDekho

11. If the mean and the standard deviation of the data 3, 5, 7, a, b are 5 and 2 respectively, then a and b are the roots of the equation : (1) $2x^2 - 20x + 19 = 0$ (2) $x^2 - 10x + 19 = 0$ (3) $x^2 - 10x + 18 = 0$ (4) $x^2 - 20x + 18 = 0$ Official Ans. by NTA (2) Sol. Mean = 5 $\frac{3+5+7+a+b}{5} = 5$ 1 a + b = 10....(i) S.d. = 2 $\Rightarrow \sqrt{\frac{\sum_{i=1}^{5} (x_i - \overline{x})^2}{5}} = 2$ $(3-5)^2 + (5-5)^2 + (7-5)^2 + (a-5)^2 + (b-5)^2 = 20$ $\Rightarrow 4 + 0 + 4 + (a - 5)^2 + (b - 5)^2 = 20$ $a^2 + b^2 - 10(a + b) + 50 = 12$ $(a + b)^2 - 2ab - 100 + 50 = 12$ ab = 19(ii) Equation is $x^2 - 10x + 19 = 0$ 12. If a + x = b + y = c + z + 1, where a, b, c, x, S y, z are non-zero distinct real numbers, then x a+y x+ay b+y y+b is equal to : z c+y z+c(1) 0 (2) y(a - b)(3) y (b - a)(4) y(a - c)Official Ans. by NTA (2) **Sol.** a + x = b + y = c + z + 1x a+y x+a $y \quad b+y \quad y+b$ $C_3 \rightarrow C_3 - C_1$ z c+y z+cx a + y a $y \quad b+y \quad b$ $C_2 \rightarrow C_2 - C_3$ $\begin{vmatrix} z & c+y & c \end{vmatrix}$ x y a y y b $R_3 \rightarrow R_3 - R_1, R_2 \rightarrow R_2 - R_1$ z y c

$$\begin{vmatrix} x & y & a \\ y-x & 0 & b-a \\ z-x & 0 & c-a \end{vmatrix}$$

$$= (-y)[(y-x) (c-a) - (b-a) (z-x)]$$

$$= (-y)[(a-b) (c-a) + (a-b) (a-c-1)]$$

$$= (-y)[(a-b) (c-a) + (a-b) (a-c) + b-a)$$

$$= -y(b-a) = y(a-b)$$
3. If $\int \frac{\cos \theta}{5+7\sin \theta - 2\cos^2 \theta} d\theta = A \log_e |B(\theta)| + C$,
where C is a constant of integration, then $\frac{B(\theta)}{A}$
can be :
(1) $\frac{2\sin \theta + 1}{5(\sin \theta + 3)}$ (2) $\frac{2\sin \theta + 1}{\sin \theta + 3}$
(3) $\frac{5(\sin \theta + 3)}{2\sin \theta + 1}$ (4) $\frac{5(2\sin \theta + 1)}{\sin \theta + 3}$
Official Ans. by NTA (4)
Sol. $\int \frac{\cos \theta d\theta}{5+7\sin \theta - 2\cos^2 \theta}$
 $\int \frac{\cos \theta d\theta}{5+7\sin \theta + 2\sin^2 \theta}$ $\frac{\sin \theta = t}{\cos \theta d\theta = dt}$
 $\int \frac{dt}{2t^2 + 7t + 3} = \int \frac{dt}{(2t+1)(t+3)}$
 $= \frac{1}{5} \int (\frac{2}{2t+1} - \frac{1}{t+3}) dt$
 $= \frac{1}{5} ln |\frac{2t+1}{t+3}| + C$

$$= \frac{1}{5}ln\left|\frac{2\sin\theta + 1}{\sin\theta + 3}\right| + C$$

A =
$$\frac{1}{5}$$
 and B(θ) = $\frac{2\sin\theta + 1}{\sin\theta + 3}$

14.	If the line $y = mx + c$ is a	a common tangent to			
	$\mathbf{x}^2 \mathbf{y}^2$				
	the hyperbola $\frac{\pi}{100} - \frac{5}{64} = 1$ and the circ				
$x^2 + y^2 = 36$, then which one of the follo					
	is true?				
	(1) $5m = 4$ (2)	2) $4c^2 = 369$			
	(3) $c^2 = 369$ (4)	4) $8m + 5 = 0$			
	Official Ans. by NTA (2)			
Sol.	y = mx + c is tangent to				
	$\mathbf{x}^2 = \mathbf{v}^2$				
	$\frac{x}{100} - \frac{y}{64} = 1$ and $x^2 + y^2 = 36$				
	$c^2 = 100 \text{ m}^2 - 64 c^2 = 36 (1 + \text{m}^2)$				
	$\Rightarrow 100 \text{ m}^2 - 64 = 36 + 36\text{m}^2$				
	100 10				
	$m^2 = \frac{100}{64} \Rightarrow m = \pm \frac{10}{8}$				
	04 0				
	$2 - 2c(1 + 100) = 36 \times 164$				
	$c^{2} = 36\left(1 + \frac{100}{64}\right) = 6000000000000000000000000000000000000$				
15.	There are 3 sections in a	question paper and			
	each section contains 5 qu	estions. A candidate			
	has to answer a total of 5	questions, choosing			
	at least one question from	at least one question from each section. Then			
	choose the questions is	ion the candidate call			
	(1) 1500 (1)	2) 2255			
	(3) 3000 (4	4) 2250			
	Official Ans. by NTA (4				
Sol.	. A B C				
	त त ।	5			
		의			
	2 2 2				
	$\begin{array}{cccc} 2 & 1 & 2 \\ 2 & 2 & 1 \end{array}$				
	$\begin{array}{cccc} $				
	$1 \qquad 3 \qquad 1$				
	3 1 1				
	o 1 1 Total number of selection				
	$= ({}^{5}C_{1} {}^{5}C_{2} {}^{5}C_{2}) \cdot 3 + ({}^{5}C_{1} {}^{5}C_{1} {}^{5}C_{2}) \cdot 3$				
	$= 5 \cdot 10 \cdot 10 \cdot 3 + 5 \cdot 5 \cdot 10 \cdot 3$				
	= 2250				

16. If for some $\alpha \in \mathbb{R}$, the lines

$$L_{1}: \frac{x+1}{2} = \frac{y-2}{-1} = \frac{z-1}{1} \text{ and}$$

$$L_{2}: \frac{x+2}{\alpha} = \frac{y+1}{5-\alpha} = \frac{z+1}{1} \text{ are coplanar, then the}$$
line L₂ passes through the point :
(1) (-2, 10, 2) (2) (10, 2, 2)
(3) (10, -2, -2) (4) (2, -10, -2)
Official Ans. by NTA (4)
Sol. $L_{1} = \frac{x+1}{2} = \frac{y-2}{-1} = \frac{z-1}{1}$
 $L_{2} = \frac{x+2}{\alpha} = \frac{y+1}{5-\alpha} = \frac{z+1}{1}$
Point A(-1, 2, 1) B(-2, -1, -1)
 \therefore L₁ and L₂ are coplanar
 $\Rightarrow \begin{vmatrix} 2 & -1 & 1 \\ \alpha & 5-\alpha & 1 \\ 1 & 3 & 2 \end{vmatrix} = 0$
 $\alpha = -4$
 $L_{2} = \frac{x+2}{-4} = \frac{y+1}{9} = \frac{z+1}{1}$

Check options (2, -10, -2) lies on L₂

17. Let y = y(x) be the solution of the differential

equation $\cos x \frac{dy}{dx} + 2y \sin x = \sin 2x$,

$$x \in \left(0, \frac{\pi}{2}\right)$$
. If $y(\pi/3) = 0$, then $y(\pi/4)$ is equal to :

(1)
$$\sqrt{2} - 2$$
 (2) $\frac{1}{\sqrt{2}} - 1$

(3) $2 - \sqrt{2}$ (4) $2 + \sqrt{2}$

Official Ans. by NTA (1)

Sol.
$$\cos x \frac{dy}{dx} + 2y \sin x = \sin 2x$$

$$\frac{dy}{dx} + \frac{2\sin x}{\cos x} y = 2 \sin x$$
I.F. $= e^{\int 2^{\sin x} dx}$
 $= e^{2 \ln \sec x} = \sec^2 x$
 $y \cdot \sec^2 x = \int 2\sin x \cdot \sec^2 x dx$
 $y \sec^2 x = 2 \int \tan x \sec x dx$
 $y \sec^2 x = 2 \sec x + c$
At $x = \frac{\pi}{3}$, $y = 0$
 $\Rightarrow 0 = 2 \sec \frac{\pi}{3} + C \Rightarrow C = -4$
 $\boxed{y \sec^2 x = 2 \sec x - 4}$
Put $x = \frac{\pi}{4}$
 $y \cdot 2 = 2\sqrt{2} - 4$
 $y = \sqrt{2} - 2$
18. Which of the following points lies on the tangent to the curve $x^{4ey} + 2\sqrt{y+1} = 3$ at the point (1, 0) ?
(1) (2, 2) (2) (-2, 6)
(3) (-2, 4) (4) (2, 6)
Official Ans. by NTA (2)
Sol. $x^4e^y + 2\sqrt{y+1} = 3$
 $d.w.r.$ to x
 $x^4 e^y y' + e^y 4x^3 + \frac{2y'}{2\sqrt{y+1}} = 0$
at P(1, 0)
 $y'_P + 4 + y'_P = 0$
 $\Rightarrow y'_P = -2$
Tangent at P(1, 0) is
 $y - 0 = -2 (x - 1)$
 $2x + y = 2$

The statement $(p \rightarrow (q \rightarrow p)) \rightarrow (p \rightarrow (p \lor q))$ 19. is: (1) a contradiction (2) equivalent to $(p \land q) \lor (\sim q)$ (3) a tautology (4) equivalent to $(p \lor q) \land (\sim p)$ Official Ans. by NTA (3) Sol. $(p \rightarrow (q \rightarrow p)) \rightarrow$ $p \rightarrow$ $p \rightarrow$ $p \lor q$ $|q \rightarrow p$ q р $(q \rightarrow p)$ $p \lor q$ $(\mathbf{p} \rightarrow (\mathbf{p} \lor \mathbf{q}))$ Т Т Т Т Т Т Т Т Т Т F Т Т Т Т F Т Т Т Т F F Т F Т Т F Т **20.** If $L = \sin^2\left(\frac{\pi}{16}\right) - \sin^2\left(\frac{\pi}{8}\right)$ and M = $\cos^2\left(\frac{\pi}{16}\right) - \sin^2\left(\frac{\pi}{8}\right)$, then : (1) $M = \frac{1}{2\sqrt{2}} + \frac{1}{2}\cos\frac{\pi}{8}$ (2) $L = \frac{1}{4\sqrt{2}} - \frac{1}{4}\cos\frac{\pi}{8}$ s on the

(3)
$$M = \frac{1}{4\sqrt{2}} + \frac{1}{4}\cos\frac{\pi}{8}$$

(4)
$$L = -\frac{1}{2\sqrt{2}} + \frac{1}{2}\cos\frac{\pi}{8}$$

Official Ans. by NTA (1)

Sol.
$$L = \sin^2\left(\frac{\pi}{16}\right) - \sin^2\left(\frac{\pi}{8}\right)$$

 $\left(\because \sin^2\theta = \frac{1 - \cos 2\theta}{2}\right)$
 $\Rightarrow L = \left(\frac{1 - \cos(\pi/8)}{2}\right) - \left(\frac{1 - \cos(\pi/4)}{2}\right)$

$$L = \frac{1}{2} \left[\cos\left(\frac{\pi}{4}\right) - \cos\left(\frac{\pi}{8}\right) \right]$$
$$L = \frac{1}{2\sqrt{2}} - \frac{1}{2} \cos\left(\frac{\pi}{8}\right)$$
$$M = \cos^2\left(\frac{\pi}{16}\right) - \sin^2\left(\frac{\pi}{8}\right)$$
$$M = \frac{1 + \cos(\pi/8)}{2} - \frac{1 - \cos(\pi/4)}{2}$$
$$M = \frac{1}{2} \cos\left(\frac{\pi}{8}\right) + \frac{1}{2\sqrt{2}}$$

21. In a bombing attack, there is 50% chance that a bomb will hit the target. At least two independent hits are required to destroy the target completely. Then the minimum number of bombs, that must be dropped to ensure that there is at least 99% chance of completely destroying the target, is _____.

Official Ans. by NTA (11.00)

Sol.
$$P(H) = \frac{1}{2}$$

$$P(\overline{H}) = \frac{1}{2}$$

Let total 'n' bomb are required to destroy the target

$$1 - {}^{n}C_{n}\left(\frac{1}{2}\right)^{n} - {}^{n}C_{1}\left(\frac{1}{2}\right)^{n} \ge \frac{99}{100}$$
$$1 - \frac{1}{2^{n}} - \frac{n}{2^{n}} \ge \frac{99}{100}$$
$$\frac{1}{100} \ge \frac{n+1}{2^{n}}$$
Now check for value of n
$$\boxed{n=11}$$

22. Let A = {a, b, c} and B = {1, 2, 3, 4}. Then the number of elements in the set C = {f : A \rightarrow B| 2 \in f(A) and f is not one-one} is _____. Official Ans. by NTA (19.00) **Sol.** $C = \{f : A \rightarrow B | 2 \in f(A) \text{ and } f \text{ is not one-one} \}$

- **Case-I**: If $f(x) = 2 \forall x \in A$ then number of function = 1
- **Case-II** : If f(x) = 2 for exactly two elements then total number of many-one function = ${}^{3}C_{2} {}^{3}C_{1} = 9$
- **Case-III** : If f(x) = 2 for exactly one element then total number of many-one functions = ${}^{3}C_{1} {}^{3}C_{1} = 9$

Total = 19

23. The coefficient of x^4 in the expansion of $(1 + x + x^2 + x^3)^6$ in powers of x, is _____. Official Ans. by NTA (120.00)

Sol.
$$(1 + x + x^2 + x^3)^6 = ((1 + x)(1 + x^2))^6$$

$$= (1 + x)^6 (1 + x^2)^6$$

$$= \sum_{r=0}^{6} {}^{6}C_{r} x^{r} \sum_{r=0}^{6} {}^{6}C_{t} x^{2t}$$

$$= \sum_{r=0}^{6} \sum_{t=0}^{6} C_{r}^{6} C_{t} x^{r+2t}$$

For coefficient of $x^4 \Rightarrow r + 2t = 4$

r	t	
0	2	
2	1	
4	0	

Coefficient of x⁴

$$= {}^{6}C_{0} {}^{6}C_{2} + {}^{6}C_{2} {}^{6}C_{1} + {}^{6}C_{4} {}^{6}C_{0}$$
$$= 120$$

24. If the lines x + y = a and x - y = b touch the curve $y = x^2 - 3x + 2$ at the points where the curve intersects the x-axis, then $\frac{a}{b}$ is equal to_____.

Official Ans. by NTA (0.50)

Sol. $y = x^2 - 3x + 2$ At x-axis $y = 0 = x^2 - 3x + 2$ x = 1, 2

$$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x - 3$$

A(1, 0) B(2, 0)

$$\left(\frac{dy}{dx}\right)_{x=1} = -1 \text{ and } \left(\frac{dy}{dx}\right)_{x=2} = 1$$

x + y = a $\Rightarrow \frac{dy}{dx} = -1$ So A(1, 0) lies on it
 $\Rightarrow 1 + 0 = a \Rightarrow \boxed{a=1}$
x - y = b $\Rightarrow \frac{dy}{dx} = 1$ So B(2, 0) lies on it
2 - 0 = b $\Rightarrow \boxed{b=2}$
 $\frac{a}{b} = 0.50$

25. Let the vectors \vec{a} , \vec{b} , \vec{c} be such that $|\vec{a}| = 2$, $|\vec{b}| = 4$ and $|\vec{c}| = 4$. If the projection of \vec{b} on \vec{a} is equal to the projection of \vec{c} on \vec{a} and \vec{b} is perpendicular to \vec{c} , then the value of $|\vec{a} + \vec{b} - \vec{c}|$ is _____.

Official Ans. by NTA (6.00)

Sol. Projection of \vec{b} on \vec{a} = projection of \vec{c} on \vec{a}

$$\Rightarrow \frac{\vec{b} \cdot \vec{a}}{|\vec{a}|} = \frac{\vec{c} \cdot \vec{a}}{|\vec{a}|} \Rightarrow \vec{b} \cdot \vec{a} = \vec{c} \cdot \vec{a}$$

 \therefore \vec{b} is perpendicular to $\vec{c} \Rightarrow \vec{b} \cdot \vec{c} = 0$

Let $|\vec{a} + \vec{b} - \vec{c}| = k$ Square both sides $k^2 = \vec{a}^2 + \vec{b}^2 + \vec{c}^2 + 2\vec{a} \cdot \vec{b} - 2\vec{a} \cdot \vec{c} - 2\vec{b} \cdot \vec{c}$ $k^2 = \vec{a}^2 + \vec{b}^2 + \vec{c}^2 = 36$ $k = 6 = |\vec{a} + \vec{b} - \vec{c}|$