

Sol. (a) Zeolite method removes only cations (Ca² and Mg²⁺ ion) present in hard water $2\text{NaZ} + \text{M}^{2+}(\text{aq}) \rightarrow \text{MZ}_2(\text{s}) + 2\text{Na}^+(\text{aq})$ $(M \rightarrow Mg, Ca)$ (b) Synthetic resin method removes cations $(Ca^{2+} and Mg^{2+} ion)$ and anions (like Cl^{-} , HCO_3^{-} , SO_4^{2-} etc.) (i) $2RNa(s) + M^{2+}(aq) \rightarrow R_2M(s) + 2Na^+(aq)$ (Cation exchange $(M \rightarrow Mg, Ca)$ resin) (ii) $\text{RNH}^+_3 \text{OH}^-(s) + X^-(aq) \rightarrow \text{RNH}^+_3 X^-(s) +$ OH⁻(aq) (X⁻=Cl⁻,HCO₃⁻,SO₄²⁻ (Anion exchange resin) etc) The relative strength of interionic/ 10. 12. intermolecular forces in decreasing order is : (1) ion-dipole > ion-ion > dipole-dipole (2) dipole-dipole > ion-dipole > ion-ion (3) ion-dipole > dipole-dipole > ion-ion (4) ion-ion > ion-dipole > dipole-dipole NTA Ans. (4) Sol. Order is 13. ion - ion > ion - dipole > dipole - dipoleConsider the following reactions : 11. (a) $(CH_3)_3CCH(OH)CH_3 \xrightarrow{\text{conc.H}_2SO_4} \rightarrow$ (b) $(CH_3)_2CHCH(Br)CH_3 \xrightarrow{alc.KOH}$ (c) $(CH_3)_2CHCH(Br)CH_3 \xrightarrow{given by NTA (CH_3)_5 O^{\Theta}K^{\Theta}}$ It should be $(CH_3)_3 CO^{\Theta}K^{\Theta} \rightarrow$ (d) $(CH_3)_2C-CH_2-CHO \xrightarrow{\Delta}$ Which of these reaction(s) will not produce Saytzeff product ? (1) (c) only (2) (a), (c) and (d) (3) (d) only (4) (b) and (d) Sol. NTA Ans. (1) Sol. (a)

 $(CH_3)_3O^-K^+$ is incorrect representation of potassium tert-butoxide [$(CH_3)_3CO^-K^+$]. So it is possible that it can be given as **Bonus**

12. The purest form of commercial iron is

- (1) scrap iron and pig iron
- (2) wrought iron
- (3) cast iron
- (4) pig iron

NTA Ans. (2)

- Sol. Wrought iron is purest from of commercial iron.
 - 3. At 35°C, the vapour pressure of CS_2 is 512 mm Hg and that of acetone is 344 mm Hg. A solution of CS_2 in acetone has a total vapour pressure of 600 mm Hg. The false statement amongst the following is :
 - (1) heat must be absorbed in order to produce the solution at 35°C
 - (2) Raoult's law is not obeyed by this system
 - (3) a mixture of 100 mL CS₂ and 100 mL acetone has a volume < 200 mL
 - (4) CS_2 and acetone are less attracted to each other than to themselves

NTA Ans. (3)

ol. The vapour pressure of mixture (= 600 mm Hg) is greater than the individual vapour pressure of its constituents (Vapour pressure of CS₂ = 512 mm Hg, acetone = 344 mm Hg). Hence, the solution formed shows positive deviation from Raoult's law.

 $\Rightarrow\!\left(1\right)\!\Delta_{Sol}H\!>\!0$, (2) Raoult's law is not obeyed

- (3) $\Delta_{\text{sol.}}$ Volume > 0
- (4) CS_2 and Acetone are less attracted to each

ho

14.	The electron gain enthalpy (in kJ/mol) of fluorine,	17. The	e theory that can completely/properly explain
	chlorine, bromine and iodine, respectively are :	the	nature of bonding in [Ni(CO) ₄] is:
	(1) - 333, -349, -325 and -296	(1)	Werner's theory
	(2) -296, -325, -333 and -349	(2)	Crystal field theory
	(3) - 333, -325, -349 and -296	(3)	Valence bond theory
	(4) -349 - 333 - 325 and -296	(4)	Molecular orbital theory
NTA	Ans. (1)	NTA Ans	s. (4) \therefore (4)
Sol	Order of electron gain enthalow (magnitude) is	Sol. In (complex $[Ni(CO)_4]$ decrease in Ni–C bond
501.	Cl > F > Br > I		gin and increase in C–O bond length as wen it's magnetic property is explained by MOT
15	The number of orbitals associated with quantum	18 . Con	nsider the following reaction :
13.	The number of oronars associated with quantum		$\mathcal{CH}_{\mathcal{C}} \oplus \mathcal{O}_{\mathcal{C}} = \mathcal{O}_{\mathcal{C}} \oplus \mathcal{O}_{\mathcal{C}}$
	numbers n = 5, $m_s = +\frac{1}{2}$ is :	<u>_</u>	$-N \sim H_3 + Na SO_3 \rightarrow N_2Cl \rightarrow N_2Cl \rightarrow X'$
	(1) 11 (2) 25 (2) 15 (4) 50	The	e product 'X' is used :
NUT	(1) 11 (2) 25 (3) 15 (4) 50	(1)	in acid base titration as an indicator
NIA	A Ans. (2)	(2)	in protein estimation as an alternative to
Sol.	No. of orbitals = $n = 5 = 25$	(2)	ninhydrin
	For $n = 5$, no. of orbitals $= n^2 = 25$	(3)	as food grade colourant
	Total number of orbitals is equal to no. of	NTA An	s (1)
	1	Sol.	
	electrons having $m_s = \frac{1}{2}$	ша	
16.	Match the following :	H ₃ C	$\langle \bigcirc \rangle + \operatorname{Cl}^{-} N \equiv \widetilde{N} - \langle \bigcirc \rangle - \operatorname{SO}_{3}^{-} \operatorname{Na}^{+} $
	(i) Riboflavin (a) Beriberi	H ₃ C	
	(ii) Thiamine (b) Scurvy		\downarrow
	(iii)Pyridoxine (c) Cheilosis	М	
	(iv)Ascorbic acid (d) Convulsions		$N \rightarrow N = N \rightarrow SO_3^- Na^+$
	(1) (i)-(c), (ii)-(a), (iii)-(d), (iv)-(b)	M	
	(2) (i)-(c), (ii)-(d), (iii)-(a), (iv)-(b)		(Methyl orange)
	(3) (i)-(d), (ii)-(b), (iii)-(a), (iv)-(c)	It i	s an acid base indicator
	(4) (i)-(a), (ii)-(d), (iii)-(c), (iv)-(b)	19. The	e IUPAC name of the complex
NTA Ans. (1)		[Pt($(NH_3)_2Cl(NH_2CH_3)]Cl is :$
		(1)	Diammine (methanamine) chlorido
Sol.	(i) Riboflavin \longrightarrow (c) Cheilosis	(2)	Bisammine (methanamine) chloride
	(ii) Thiamina (a) Parihari	(2)	platinum (II) chloride
	(ii) manning \longrightarrow (a) benden	(3)	Diamminechlorido (aminomethane)
	(iii) Pyridoxin \longrightarrow (d) Convulsions		platinum(II) chloride
		(4)	Diamminechlorido (methanamine) platinum
Í	(iv) Ascorbic acid \longrightarrow (b) Scurvy		(II) chloride

1) Werner's theory 2) Crystal field theory 3) Valence bond theory 4) Molecular orbital theory **Ans.** (4) n complex [Ni(CO)₄] decrease in Ni–C bond ength and increase in C–O bond length as well as it's magnetic property is explained by MOT. Consider the following reaction : $\sim N < CH_3 + Na SO_3 - CH_3 + Na SO_3$ $-\stackrel{\oplus}{\mathrm{N_2Cl}} \stackrel{\odot}{\longrightarrow} \stackrel{\mathrm{OH}^-}{\longrightarrow} 'X'$ The product 'X' is used : (1) in acid base titration as an indicator 2) in protein estimation as an alternative to ninhydrin 3) in laboratory test for phenols 4) as food grade colourant $\mathbf{Ans.} (1)$ SO₃Na Me SO₃⁻Na⁺ Me (Methyl orange) t is an acid base indicator

- The IUPAC name of the complex $Pt(NH_3)_2Cl(NH_2CH_3)]Cl$ is :
 - 1) Diammine (methanamine) chlorido platinum (II) chloride
 - (2) Bisammine (methanamine) chlorido platinum (II) chloride
 - 3) Diamminechlorido (aminomethane) platinum(II) chloride
 - 4) Diamminechlorido (methanamine) platinum (II) chloride

NTA Ans. (4)

20.

21.

22.

Oxidation number of potassium in K_2O , K_2O_2 23. and KO_2 , respectively, is : is (1) +1, +4 and +2NTA Ans. (2) HO HC (2) +1, +2 and +4(3) + 1, +1 and +1(4) +2, +1 and $+\frac{1}{2}$ Sol. NTA Ans. (3) Chloramphenicol Sol. Potasisum has an oxidation of +1 (only) in 24. combined state. For the reaction ; $A(l) \rightarrow 2B(g)$ $\Delta U = 2.1$ kcal, $\Delta S = 20$ cal K⁻¹ at 300 K Hence ΔG in kcal is_____ NTA Ans. (10.60) NTA Ans. (-2.70 to -2.71) Sol. Sol. $A(\ell) \longrightarrow 2B(g)$ $\Delta U = 2.1 \text{ Kcal}$, $\Delta S = 20 \text{ cal } \text{K}^{-1}$ at 300 K 10-3 M H₂SO₄ sol. $\Delta H = \Delta U + \Delta n_{g} RT$ Final Conc. of OH- $\Delta G = \Delta H - T \Delta S$ $\Delta G = \Delta U + \Delta n_{o}RT - T\Delta S$ $=2.1+\frac{2\times2\times300}{1000}-\frac{300\times20}{1000}$ $pOH = -\log(6 \times 10^{-4})$ pH = 14 - 3.40 = 10.60 $(R = 2 \text{ cal } K^{-1} \text{ mol}^{-1})$ 25. = 2.1 + 1.2 - 6 = -2.70 Kcal/mol During the nuclear explosion, one of the products is ⁹⁰Sr with half life of 6.93 years. if 1 µg of ⁹⁰Sr was absorbed in the bones of a newly born baby in place of Ca, how much NTA Ans. (1.66 to 1.67) time, in years, is required to reduce it by 90% Sol. if it is not lost metabolically_____. (\mathbf{X}) NTA Ans. (23 to 23.03) **Sol.** All nuclear decays follow first order kinetics (X) $t = \frac{1}{k} \ell n \frac{\left[A_0\right]}{\left[A\right]}$ $= \frac{(t_{1/2})}{0.693} \times 2.303 \quad \log_{10} 10 = 10 \times 2.303 \times 1$ = 23.03 years

The number of chiral carbons in chloramphenicol

- Two solutions A and B, each of 100 L was made by dissolving 4g of NaOH and 9.8 g of H_2SO_4 in water, respectively. The pH of the resultant solution obtained from mixing 40 L of solution A and 10 L of solution B is_____.
- 4 gm of NaOH in 100 L sol. \Rightarrow 10⁻³ M sol. 9.8 gm of H_2SO_4 in 100 L sol. $\Rightarrow 10^{-3}$ M sol. Mixture : 40L of 10⁻³ M NaOH and 10 L of

$$=\frac{10^{-3}(40\times1-10\times1\times2)}{40+10}=6\times10^{-4}\,\mathrm{M}$$

 $= 4 - \log 6 = 4 - 0.60 = 3.40$

- Chlorine reacts with hot and concentrated NaOH and produces compounds (X) and (Y). Compound (X) gives white precipitate with silver nitrate solution. The average bond order between Cl and O atoms in (Y) is _____.
- $3Cl_2 + 6NaOH \rightarrow 5NaCl + NaClO_3 + 3H_2O$ (X)

 $NaCl + AgNO_3 \rightarrow AgCl \downarrow + NaNO_3$

Bond order of Cl–O Bond = $1 + \frac{2}{3} = \frac{5}{3}$ = 1.66 or 1.67