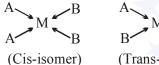
,∗***`** CollėgeDekho

FINAL JEE–MAIN EXAMINATION – JANUARY, 2020 (Held On Tuesday 07 th JANUARY, 2020) TIME : 2 : 30 PM to 5 : 30 PM	
 Within each pair of elements of F & Cl , S & Se, and Li & Na, respectively, the elements that release more energy upon an electron gain are (1) F, Se and Na (2) F, S and Li (3) Cl, S and Li 	at ones are-
(4) Cl, Se and Na	(c) Wavelength of light absorbed by
 NTA Ans. (3) Sol. (i) Electron affinity of second period p-bloc element is less than third period p-bloc element due to small size of second period p block element. 	k k k (d) If the Δ_0 for an octahedral complex of Co(III) is 18 000 cm ⁻¹ the Δ for its
E.A. order : $F < Cl$	(1) (a) and (b) only (2) (c) and (d) only
(ii) Down the group electron affinity decrease due to size increases.	NTA Ans. (4)
EA. order : $S > Se$	Sol. (a) Co^{+3} (with strong field ligands)
 Li > Na 2. The redox reaction among the following is (1) Combination of dinitrogen with dioxyge at 2000 K (2) Formation of ozone from atmospherei oxygen in the presence of sunlight 	n $\Delta_0 > p$ diamagnetic
(3) Reaction of H_2SO_4 with NaOH	(b) If $\Delta_0 < p$; (b) $\prod_{n=1}^{\infty} e_n^2$
(4) Reaction of $[Co(H_2O)_6]Cl_3$ with AgNO ₃ NTA Ans. (1) Sol. (i) $N_2 + O_2 \xrightarrow{2000 \text{ K}} 2\text{NO}$ (Redox reaction)	$\int_{\mathbf{L}} \Delta_0 < p$ $\mathbf{L} \mathbf{L} \mathbf{L} \mathbf{L} \mathbf{L} \mathbf{L} \mathbf{L}^4_{2g}$
during the reaction, oxidation of nitrogen tak place from 0 to 2 and reduction of oxygen tak place from 0 to -2 . It means this reaction is redox reaction.	e greater than fluoride (F ⁻) ligand therefore more s energy absorbed by $[Co(en)_3]^{3+}$ as compared to $[CoF_6]^{3-}$.
(ii) $3O_2 \xrightarrow{h\nu} 2O_3$ (Non - r e dox reaction)	So wave length of light absorbed by $[Co(en)_3]^{3+}$ is lower than that of $[CoF_6]^{3-}$
(iii) $H_2SO_4 + 2NaOH \rightarrow Na_2SO_4 + 2H_2O$ (neutralization reaction)	(d) $\Delta_t = \frac{4}{9}\Delta_0$
(iv) $[Co(H_2O)_6]Cl_3 + 3AgNO_3$	so if $\Delta_0 = 18,000 \text{ cm}^{-1}$
\rightarrow 3AgCl \downarrow + [Co(H O)](NO)	$\Delta = \frac{4}{-18000} = 8000 \text{ cm}^{-1}$

The number of possible optical isomers for the complexes MA_2B_2 with sp³ and dsp² hybridised metal atom, respectively, is :

Note : A and B are unidentate neutral and unidentate monoanionic ligands, respectively

- (1) 0 and 0
- (2) 0 and 2
- (3) 0 and 1
- $(4) \ 2 \ and \ 2$


NTA Ans. (1)

Sol. (a) If the complex MA_2B_2 is sp³ hybridised then the shape of this complex is tetrahedral this structure is optically inactive due to the presence of plane of symmetry.

Optical isomes = 0

(b) If the complex MA_2B_2 is dsp^2 hybridised then the shape of this complex is square planar.

Both isomers are optically inactive due to the presence of plane of symmetry.

Optical isomers = 0

5. In the following reactions products(A) and (B), respectively, are :

NaOH + $Cl_2 \rightarrow (A)$ + side products

(hot and conc.)

 $Ca(OH)_2 + Cl_2 \rightarrow (B) + side products$ (dry)

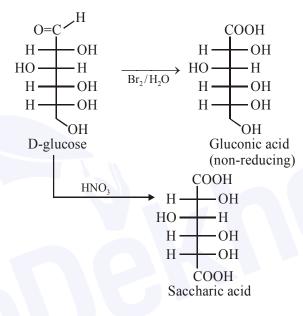
(1) NaClO₃ and Ca(OCl)₂

(2) NaOCl and
$$Ca(ClO_3)_2$$

(4) NaOCl and
$$Ca(OCl)_2$$

NTA Ans. (1)

Sol. $6NaOH + 3Cl_2 \longrightarrow NaClO_3 + 5NaCl + 3H_2O$ (hot and conc.) (A) side product $2Ca(OH) + 2Cl \longrightarrow Ca(OCl) + CaCl + 2H O$


Which of the following statements is correct-

- (1) Gluconic acid can form cyclic (acetal/ hemiacetal) structure
- (2) Gluconic acid is a partial oxidation product of glucose
- (3) Gluconic acid is obtained by oxidation of glucose with HNO₃
- (4) Gluconic acid is a dicarboxylic acid

NTA Ans. (2)

6.

7. The bond order and the magnetic characteristics of CN⁻ are :

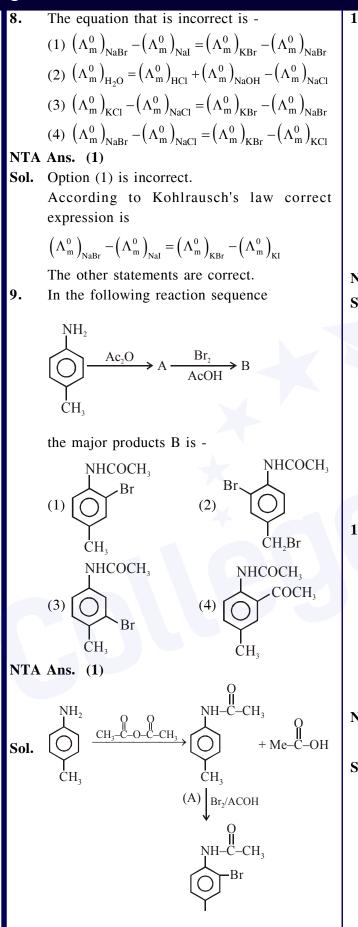
(1) 3, diamagnetic

(2)
$$2\frac{1}{2}$$
, paramagnetic

(3) 3, paramagnetic

(4)
$$2\frac{1}{2}$$
, diamagnetic

NTA Ans. (1)


Sol. According to MOT (If z is internuclear axis) The configuration of

$$CN^{-}: \sigma_{1s}^{2}, \sigma_{1s}^{*2}, \sigma_{2s}^{2}, \sigma_{2s}^{*2}, \pi_{2p_{x}}^{2} = \pi_{2p_{y}}^{2}, \sigma_{2p_{z}}^{2}$$

Bond order = $\frac{1}{2}(10-4)$ = 3

CN⁻ is diamagnetic due to absence of unpaired

10. Two open beakers one containing a solvent and the other containing a mixture of that solvent with a non volatile solute are together sealed in a container. Over time -

- (1) The volume of the solution does not change and the volume of the solvent decreases
- (2) The volume of the solution decrease and the volume of the solvent increases
- (3) The volume of the solution increase and the volume of the solvent decreases
- (4) The volume of the solution and the solvent does not change

NTA Ans. (3)

Sol. The pure solvent solution will try to maintain higher vapour pressure in the sealed container and in return the solvent vapour molecules will condense in the solution of non-volatile solute as it maintains an equilibrium with lower vapour pressure. (Lowering of vapour pressure is observed when a non volatile solute is mixed in a volatile solvent)

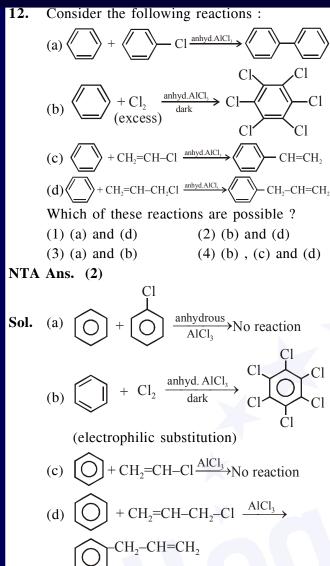
This will eventually lead to increase in the volume of solution and decrease in the volume of solvent.

11. A chromatography column, packed with silica gel as stationary phase, was used to separate a mixture of compounds consisting of (A) benzanilide (B) aniline and (C) acetophenone. When the column is eluted with a mixture of solvents, hexane : ethyl acetate (20 : 80), the sequence of obtained compounds :

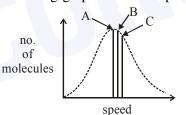
(1) (B), (C) and (A) (2) (C), (A) and (B) (3) (A), (B) and (C) (4) (B), (A) and (C)

NTA Ans. (2)

Sol. (A) Benzanilide \rightarrow Ph–NH–C–Ph (μ = 2.71 D)


(B) Aniline \rightarrow Ph–NH₂ (μ = 1.59 D)

(C) Acetophenone $\rightarrow Ph-C-CH_3$ ($\mu = 3.05 \text{ D}$)


Dipole moment : C > A > B

Hence the sequence of obtained compounds is

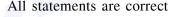
13. Identify the correct labels of A, B and C in the following graph from the options given below:

Root mean square speed (V_{rms}) ; most probable speed (V_{mp}) ; Average speed ($V_{av.}$)

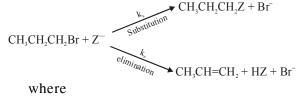
(1) $A - V_{rms}$; $B - V_{mp}$; $C - V_{av}$ (2) $A - V_{av}$; $B - V_{rms}$; $C - V_{mp}$ (3) $A - V_{mp}$; $B - V_{rms}$; $C - V_{av}$ (4) $A - V_{mp}$; $B - V_{av}$; $C - V_{rms}$ **NTA Ans. (4)**

$$\left(\sqrt{\frac{2RT}{2}}\right)$$
 $\left(\sqrt{\frac{8RT}{2}}\right)$ $\left(\sqrt{\frac{3RT}{2}}\right)$

14. Among the statements (a) - (d), the correct ones


- are -
 - (a) Decomposition of hydrogen peroxide gives dioxygen
 - (b) Like hydrogen peroxide, compounds , such as KClO₃, Pb(NO₃)₂ and NaNO₃when heated liberated dioxygen
 - (c) 2-Ethylanthraquinone is useful for the industrial preparation of hydrogen peroxide.
 - (d) Hydrogen peroxide is used for the manufacture of sodium perborate
 - (1) (a), (b) and (c) only
 - (2) (a) and (c) only
 - (3) (a), (b) , (c) and (d)
 - (4) (a), (c) and (d) only

NTA Ans. (3)


Sol. (a)
$$H_2O_2 \rightarrow 2H_2O + O_2$$

(b)
$$\text{KCIO}_3 \xrightarrow{\Delta} \text{KCl} + \frac{3}{2}\text{O}_2$$

 $\text{Pb}(\text{NO}_3)_2 \xrightarrow{\Delta} \text{PbO} + 2\text{NO}_2 + \frac{1}{2}\text{O}_2$
 $\text{NaNO}_3 \xrightarrow{\Delta} \text{NaNO}_2 + \frac{1}{2}\text{O}_2$
(c) 2-ethylanthraquinol $\underbrace{O_2(\text{air})}_{\text{H/Pd}}$ 2-ethylanthraquinone + H₂O₂
(d) 2H₃BO₃ + 2NaOH + 2H₂O₂

$$\longrightarrow \operatorname{Na}_2[\operatorname{B}_2(\operatorname{O}_2)(\operatorname{OH})_4] + 4\operatorname{H}_2\operatorname{O}$$

15. For the following reactions :

 $Z^- = CH_3CH_2O^-$ (A) or $H_3C-C-O^-(B)$,

 k_s and k_e , are, respectively, the rate constants for the substitution and elimination, and $\mu = \frac{k_s}{k_e}$, the correct options is -(1) $\mu_B > \mu_A$ and $k_e(B) > k_e(A)$ (2) $\mu_B > \mu_A$ and $k_e(A) > k_e(B)$ (3) $\mu_A > \mu_B$ and $k_e(B) > k_e(A)$ $\mu = \mu$

CH.

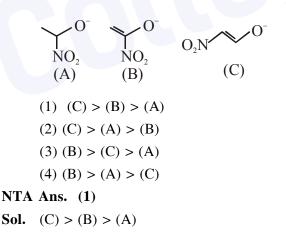
Sol.

$$CH_3-CH_2-CH_2-Br + Z^{\bigcirc}$$

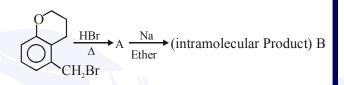
 $CH_3-CH_2-CH_2-Z$
 $CH_3-CH_2-CH_2-Z$
 $CH_3-CH_2-CH_2-Z$

(A)
$$CH_3 - CH_2 - O^- = Z^{\ominus}$$

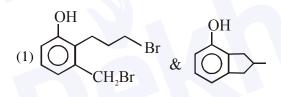
- $(B) \xrightarrow{} O^{\ominus} = Z^{\ominus}$
- (B) with more steric crowding forms elimination product compared to substitution.

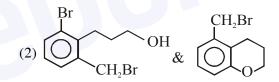

$$K_e(B) > K_e(A)$$

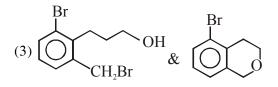
$$\mu_{\rm B} = \frac{K_{\rm s}({\rm B})}{K_{\rm e}({\rm A})} < \mu_{\rm A} = \frac{K_{\rm s}({\rm A})}{K_{\rm e}({\rm A})}$$

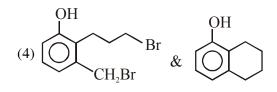

- **16.** The refining method used when the metal and the impurities have low and high melting temperatures, respectively, is -
 - (1) zone refining
 - (2) liquation
 - (3) vapour phase refining
 - (4) distillation

NTA Ans. (2)

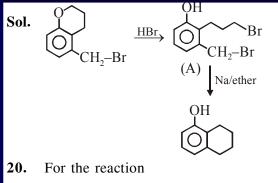

- **Sol.** Liquation method is used when the melting point of metal is less compare to the melting point of the associated impurity.
- **17.** The correct order of stability for the following alkoxides is :




18. The ammonia (NH_3) released on quantitative reaction of 0.6 g urea (NH₂CONH₂) with sodium hydroxide (NaOH) can be neutralized by : (1) 100 ml of 0.1 N HCl (2) 200 ml of 0.4 N HCl (3) 100 ml of 0.2 N HCl (4) 200 ml of 0.2 N HCl NTA Ans. (3) Sol. $NH_2CONH_2 + 2NaOH \rightarrow Na_2CO_3 + 2NH_3$ 10 mmoles 20mmoles Hence, NH₃ will require 20 meq. 19. In the following reaction squence, structures of



A and B, respectively will be :



NTA Ans. (4)

 $2H_2(g) + 2NO(g) \rightarrow N_2(g) + 2H_2O(g)$ the observed rate expression is, rate = k_f[NO]²[H₂]. The rate expression of the reverse reaction is : (1) k_b[N₂][H₂O]²/[NO] (2) k_b[N₂][H₂O] (3) k_b[N₂][H₂O]² (4) k_b[N₂][H₂O]²/[H₂]

NTA Ans. (4)

Sol.
$$K_{eq} = \frac{k_f}{k_b} = \frac{[N_2][H_2O]^2}{[H_2]^2[NO]^2}$$

At equilibrium $r_f = r_b$

$$\mathbf{k}_{f} \left[\mathbf{H}_{2} \right] \left[\mathbf{NO} \right]^{2} = \mathbf{k}_{b} \frac{\left[\mathbf{N}_{2} \right] \left[\mathbf{H}_{2} \mathbf{O} \right]^{2}}{\left[\mathbf{H}_{2} \right]}$$

Hence, rate expression for reverse reaction.

$$= k_{b} \frac{\left[N_{2}\right]\left[H_{2}O\right]^{2}}{\left[H_{2}\right]}$$

21. Conside the following reactions : $NaCl + K_2Cr_2O_7 + H_2SO_4(Conc.) \rightarrow (A) + Side$ products

(A) + NaOH
$$\rightarrow$$
 (B) + Side product
(B) + H₂SO₄(dilute) + H₂O₂ \rightarrow (C) + Side
product

The sum of the total number of atoms in one molecule each of (A), (B) and (C) is

NTA Ans. (18.00)

Sol. 4NaCl + K₂Cr₂O₇ + 6H₂SO₄ $2CrO_2Cl_2 + 4NaHSO_4 + 2KHSO_4 + 3H_2O$ (A) $CrO_2Cl_2 + 4 NaOH \longrightarrow Na_2CrO_4 + 2NaCl + 2H_2O$ (B) $Na_2CrO_4 + 2H_2SO_4 + 2H_2O_2$ $CrO_5 + 2NaHSO_4 + 3H_2O$ (C) $A = CrO_2Cl_2$ $B = Na_2CrO_4$ $C = CrO_5$ Total number of atom in A + B + C = 1822. 3g of acetic acid is added to 250 mL of 0.1 M HCl and the solution made up to 500 mL. To 20 mL of this solution $\frac{1}{2}$ mL of 5 M NaOH is added. The pH of the solution is _____. [Given : pK_a of acetic acid = 4.75, molar mass of acetic acid = $60 \text{ g/mol}, \log 3 = 0.4771$] Neglect any changes in volume NTA Ans. (5.22 to 5.24) Sol. 3gm Acetic Acid + 250 ml 0.1 M HCl +Water \rightarrow made to 500 ml solution. \Rightarrow 500 ml solution has 25 meg of HCl 50 meq of CH, COOH : 20ml solution has 1 meq of HCl 2 meg of CH₂COOH We have added 2.5 meq. of NaOH $\left(5M, \frac{1}{2}ml\right)$ Finally, NaOH & HCl are completely consumed and we are left with 0.5 meq of CH₃COOH and 1.5 meq of CH₃ COONa $pH = pKa + \log \frac{1.5}{0.5}$ $= 4.75 + \log 3 = 4.75 + 0.4771$ = 5.2271

_____ <u>Colleg</u>eDekho

> 25. 23. The standard heat of formation $(\Delta_{\rm f} {\rm H}^0_{298})$ of ethane in (kJ/mol), if the heat of combustion of ethane, hydrogen and graphite are -1560, -393.5 and -286 kJ/mol, respectively is NTA Ans. (-192.50 or -85.00) **Sol.** 2C(graphite) + $3H_2(g) \longrightarrow C_2H_6(g)$ $\Delta_{\rm f} {\rm H} \left({\rm C}_2 {\rm H}_6 \right) = 2 \Delta {\rm H}_{\rm comb} \left({\rm C}_{\rm graphite} \right) + 3 \ \Delta {\rm H}_{\rm comb} ({\rm H}_2)$ $-\Delta H_{comb} (C_2 H_6)$ $= -(286 \times 2) - (393.5 \times 3) - (-1560)$ =-572-1180.5+1560=-192.5 kJ/mole 24. The flucculation value of HCl for arsenic sulphide sol. is 30 m mole L⁻¹. If H₂SO₄ is used for the flocculation of arsenic sulphide, the amount, in grams, of H₂SO₄ in 250 ml required for the above purpose is _ (molecular mass of $H_2SO_4 = 98$ g/mol) NTA Ans. (0.36 to 0.38) Sol. 1 L solution requires 30 m.mol HCl 250 ml sol. will require 7.5 m.mol HCl or 3.75 m.mol H₂SO₄ $\Rightarrow \frac{3.75 \times 98}{1000} \text{gm H}_2 \text{SO}_4$ $= 0.3675 \text{ gm H}_2\text{SO}_4$

25. The number of sp² hybridised carbons present in "Aspartame" is _____. NTA Ans. (9.00) Sol. $HO - C - CH_2 - CH - C - NH - CH - C - OCH_3$ $HO - C - CH_2 - CH - C - NH - CH - C - OCH_3$ $NH_2 \qquad CH_2$ O = 0 $CH_2 \qquad O = 0$ $CH_2 \qquad O = 0$ C

no. of sp²-carbon \rightarrow 9