

The value of c in the Lagrange's mean value theorem for the function $f(x) = x^3 - 4x^2 + 8x + 11$, when $x \in [0, 1]$ is : (2) $\frac{\sqrt{7-2}}{3}$ (1) $\frac{2}{3}$ (4) $\frac{4-\sqrt{7}}{2}$ (3) $\frac{4-\sqrt{5}}{2}$ NTA Ans. (4) **Sol.** f(0) = 11f(1) = 16 $\frac{f(1)-f(0)}{1-0} = 3c^2 - 8c + 8$ $\Rightarrow 3c^2 - 8c + 8 = 5$ $\Rightarrow 3c^2 - 8c + 3 = 0$ $c \in [0, 1] \Rightarrow c = \frac{4 - \sqrt{7}}{3}$ 6. If θ_1 and θ_2 be respectively the smallest and the largest values of θ in $(0, 2\pi) - {\pi}$ which satisfy the equation, $2\cot^2\theta - \frac{5}{\sin\theta} + 4 = 0$, then $\int_{0}^{1} \cos^2 3\theta d\theta$ is equal to : (1) $\frac{2\pi}{3}$ (2) $\frac{\pi}{3} + \frac{1}{6}$ (3) $\frac{\pi}{9}$ (4) $\frac{\pi}{3}$ NTA Ans. (4) **Sol.** $2\cos^2\theta - 5\sin\theta + 4\sin^2\theta = 0$ $3\sin^2\theta - 5\sin\theta + 2 = 0$ $\sin\theta = \frac{1}{2}$, 2 (Rejected) $\int_{0}^{\theta_{2}} \cos^{2} 3\theta d\theta = \int_{0}^{5\pi/6} \frac{1 + \cos 6\theta}{2} d\theta$ $=\frac{1}{2}\left(\frac{5\pi}{6}-\frac{\pi}{6}\right)=\frac{2\pi}{6}=\frac{\pi}{3}$ 7. The number of ordered pairs (r, k) for which $6^{.35}C_r = (k^2 - 3)^{.36}C_{r+1}$, where k is an integer, is :

(1) 3 (2) 2

(3) 4

(4) 6

Sol. $6 \times^{35} C_r = (k^2 - 3)^{36} C_{r+1}$ $k^2 - 3 > 0 \implies k^2 > 3$ $k^2 - 3 = \frac{6 \times {}^{35} C_r}{{}^{36} C_r} = \frac{r+1}{6}$ Possible values of r for integral values of k, are r = 5, 35number of ordered pairs are 4 (5, 2), (5, -2), (35, 3), (35, -3)8. Let A = $[a_{ij}]$ and B = $[b_{ii}]$ be two 3 × 3 real matrices such that $b_{ij} = (3)^{(i + j - 2)}a_{ji}$, where i, j = 1, 2, 3. If the determinant of B is 81, then the determinant of A is : (1) 3(2) 1/3 (3) 1/81 (4) 1/9 NTA Ans. (4) **Sol.** $b_{ii} = (3)^{(i+j-2)} a_{ii}$ $\mathbf{B} = \begin{bmatrix} \mathbf{a}_{11} & 3\mathbf{a}_{12} & 3^2\mathbf{a}_{13} \\ 3\mathbf{a}_{21} & 3\mathbf{a}_{22} & 3\mathbf{a}_{23} \\ 3^2\mathbf{a}_{31} & 3^2\mathbf{a}_{32} & 3^2\mathbf{a}_{33} \end{bmatrix}$ $\Rightarrow |\mathbf{B}| = 3 \times 3^2 \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ 3a_{21} & 3a_{22} & 3a_{23} \\ 3^2 a_{31} & 3^2 a_{23} & 3^2 a_{33} \end{vmatrix}$ $= 3^{6}|A|$ $\Rightarrow |\mathbf{A}| = \frac{81}{27 \times 27} = \frac{1}{9}$ 9. Let $a_1, a_2, a_3,...$ be a G.P. such that $a_1 < 0$, $a_1 + a_2 = 4$ and $a_3 + a_4 = 16$. If $\sum_{i=1}^{9} a_i = 4\lambda$, then λ is equal to : (1) -171 (2) 171 (3) $\frac{511}{3}$ (4) -513NTA Ans. (1) **Sol.** $a_1 + a_2 = 4$ $r^2a_1 + r^2a_2 = 16$ \Rightarrow $r^2 = 4 \Rightarrow r = -2$ as $a_1 < 0$ and $a_1 + a_2 = 4$ $a_1 + a_1(-2) = 4 \implies a_1 = -4$ $4\lambda = (-4)\left(\frac{(-2)^9 - 1}{2}\right) = (-4) \times \frac{513}{2}$

,∗***`** CollegeDekho

10.	Let A, B, C and D be four non-empty sets.	13.	The coefficient of x ⁷ in the expression
	The contrapositive statement of "If $A \subseteq B$ and		$(1 + x)^{10} + x (1 + x)^9 + x^2 (1 + x)^8 + + x^{10}$ is :
	$B \subseteq D$, then $A \subseteq C''$ is :		(1) 120 (2) 330 (3) 210 (4) 420
	(1) If $A \subseteq C$, then $B \subset A$ or $D \subset B$	NTA	Ans. (2)
	(2) If $A \not\subseteq C$, then $A \not\subseteq B$ or $B \not\subseteq D$	Sol.	Coefficient of x ⁷ is
	(3) If $A \not\subseteq C$, then $A \subseteq B$ and $B \subseteq D$		10 C ₇ + 9 C ₆ + 8 C ₅ + + 4 C ₁ + 3 C ₀
	(4) If $A \not\subseteq C$, then $A \not\subseteq B$ and $B \subseteq D$		$\underbrace{\overset{4}{\underbrace{C_{0}}}_{5} + \overset{4}{\underbrace{C_{1}}}_{5}}_{5} + \overset{5}{\underbrace{C_{2}}}_{2} + \dots + \overset{10}{\underbrace{C_{7}}}_{7} = \overset{11}{\underbrace{C_{7}}}_{7} = 330$
ΝТА	Ans. (2) $A = B$	14.	Let α and β be the roots of the equation
	Contrapositive of $p \rightarrow q$ is $\neg q \rightarrow \neg p$	170	$x^2 - x - 1 = 0$. If $p_k = (\alpha)^k + (\beta)^k$, $k \ge 1$, then
501.	$(A \subseteq B) \land (B \subseteq D) \longrightarrow (A \subseteq C)$		which one of the following statements is not
	Contrapositive is $(H \subseteq D)$ ($H \subseteq C$)		true ?
	$\sim (A \subseteq C) \longrightarrow \sim (A \subseteq B) \lor \sim (B \subseteq D)$		(1) $(p_1 + p_2 + p_3 + p_4 + p_5) = 26$
	$A \not\subset C \rightarrow (A \not\subset B) \lor (B \not\subset D)$		(2) $p_5 = 11$
	+ · · · · · · · · · · ·		(3) $p_3 = p_5 - p_4$
11.	If $3x + 4y = 12\sqrt{2}$ is a tangent to the ellipse		$(4) \mathbf{p}_5 = \mathbf{p}_2 \cdot \mathbf{p}_3$
	x^2 y^2		Ans. (4)
	$\frac{x^2}{a^2} + \frac{y^2}{9} = 1$ for some $a \in \mathbb{R}$, then the distance	Sol.	$\alpha + \beta = 1, \alpha\beta = -1$
	between the foci of the ellipse is :		$P_k = \alpha^k + \beta^k$
	(1) 4 (2) $2\sqrt{7}$ (3) $2\sqrt{5}$ (4) $2\sqrt{2}$		$\alpha^{2} - \alpha - 1 = 0$ $\Rightarrow \alpha^{k} - \alpha^{k-1} - \alpha^{k-2} = 0$
	· · · · ·		$\Rightarrow \alpha^{k} - \alpha^{k-1} - \alpha^{k-2} = 0$ & $\beta^{k} - \beta^{k-1} - \beta^{k-2} = 0$
	Ans. (2)		$\Rightarrow P_k = P_{k-1} + P_{k-2}$
Sol.	$3x + 4y = 12\sqrt{12}$ is tangent to $\frac{x^2}{a^2} + \frac{y^2}{9} = 1$		$P_1 = \alpha + \beta = 1$
	$c^2 = m^2 a^2 + b^2$		$P_{2} = (\alpha + \beta)^{2} - 2\alpha\beta = 1 + 2 = 3$
	$\Rightarrow a^2 = 16$		$P_3 = 4$
	$\sqrt{9}$ $\sqrt{7}$		$P_4 = 7$
	$e = \sqrt{1 - \frac{9}{16}} = \frac{\sqrt{7}}{4}$		$P_5 = 11$
	Distance between focii = $2ae = 2\sqrt{7}$	15.	The locus of the mid-points of the
	2		perpendiculars drawn from points on the line,
12.	The value of α for which $4\alpha \int e^{-\alpha x } dx = 5$, is :		x = 2y to the line $x = y$ is : (1) $2y = 2y = 0$ (2) $7y = 5y = 0$
	(3) (4)		(1) $2x - 3y = 0$ (2) $7x - 5y = 0$ (3) $5x - 7y = 0$ (4) $3x - 2y = 0$
	(1) $\log_{e}\left(\frac{3}{2}\right)$ (2) $\log_{e}\left(\frac{4}{3}\right)$	NTA	(3) $3x = 7y = 0$ (4) $3x = 2y = 0$ Ans. (3)
	(3) $\log_{e} 2$ (4) $\log_{e} \sqrt{2}$		
NTA	Ans. (3)	Sol.	$\frac{\alpha - \beta}{2\alpha - \beta} = -1$
Sol.	$4\alpha \left \int_{-1}^{0} e^{\alpha x} dx + \int_{0}^{2} e^{-\alpha x} dx \right = 5$		$3\alpha = 2\beta$
			y = x
	$\Rightarrow 4\alpha \left(\left[\frac{e^{\alpha x}}{\alpha} \right]_{-1}^{0} + \left[\frac{e^{-\alpha x}}{-\alpha} \right]_{0}^{2} \right) = 5$		(β, β) (h, k) x = 2y
	$\Rightarrow 4e^{-2\alpha} + 4e^{-\alpha} - 3 = 0$		$(2\alpha, \alpha)$
	Let $e^{-\alpha} = t$, $4t^2 + 4t - 3 = 0$, $t = \frac{1}{2}, \frac{-3}{2}$ (Rejected)		<u> </u>
		r	

$$h = \frac{2\alpha + \beta}{2}$$
$$2h = \frac{7\alpha}{2}$$
$$k = \frac{\alpha + \beta}{2}$$
$$2k = \frac{5\alpha}{2}$$
$$\frac{h}{k} = \frac{7}{5}$$
$$5x = 7y$$

16. If $\frac{3+i\sin\theta}{4-i\cos\theta}$, $\theta \in [0,2\pi]$, is a real number, then

an argument of $\sin\theta + i\cos\theta$ is :

(1)
$$-\tan^{-1}\left(\frac{3}{4}\right)$$
 (2) $\tan^{-1}\left(\frac{4}{3}\right)$
(3) $\pi - \tan^{-1}\left(\frac{4}{3}\right)$ (4) $\pi - \tan^{-1}\left(\frac{3}{4}\right)$

NTA Ans. (3)

Sol. $\frac{3+i\sin\theta}{4-i\cos\theta}$ is a real number $\Rightarrow 3\cos\theta + 4\sin\theta = 0$ $\Rightarrow \tan\theta = \frac{-3}{4}$

argument of $\sin\theta + i\cos\theta = \pi - \tan^{-1}\frac{4}{3}$

- 17. Let y = y(x) be the solution curve of the differential equation, $(y^2 - x)\frac{dy}{dx} = 1$, satisfying y(0) = 1. This curve intersects the x-axis at a point whose abscissa is : (1) 2 + e (2) 2 (3) 2 - e (4) -e
- NTA Ans. (3)

Sol.
$$(y^2 - x)\frac{dy}{dx} = 1$$

 $\Rightarrow \frac{dx}{dy} + x = y^2$
I.F. $= e^{\int dy} = e^y$
Solution is given by
 $x e^y = \int y^2 e^y dy + C$
 $\Rightarrow x e^y = (y^2 - 2y + 2)e^y + C$
 $x = 0, y = 1, gives C = -e$

Let f(x) be a polynomial of degree 5 such that $x = \pm 1$ are its critical points. If $\lim_{x\to 0} \left(2 + \frac{f(x)}{x^3}\right) = 4$, then which one of the following is not true? (1) f is an odd function (2) x = 1 is a point of minima and x = -1is a point of maxima of f. (3) x = 1 is a point of maxima and x = -1is a point of minimum of f.

(4)
$$f(1) - 4f(-1) = 4$$

NTA Ans. (2)

18.

Sol.
$$\lim_{x \to 0} \left(2 + \frac{f(x)}{x^3} \right) = 4$$

 $\Rightarrow f(x) = 2x^3 + ax^4 + bx^5$
 $f'(x) = 6x^2 + 4ax^3 + 5bx^4$
 $f'(1) = 0, f'(-1) = 0$
 -6

$$a = 0, b = \frac{-6}{5} \implies f(x) = 2x^3 - \frac{-6}{5}$$

$$f(x) = 6x^2 - 6x^4$$

= 6x²(1 - x) (1 + x

Sign scheme for f'(x)

$$\leftarrow$$
 +ve +ve -ve
 \leftarrow + + +ve -ve
 -1 0 1

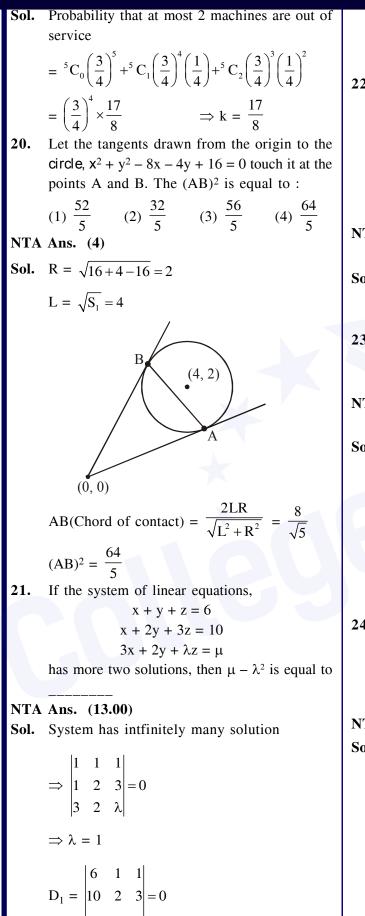
Minima at x = -1Maxima at x = 1

19. In a workshop, there are five machines and the probability of any one of them to be out of service on a day is $\frac{1}{4}$. If the probability that at most two machines will be out of service on the

same day is $\left(\frac{3}{4}\right)^3 k$, then k is equal to :

(1)
$$\frac{17}{2}$$
 (2) 4

(3)
$$\frac{17}{8}$$
 (4) $\frac{17}{4}$



 $\mu - \lambda^2 = 13$

 $\mu = 14$

If the function f defined on $\left(-\frac{1}{3},\frac{1}{3}\right)$ by 22.

$$f(x) = \begin{cases} \frac{1}{x} \log_e \left(\frac{1+3x}{1-2x} \right) & \text{, when } x \neq 0 \\ k & \text{, when } x = 0 \end{cases}$$

is continuous, then k is equal to_____

NTA Ans. (5.00)

Sol.
$$k = \lim_{x \to 0} \left(\frac{\ell n (1+3x)}{x} - \frac{\ell n (1-2x)}{x} \right)$$

 $k = 3 + 2 = 5$

NTA Ans. (54.00)

501.
$$\frac{3+7+9+12+13+20+x+y}{8} = 10$$

$$x + y = 16$$

$$\frac{\Sigma x^{2}}{n} - \left(\frac{\Sigma x}{n}\right)^{2} = 25$$

$$3^{2} + 7^{2} + 9^{2} + 12^{2} + 13^{2} + 20^{2} + x^{2} + y^{2} = 1000$$

$$x^{2} + y^{2} = 148$$

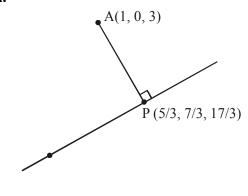
$$xy = 54$$

24. If the foot of the perpendicular drawn from the point (1, 0, 3) on a line passing through $(\alpha, 7, 1)$

is
$$\left(\frac{5}{3}, \frac{7}{3}, \frac{17}{3}\right)$$
, then α is equal to_____

NTA Ans. (4.00)

Sol.



D.R. of BP = $<\frac{5}{3}-\alpha, \frac{7}{3}-7, \frac{17}{3}-1>$ D.R. of AP = $<\frac{5}{3}-1,\frac{7}{3}-0,\frac{17}{3}-3>$ $BP \perp^r AP$ $\Rightarrow \alpha = 4$ 25. Let $X = \{n \in N : 1 \le n \le 50\}$. If $A = \{n \in X : n \text{ is a multiple of } 2\}$ and $B = \{n \in X : n \text{ is a multiple of } 7\}$, then the number of elements in the smallest subset of X containing both A and B is_____ NTA Ans. (29.00) **Sol.** n(A) = 25n(B) = 7 $n(A \cap B) = 3$ $n(A \cup B) = 25 + 7 - 3 = 29$