

11.

Hoffmann bromomide degradation of benzamide gives product A, which upon heating with $CHCl_3$ and NaOH gives product B. The structures of A and B are :

Official Ans. by NTA (2)

Sol. Hoffmann bromamide degradation reaction :

12. Mesityl oxide is a common name of :

- (1) 2,4-Dimethyl pentan-3-one
- (2) 3-Methyl cyclohexane carbaldehyde
- (3) 2-Methyl cyclohexanone
- (4) 4-Methyl pent-3-en-2-one

Official Ans. by NTA (4)

Sol.

Mesityloxide

- **13.** Which of the following reaction is an example of ammonolysis?
- (1) $C_6H_5COCl + C_6H_5NH_2 \longrightarrow C_6H_5CONHC_6H_5$
- (2) $C_6H_5CH_2CN \xrightarrow{[H]} C_6H_5CH_2CH_2NH_2$
- (3) $C_6H_5NH_2 \xrightarrow{HCI} C_6H_5NH_3CI^-$
- (4) $C_6H_5CH_2Cl + NH_3 \longrightarrow C_6H_5CH_2NH_2$ Official Ans. by NTA (4)
- **Sol.** The process of cleavage of the C–X bond by Ammonia molecule is known as ammonolysis.

 $Ex : R-CH_2-Cl + \ddot{N}H_3 \longrightarrow R-CH_2-NH_2$

14.
$$HBr, A$$

CH₃ CCl_4 (Major product)

$$(4) \underbrace{\overset{\mathrm{CH}_{3}}{\overset{\mathrm{Br}}{\underset{\mathrm{CH}_{3}}{\overset{\mathrm{Br}}{\underset{\mathrm{CH}_{3}}{\overset{CH}_{3}}{\overset{CH}_{3}}{\overset{CH}_{3}}{\overset{CH}_{3}}{\overset{CH}_{3}}{\overset{CH}_{3}}{\overset{CH}_{3}}{\overset{CH}_{3}}{\overset{CH}_{3}}{\overset{CH}_{3}}{\overset{CH}_{3}}{\overset{CH}_{3}}{\overset{CH}_{3}}{\overset{CH}_{3}}{\overset{CH}_{3}}{\overset{CH}_{3}}}{\overset{CH}_{3}}$$

Official Ans. by NTA (4)

Sol.

,∗***`** CollegeDekho

15.	A colloidal system consisting of a gas dispersed	18.	What is the spin-only magnetic moment value
	in a solid is called a/an :		(BM) of a divalent metal ion with atomic
	(1) solid sol (2) gel		number 25, in it's aqueous solution?
	(3) aerosol (4) foam		(1) 5.92
	Official Ans. by NTA (1)		(2) 5.0
Sol.	Colloid of gas dispersed in solid is called solid sol. The INCORRECT statement(s) about heavy water is (are)		(3) zero
16.			(4) 5.26
			Official Ans. by NTA (1)
L	(A) used as a moderator in nuclear reactor	Sol.	Electronic configuration of divalent metal ion
	(B) obtained as a by-product in fertilizer industry.		having atomic number 25 is
	(C) used for the study of reaction mechanism		$1s^2 2s^2 - 2n^6 - 3s^2 - 3n^6 - 3d^5$
	(D) has a higher dielectric constant than water	$Mn_{(a)}^{+2}$	$2_{aq} \Rightarrow 11 11 11 11 11 11 11 11 11 11 11 11 1$
	Choose the correct answer from the options given below :		Total number of unpaired electrons = 5
	(1) (B) only (2) (C) only		μ (Magnetic moment) = $\sqrt{n(n+2)}$ BM
	(3) (D) only (4) (B) and (D) only		where $n = number of unpaired e^{-1}$
	Official Ans. by NTA (3)		
Sol.	The dielectric constant of H_2O is greater than		$\therefore \mu = \sqrt{5(5+2)} = \sqrt{35} \text{BM} = 5.92 \text{BM}$
	heavy water.	19.	Given below are two statements :
17.	The correct order of conductivity of ions in		Statement-I : Retardation factor (R_f) can be
L			measured in meter/centimeter.
	(1) $Na^+ > K^+ > Rb^+ > Cs^+$		Statement-II : R _f value of a compound remains
	$(2) Cs^+ > Rb^+ > K^+ > Na^+$		constant in all solvents.
L	(3) $K^+ > Na^+ > Cs^+ > Rb^+$		Choose the most appropriate answer from the
	(4) $Rb^+ > Na^+ > K^+ > Li^+$		options given below:
	Official Ans. by NTA (2)		(1) Statement-I is true but statement-II is false
Sol.	$Li^{+} Na^{+} K^{+} Rb^{+} Cs^{+} \dots$		(2) Both statement-I and statement-II are true
	Hydration energy		(3) Both statement-I and statement-II are false
	→ Ionic mobility ↓		(4) Statement-I is false but statement-II is true
	$\longrightarrow \text{Conductivity} \downarrow$		Official Ans. by NTA (3)
	$\therefore \text{ Correct option is Na} > K > Kb > Cs^{*}.$	Sol	$R_{\rm c}$ = retardation factor
Sol.	As the size of gaseous ion decreases, it get	501.	r_{f} – retargation factor
	more hydrated in water and hence, the size of		Distance travelled by the substance from
	aqueous ion increases. When this bulky ion	R	= reference line(c.m)
	resistance and hence lower conductivity.	ι τ _f	Distance travelled by the solvent from
Size	of gasesous ion : $Cs^+ > Rb^+ > K^+ > Na^+$		reference line (c.m)
Size	of aqueous ion : $Cs^+ < Rb^+ < K^+ < Na^+$		
1			

____****``**____ <u>Colleg</u>eDekho

> **20.** The point of intersection and sudden increase in the slope, in the diagram given below, respectively, indicates :

- (1) $\Delta G = 0$ and melting or boiling point of the metal oxide
- (2) $\Delta G > 0$ and decomposition of the metal oxide
- (3) $\Delta G < 0$ and decomposition of the metal oxide

(4) $\Delta G = 0$ and reduction of the metal oxide **Official Ans. by NTA** (1)

Official Ans. by (Bonus)

Sol. At intersection point $\Delta G = 0$ and sudden increase in slope is due to melting or boiling point of the metal.

SECTION-B

1. The reaction of white phosphorus on boiling with alkali in inert atmosphere resulted in the formation of product 'A'. The reaction 1 mol of 'A' with excess of $AgNO_3$ in aqueous medium gives _____ mol(s) of Ag. (Round off to the Nearest Integer).

Official Ans. by NTA (4)

Sol. $P_4 + 3OH^- + 3H_2O \rightarrow PH_3 + 3H_2PO_2^-$

is dissolved in 1.0 L of 0.1 M HCl solution. The __ × 10⁻⁵ degree of dissociation of HA is (Round off to the Nearest Integer). [Neglect volume change on adding HA. Assume degree of dissociation <<1] Official Ans. by NTA (2) A^{-} $HA \rightleftharpoons H^{+}$ +Initial conc. 0.01M 0.1M 0 Equ. conc. (0.01 - x)(0.1 + x) xM $\approx 0.01 M \approx 0.1 M$ Now, $K_a = \frac{[x^+][A^-]}{[HA]} \Longrightarrow 2 \times 10^{-6} = \frac{0.1 \times x}{0.01}$ \therefore x = 2 × 10⁻⁷ Now, $\alpha = \frac{x}{0.01} = \frac{2 \times 10^{-7}}{0.01} = 2 \times 10^{-5}$ A certain orbital has n = 4 and $m_L = -3$. The number of radial nodes in this orbital is . (Round off to the Nearest Integer). **Official Ans. by NTA (0)**

0.01 moles of a weak acid HA($K_a = 2.0 \times 10^{-6}$)

Sol. n = 4 and $m_{\ell} = -3$

2.

Sol.

3.

4.

Hence, ℓ value must be 3. Now, number of radial nodes = $n - \ell - 1$ = 4 - 3 - 1 = 0

NO.

$$\begin{array}{c} HNO_{3} \\ HNO_{4} \\ H_{2}SO_{4} \end{array}$$

In the above reaction, 3.9 g of benzene on nitration gives 4.92 g of nitrobenzene. The percentage yield of nitrobenzene in the above reaction is _______%. (Round off to the Nearest Integer).

 $\begin{array}{l} (Given \ atomic \ mass : C \ : \ 12.0 \ u, \ H \ : \ 1.0u, \\ O \ : \ 16.0 \ u, \ N \ : \ 14.0 \ u) \end{array}$

Official Ans. by NTA (80)

But actual amount of nitrobenzene formed is 4.92 gm and hence.

The mole fraction of a solute in a 100 molal 9. aqueous solution $___ \times 10^{-2}$. (Round off to the Nearest Integer). [Given : Atomic masses : H : 1.0 u, O : 16.0 u] Official Ans. by NTA (64) **Sol.** 100 molal aqueous solution means there is 100 mole solute in 1 kg = 1000 gm water. Now, mole-fraction of solute = $\frac{n_{solute}}{n_{solute} + n_{solvent}}$ $= \frac{100}{100 + \frac{1000}{10}} = \frac{1800}{2800} = 0.6428$ $= 64.28 \times 10^{-2}$ 6. For a certain first order reaction 32% of the reactant is left after 570 s. The rate constant of this reaction is $___ \times 10^{-3} \text{ s}^{-1}$. (Round off to the Nearest Integer). [Given : $\log_{10}2 = 0.301$, $\ln 10 = 2.303$] Official Ans. by NTA (2) **Sol.** For 1st order reaction. $K = \frac{2.303}{t} \cdot \log \frac{[A_0]}{[A_1]} = \frac{2.303}{570 \sec} \cdot \log \left(\frac{100}{32}\right)$ $= 1.999 \times 10^{-3} \text{ sec}^{-1} \approx 2 \times 10^{-3} \text{ sec}^{-1}$ 7. The standard enthalpies of formation of Al₂O₃ and CaO are -1675 kJ mol-1 and -635 kJ mol-1 respectively. For the reaction $3CaO + 2AI \rightarrow 3Ca + Al_2O_3$ the standard 10. reaction enthalpy $\Delta_r H^0 = _$ _____ kJ. (Round off to the Nearest Integer). Official Ans. by NTA (230) Sol. Given reaction: $3CaO + Al \rightarrow Al_2O_3 + 3Ca$ Now, $\Delta_{\rm r} {\rm H}^{\circ} = \Sigma \ \dot{\Delta}_{\rm f} {\rm H}^{\circ}_{\rm Products} - \Sigma \Delta_{\rm f} {\rm H}^{\circ}_{\rm Reactants}$ = $[1 \times (-1675) + 3 \times 0] - [3 \times (-635) + 2 \times 0]$ $= + 230 \text{ kJ mol}^{-1}$ 8. 15 mL of aqueous solution of Fe²⁺ in acidic medium completely reacted with 20 mL of 0.03 M aqueous $Cr_2O_7^{2-}$. The molarity of the Fe²⁺ solution is $___ \times 10^{-2}$ M (Round off to the Nearest Integer). Official Ans. by NTA (24) **Sol.** $n_{eq} Fe^{2+} = n_{eq} Cr_2O_7^{2-}$ or, $\left(\frac{15 \times M_{Fe^{2+}}}{1000}\right) \times 1 = \left(\frac{20 \times 0.03}{1000}\right) \times 6$

The oxygen dissolved in water exerts a partial pressure of 20 kPa in the vapour above water. The molar solubility of oxygen in water is $_$ × 10⁻⁵ mol dm⁻³. (Round off to the Nearest Integer). [Given : Henry's law constant $= K_{\rm H} = 8.0 \times 10^4 \text{ kPa for O}_2.$ Density of water with dissolved oxygen = 1.0 kg dm^{-3}] Official Ans. by NTA (25) Official Ans. by (1389) **Sol.** $P = K_{u} \cdot x$ or, $20 \times 10^3 = (8 \times 10^4 \times 10^3) \times \frac{n_{O_2}}{n_0 + n_{water}}$ or, $\frac{1}{4000} = \frac{n_{O_2}}{n_{O_2} + n_{water}} = \frac{n_{O_2}}{n_{water}}$ Means 1 mole water (= 18 gm = 18 ml) dissolves $\frac{1}{4000}$ moles O_2 . Hence, molar solubility $= \frac{\left(\frac{1}{4000}\right)}{10} \times 1000 = \frac{1}{72} \,\mathrm{mol}\,\mathrm{dm}^{-3}$ $= 1388.89 \times 10^{-5} \text{ mol dm}^{-3} \approx 1389 \text{ mol dm}^{-3}$ The pressure exerted by a non-reactive gaseous mixture of 6.4 g of methane and 8.8 g of carbon dioxide in a 10 L vessel at 27°C is kPa. (Round off to the Nearest Integer). [Assume gases are ideal, $R = 8.314 \text{ J} \text{ mol}^{-1} \text{ K}^{-1}$ Atomic masses : C : 12.0 u, H : 1.0 u, O : 16.0 u] Official Ans. by NTA (150) **Sol.** Total moles of gases, $n = n_{CH_4} + n_{CO_2}$ $=\frac{6.4}{16}+\frac{8.8}{44}=0.6$ Now, P = $\frac{nRT}{V} = \frac{0.6 \times 8.314 \times 300}{10 \times 10^{-3}}$ $= 1.49652 \times 10^5$ Pa = 149.652 kPa

 $\approx 150 \text{ kPa}$