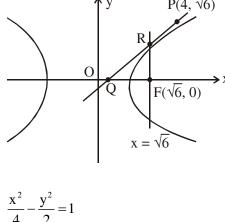


CollegeDekho

Sol. For non-trivial solution $\begin{vmatrix} 4 & \lambda & 2 \\ 2 & -1 & 1 \\ \mu & 2 & 3 \end{vmatrix} = 0$ $\Rightarrow 2\mu - 6\lambda + \lambda\mu = 12$ when $\mu = 6$, $12 - 6\lambda + 6\lambda = 12$ which is satisfied by all λ Let $f : \mathbb{R} - \{3\} \rightarrow \mathbb{R} - \{1\}$ be defined by 4. $f(\mathbf{x}) = \frac{\mathbf{x} - 2}{\mathbf{x} - 3}$. Let $\mathbf{g} : \mathbf{R} \to \mathbf{R}$ be given as g(x) = 2x - 3. Then, the sum of all the values of x for which $f^{-1}(x) + g^{-1}(x) = \frac{13}{2}$ is equal to (3) 5 (4) 3 (1) 7(2) 2Official Ans. by NTA (3) **Sol.** $f(x) = y = \frac{x-2}{x-3}$ $\therefore x = \frac{3y-2}{y-1}$ $\therefore f^{-1}(\mathbf{x}) = \frac{3\mathbf{x}-2}{\mathbf{x}-1}$ & g(x) = y = 2x - 3 $\therefore x = \frac{y+3}{2}$ $\therefore g^{-1}(x) = \frac{x+3}{2}$ $\therefore f^{-1}(x) + g^{-1}(x) = \frac{13}{2}$ $\therefore x^2 - 5x + 6 = 0 \underbrace{x_1}_{x}$ ∴ sum of roots $x_1 + x_2 = 5$

5. Let the centroid of an equilateral triangle ABC be at the origin. Let one of the sides of the equilateral triangle be along the straight line x + y = 3. If R and r be the radius of circumcircle and incircle respectively of $\triangle ABC$, then (R + r)

6.



$$e = \sqrt{1 + \frac{b^2}{2}} = \sqrt{\frac{3}{2}}$$

7.

 \therefore Focus F(ae, 0) \Rightarrow F $\left(\sqrt{6}, 0\right)$ equation of tangent at P to the hyperbola is $2x - \sqrt{6} = 2$ tangent meet x-axis at Q(1, 0)& latus rectum x = $\sqrt{6}$ at $R\left(\sqrt{6}, \frac{2}{\sqrt{6}}\left(\sqrt{6}-1\right)\right)$ 8. $\therefore \text{ Area of } \Delta_{\text{QFR}} = \frac{1}{2} \left(\sqrt{6} - 1 \right) \cdot \frac{2}{\sqrt{6}} \left(\sqrt{6} - 1 \right)$ $=\frac{7}{\sqrt{6}}-2$ If P and Q are two statements, then which of the following compound statement is a tautology ? (1) $((P \Rightarrow Q) \land \neg Q) \Rightarrow Q$ (2) $((P \Rightarrow Q) \land \sim Q) \Rightarrow \sim P$ (3) $((P \Rightarrow Q) \land \sim Q) \Rightarrow P$ $(4) ((P \Rightarrow Q) \land \sim Q) \Rightarrow (P \land Q)$ Official Ans. by NTA (2) Sol. LHS of all the options are some i.e. $((P \rightarrow Q) \land \neg Q)$ $\equiv (\sim P \lor Q) \land \sim Q$ $\equiv (\sim P \land \sim Q) \lor (Q \land \sim Q)$ S $\equiv \sim P \land \sim O$ (A) $(\sim P \land \sim Q) \rightarrow Q$ $\equiv \sim (\sim P \land \sim Q) \lor Q$ \equiv (P \vee Q) \vee Q \neq tautology **(B)** $(\sim P \land \sim Q) \rightarrow \sim P$ $\equiv \sim (\sim P \land \sim Q) \lor \sim P$ $\equiv (\mathbf{P} \lor \mathbf{O}) \lor \mathbf{\sim} \mathbf{P}$ \Rightarrow Tautology (C) $(\sim P \land \sim Q) \rightarrow P$ \equiv (P \lor Q) \lor P \neq Tautology (D) $(\sim P \land \sim Q) \rightarrow (P \land Q)$ $\equiv (P \lor Q) \lor (P \land Q) \neq$ Tautology

Aliter :

Р	Q	$P \lor Q$	$P \lor Q$	~ P	$(\mathbf{P} \lor \mathbf{Q}) \lor \sim \mathbf{P}$
Т	Т	Т	Т	F	Т
Т	F	Т	F	F	Т
F	Т	Т	F	Т	Т
F	F	F	F	Т	Т

Let
$$g(x) = \int_0^x f(t) dt$$
, where f is continuous

function in [0, 3] such that $\frac{1}{3} \le f(t) \le 1$ for all

 $t \in [0, 1]$ and $0 \le f(t) \le \frac{1}{2}$ for all $t \in (1, 3]$. The largest possible interval in which g(3) lies is :

(1)
$$\left[-1, -\frac{1}{2}\right]$$
 (2) $\left[-\frac{3}{2}, -1\right]$
(3) $\left[\frac{1}{3}, 2\right]$ (4) [1, 3]

Official Ans. by NTA (3)

Sol.
$$\frac{1}{3} \leq f(t) \leq 1 \forall t \in [0,1]$$

$$0 \le f(t) \le \frac{1}{2} \forall t \in (1,3]$$

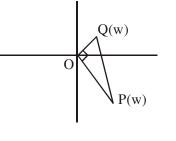
Now,
$$g(3) = \int_{0}^{3} f(t) dt = \int_{0}^{1} f(t) dt + \int_{1}^{3} f(t) dt$$

$$:: \int_{0}^{1} \frac{1}{3} dt \le \int_{0}^{1} f(t) dt \le \int_{0}^{1} 1. dt \qquad \dots (1)$$

and
$$\int_{1}^{3} 0 \, dt \le \int_{1}^{3} f(1) \, dt \le \int_{1}^{3} \frac{1}{2} \, dt \quad \dots (2)$$

Adding, we get $\frac{1}{2} + 0 \le g(3) \le 1 + \frac{1}{2}(3-1)$ $\frac{1}{-\leq}g(3)\leq 2$

Let S_1 be the sum of first 2n terms of an 9. arithmetic progression. Let S₂ be the sum of first 4n terms of the same arithmetic progression. If $(S_2 - S_1)$ is 1000, then the sum of the first 6n terms of the arithmetic progression is equal to: (1) 1000(2) 7000(3) 5000 (4) 3000 Official Ans. by NTA (4) **Sol.** $S_{2n} = \frac{2n}{2} [2a + (2n - 1)d], S_{4n} = \frac{4n}{2} [2a + (4n - 1)d]$ 1)d] $\Rightarrow S_2 - S_1 = \frac{4n}{2} [2a + (4n - 1)d] - \frac{2n}{2} [2a + (2n - 1)d] = \frac{2n}{2} [2a +$ 1)d] = 4an + (4n - 1)2nd - 2na - (2n - 1)dn= 2na + nd[8n - 2 - 2n + 1] \Rightarrow 2na + nd[6n - 1] = 1000 $2a + (6n - 1)d = \frac{1000}{r}$ Now, $S_{6n} = \frac{6n}{2} [2a + (6n - 1)d]$ $=3n.\frac{1000}{n}=3000$ Let a complex number be $w = 1 - \sqrt{3}i$. Let 10. another complex number z be such that |zw| = 1and $\arg(z) - \arg(w) = \frac{\pi}{2}$. Then the area of the triangle with vertices origin, z and w is equal to: (2) $\frac{1}{2}$ (3) $\frac{1}{4}$ (4) 2 (1) 4Official Ans. by NTA (2) Sol. w = 1 - $\sqrt{3}i \Rightarrow |w| = 2$ Now, $|\mathbf{z}| = \frac{1}{|\mathbf{w}|} \Rightarrow |\mathbf{z}| = \frac{1}{2}$



$$\Rightarrow$$
 Area of triangle = $\frac{1}{2}$.OP.OQ

$$=\frac{1}{2}.2.\frac{1}{2}=\frac{1}{2}$$

11. Let in a series of 2n observations, half of them are equal to a and remaining half are equal to -a. Also by adding a constant b in each of these observations, the mean and standard deviation of new set become 5 and 20, respectively. Then the value of $a^2 + b^2$ is equal to :

Sol. Let observations are denoted by x_i for $1 \le i < 2n$

$$\overline{\mathbf{x}} = \frac{\sum \mathbf{x}_i}{2\mathbf{n}} = \frac{(\mathbf{a} + \mathbf{a} + \dots + \mathbf{a}) - (\mathbf{a} + \mathbf{a} + \dots + \mathbf{a})}{2\mathbf{n}}$$
$$\Rightarrow \overline{\mathbf{x}} = 0$$
and $\sigma_{\mathbf{x}}^2 = \frac{\sum \mathbf{x}_i^2}{2\mathbf{n}} - (\overline{\mathbf{x}})^2 = \frac{\mathbf{a}^2 + \mathbf{a}^2 + \dots + \mathbf{a}^2}{2\mathbf{n}} - 0 = \mathbf{a}^2$
$$\Rightarrow \sigma_{\mathbf{x}} = \mathbf{a}$$

Now, adding a constant b then $\overline{y} = \overline{x} + b = 5$ $\Rightarrow b = 5$

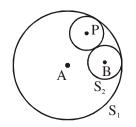
and $\sigma_y = \sigma_x$ (No change in S.D.) $\Rightarrow a = 20$ $\Rightarrow a^2 + b^2 = 425$

12. Let $S_1 : x^2 + y^2 = 9$ and $S_2 : (x - 2)^2 + y^2 = 1$. Then the locus of center of a variable circle S which touches S_1 internally and S_2 externally always passes through the points :

(1)
$$(0, \pm \sqrt{3})$$
 (2) $(\frac{1}{2}, \pm \frac{\sqrt{5}}{2})$
(3) $(2, \pm \frac{3}{2})$ (4) $(1, \pm 2)$

Sol.
$$S_1 : x^2 + y^2 = 9 < r_1 = 3$$

 $A(0, 0)$
 $S_2 : (x - 2)^2 + y^2 = 1 < r_2 = 1$
 $B(2, 0)$
 $\therefore c_1 c_2 = r_1 - r_2$

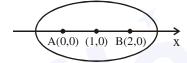


0)

: given circle are touching internally Let a veriable circle with centre P and radius r \Rightarrow PA = r₁ - r and PB = r₂ + r \Rightarrow PA + PB = $r_1 + r_2$ \Rightarrow PA + PB = 4(> AB) \Rightarrow Locus of P is an ellipse with foci at A(0, 0) and B(2, 0) and length of major axis is 2a = 4,

$$e = \frac{1}{2}$$

 \Rightarrow centre is at (1, 0) and b² = a²(1 - e²) = 3 if x-ellipse



$$\Rightarrow E: \frac{(x-1)^2}{4} + \frac{y^2}{3} = 1$$

which is satisfied by $\left(2,\pm\frac{3}{2}\right)$

13. Let \vec{a} and \vec{b} be two non-zero vectors perpendicular to each other and $|\vec{a}| = |\vec{b}|$. If $|\vec{a} \times \vec{b}| = |\vec{a}|$, then the angle between the vectors $(\vec{a} + \vec{b} + (\vec{a} \times \vec{b}))$ and \vec{a} is equal to : (1) $\sin^{-1}\left(\frac{1}{\sqrt{3}}\right)$ (2) $\cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$ (3) $\cos^{-1}\left(\frac{1}{\sqrt{2}}\right)$ (4) $\sin^{-1}\left(\frac{1}{\sqrt{2}}\right)$

Official Ans. by NTA (2)

 $\left|\vec{a}\right| = \left|\vec{b}\right|, \ \left|\vec{a} \times \vec{b}\right| = \left|\vec{a}\right|, \ \vec{a} \perp \vec{b}$ Sol.

$$\vec{a} \times \vec{b} = |\vec{a}| \Rightarrow |\vec{a}| |\vec{b}| \sin 90^\circ = |\vec{a}| \Rightarrow |\vec{b}| = 1 = |\vec{a}|$$

 \vec{a} and \vec{b} are mutually perpendicular unit vectors.

Let
$$\vec{a} = \hat{i}$$
, $\vec{b} = \hat{j} \implies \vec{a} \times \vec{b} = \hat{k}$

$$\cos \theta = \frac{\left(\hat{i} + \hat{j} + \hat{k}\right) \cdot \hat{i}}{\sqrt{3} \sqrt{1}} = \frac{1}{\sqrt{3}} \implies \theta = \cos^{-1}\left(\frac{1}{\sqrt{3}}\right)$$

14. Let in a Binomial distribution, consisting of 5 independent trials, probabilities of exactly 1 and 2 successes be 0.4096 and 0.2048 respectively. Then the probability of getting exactly 3 successes is equal to :

(1)
$$\frac{32}{625}$$
 (2) $\frac{80}{243}$ (3) $\frac{40}{243}$ (4) $\frac{128}{625}$

Official Ans. by NTA (1)

Sol. $P(X = 1) = {}^{5}C_{1}.p.q^{4} = 0.4096$ $P(X = 2) = {}^{5}C_{2}.p^{2}.q^{3} = 0.2048$

$$\Rightarrow \frac{q}{2p} = 2$$

$$\Rightarrow q = 4p \text{ and } p + q = 1$$

$$\Rightarrow p = \frac{1}{5} \text{ and } q = \frac{4}{5}$$

Now

$$P(X = 3) = {}^{5}C_{3} \cdot \left(\frac{1}{5}\right)^{3} \cdot \left(\frac{4}{5}\right)^{2} = \frac{10 \times 16}{125 \times 25} = \frac{32}{625}$$

Let a tangent be drawn to the ellipse $\frac{x^2}{27} + y^2 = 1$ 15.

 $=\frac{4}{5}$

at
$$(3\sqrt{3}\cos\theta, \sin\theta)$$
 where $\theta \in \left(0, \frac{\pi}{2}\right)$. Then the

value of θ such that the sum of intercepts on axes made by this tangent is minimum is equal to :

(1)
$$\frac{\pi}{8}$$
 (2) $\frac{\pi}{4}$ (3) $\frac{\pi}{6}$ (4) $\frac{\pi}{3}$

Sol. Equation of tangent be $\frac{x\cos\theta}{3\sqrt{3}} + \frac{y\sin\theta}{1} = 1, \qquad \theta \in \left(0, \frac{\pi}{2}\right)$ intercept on x-axis $OA = 3\sqrt{3} \sec \theta$ intercept on y-axis $OB = cosec\theta$ Now, sum of intercept = $3\sqrt{3} \sec\theta + \csc\theta = f(\theta)$ let $f'(\theta) = 3\sqrt{3} \sec\theta \tan\theta - \csc\theta \cot\theta$ $=3\sqrt{3}\frac{\sin\theta}{\cos^2\theta}-\frac{\cos\theta}{\sin^2\theta}$ $= \frac{\cos\theta}{\sin^2\theta} \cdot 3\sqrt{3} \left[\tan^3\theta - \frac{1}{3\sqrt{3}} \right] = 0 \Longrightarrow \theta = \frac{\pi}{6}$ $\frac{\begin{array}{c} \begin{array}{c} \\ \\ \end{array}} \\ \theta = \frac{\pi}{6} \end{array}}{\theta = \frac{\pi}{6}}$ \Rightarrow at $\theta = \frac{\pi}{6}$, $f(\theta)$ is minimum 16. Define a relation R over a class of $n \times n$ real matrices A and B as "ARB iff there exists a non-singular matrix P such that $PAP^{-1} = B^{"}$. Then which of the following is true ? (1) R is symmetric, transitive but not reflexive, (2) R is reflexive, symmetric but not transitive (3) R is an equivalence relation (4) R is reflexive, transitive but not symmetric Official Ans. by NTA (3) **Sol.** A and B are matrices of $n \times n$ order & ARB iff there exists a non singular matrix $P(det(P) \neq 0)$ such that $PAP^{-1} = B$ For reflexive $ARA \Rightarrow PAP^{-1} = A$ \dots (1) must be true for P = I, Eq.(1) is true so 'R' is reflexive For symmetric ARB \Leftrightarrow PAP⁻¹ = B \dots (1) is true for BRA iff $PBP^{-1} = A \dots (2)$ must be true \therefore PAP⁻¹ = B $P^{-1}PAP^{-1} = P^{-1}B$ $IAP^{-1}P = P^{-1}BP$

from (2) & (3) $PBP^{-1} = P^{-1}BP$ can be true some $P = P^{-1} \Longrightarrow P^2 = I (det(P) \neq 0)$ So 'R' is symmetric For trnasitive ARB \Leftrightarrow PAP⁻¹ = B... is true BRC \Leftrightarrow PBP⁻¹ = C... is true now $PPAP^{-1}P^{-1} = C$ $P^{2}A(P^{2})^{-1} = C \Longrightarrow ARC$ So 'R' is transitive relation \Rightarrow Hence R is equivalence 17. A pole stands vertically inside a triangular park ABC. Let the angle of elevation of the top of the pole from each corner of the park be $\frac{\pi}{3}$ If the radius of the circumcircle ot $\triangle ABC$ is 2, then the height of the pole is equal to : (1) $\frac{2\sqrt{3}}{3}$ (2) $2\sqrt{3}$ (3) $\sqrt{3}$ (4) $\frac{1}{\sqrt{3}}$ **Official Ans. by NTA (2)** Sol. Let PD = h, R = 2As angle of elevation of top of pole from A, B, C are equal So D must be circumcentre of $\triangle ABC$ $\tan\left(\frac{\pi}{3}\right) = \frac{PD}{R} = \frac{h}{R}$ $h = R \tan\left(\frac{\pi}{3}\right) = 2\sqrt{3}$ If $15\sin^4\alpha + 10\cos^4\alpha = 6$, for some $\alpha \in \mathbb{R}$, then 18. the value of $27 \sec^6 \alpha + 8 \csc^6 \alpha$ is equal to : (4) 250 (1) 350(2) 500(3) 400Official Ans. by NTA (4) Sol. $15\sin^4\alpha + 10\cos^4\alpha = 6$ $15\sin^4\alpha + 10\cos^4\alpha = 6(\sin^2\alpha + \cos^2\alpha)^2$ $(3\sin^2\alpha - 2\cos^2\alpha)^2 = 0$ $\tan^2 \alpha = \frac{2}{3}$. $\cot^2 \alpha = \frac{3}{2}$ $\Rightarrow 27 \sec^6 \alpha + 8 \csc^6 \alpha$ $= 27(\sec^{6}\alpha)^{3} + 8(\csc^{6}\alpha)^{3}$ $= 27(1 + \tan^2\alpha)3 + 8(1 + \cot^2\alpha)^3$

19.	The area bounded by the curve				
	$4y^2 = x^2 (4 - x)(x - 2)$ is equal to :				
	(1) $\frac{\pi}{8}$ (2) $\frac{3\pi}{8}$ (3) $\frac{3\pi}{2}$ (4) $\frac{\pi}{16}$				
	Official Ans. by NTA (3)				
Sol.	$4y^2 = x^2(4 - x)(x - 2)$				
	$ y = \frac{ x }{2}\sqrt{(4-x)(x-2)}$				
	\Rightarrow $y_1 = \frac{x}{2}\sqrt{(4-x)(x-2)}$				
	and $y_2 = \frac{-x}{2}\sqrt{(4-x)(x-2)}$				
	$D: x \in [2, 4]$				
	Required Area				
	$= \int_{2}^{4} (y_1 - y_2) dx = \int_{2}^{4} x \sqrt{(4 - x)(x - 2)} dx \dots (1)$				
	Applying $\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$				
	Area = $\int_{2}^{4} (6-x)\sqrt{(4-x)(x-2)} dx$ (2)				
	(1) + (2)				
	$2A = 6\int_{2}^{4} \sqrt{(4-x)(x-2)} dx$				
	A = $3\int_{2}^{4}\sqrt{1-(x-3)^2} dx$ (2,0) (3,0) (4,0)				
	$A = 3.\frac{\pi}{2}.1^2 = \frac{3\pi}{2}$				
20.	Let $f: \mathbb{R} \to \mathbb{R}$ be a function defined as				

20. Let $f : \mathbb{R} \to \mathbb{R}$ be a function defined as

$$f(x) = \begin{cases} \frac{\sin(a+1)x + \sin 2x}{2x} &, \text{ if } x < 0\\ \\ b &, \text{ if } x = 0\\ \\ \frac{\sqrt{x+bx^3} - \sqrt{x}}{bx^{5/2}} &, \text{ if } x > 0 \end{cases}$$

If f is continuous at x = 0, then the value of a + b is equal to :

Official Ans. by NTA (4)

Sol. f(x) is continuous at x = 0

$$\lim_{x \to 0^+} f(x) = f(0) = \lim_{x \to 0^-} f(x) \qquad \dots (1)$$

$$f(0) = b$$
 ...(2)

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \left(\frac{\sin(a+1)x}{2x} + \frac{\sin 2x}{2x} \right)$$

$$=\frac{a+1}{2}+1$$
 ...(3)

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{\sqrt{x + bx^3} - \sqrt{x}}{bx^{5/2}}$$

$$= \lim_{x \to 0^+} \frac{(x + bx^3 - x)}{bx^{5/2} \left(\sqrt{x + bx^3} + \sqrt{x}\right)}$$

$$= \lim_{x \to 0^+} \frac{\sqrt{x}}{\sqrt{x} \left(\sqrt{1 + bx^2} + 1\right)} = \frac{1}{2} \qquad \dots (4)$$

$$\frac{1}{2} = b = \frac{a+1}{2} + 1$$
$$\Rightarrow b = \frac{1}{2}, a = -2$$
$$a + b = \frac{-3}{2}$$

SECTION-B

1. If f(x) and g(x) are two polynomials such that the polynomial $P(x) = f(x^3) + xg(x^3)$ is divisible by $x^2 + x + 1$, then P(1) is equal to_____.

Official Ans. by NTA (0)

Sol. $P(x) = f(x^3) + xg(x^3)$ P(1) = f(1) + g(1) ...(1) Now P(x) is divisible by $x^2 + x + 1$ $\Rightarrow P(x) = Q(x)(x^2 + x + 1)$ $P(w) = 0 = P(w^2)$ where w, w² are non-real cube roots of units $P(x) = f(x^3) + xg(x^3)$ $P(w) = f(w^3) + wg(w^3) = 0$ f(1) + wg(1) = 2 ...(2) $P(w^2) = f(w^6) + w^2g(w^6) = 0$

(2) + (3) $\Rightarrow 2f(1) + (w + w^{2})g(1) = 0$ $2f(1) = g(1) \dots (4)$ (2) - (3) $\Rightarrow (w - w^{2})g(1) = 0$ g(1) = 0 = f(1) from (4)from (1) P(1) = f(1) + g(1) = 0

2. Let I be an identity matrix of order
$$2 \times 2$$
 and

 $P = \begin{bmatrix} 2 & -1 \\ 5 & -3 \end{bmatrix}$. Then the value of $n \in N$ for which

 $P^n = 5I - 8P$ is equal to _____.

Official Ans. by NTA (6)

Sol. $P = \begin{bmatrix} 2 & -1 \\ 5 & -3 \end{bmatrix}$ $5I - 8P = \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix} - \begin{bmatrix} 16 & -8 \\ 40 & -24 \end{bmatrix} = \begin{bmatrix} -11 & 8 \\ -40 & 29 \end{bmatrix}$ $P^{2} = \begin{bmatrix} -1 & 1 \\ -5 & 4 \end{bmatrix}$ $P^{3} = \begin{bmatrix} 3 & -2 \\ 10 & -7 \end{bmatrix} \implies P^{6} = \begin{bmatrix} -11 & 8 \\ -40 & 29 \end{bmatrix} = P^{n}$ $\implies n = 6$

3. If $\sum_{r=1}^{10} r! (r^3 + 6r^2 + 2r + 5) = \alpha(11!)$, then the

value of α is equal to _____

Official Ans. by NTA (160)

Sol.
$$\sum_{r=1}^{10} r! \{ (r+1)(r+2)(r+3) - 9(r+1) + 8 \}$$
$$= \sum_{r=1}^{10} \left[\{ (r+3)! - (r+1)! \} - 8 \{ (r+1)! - r! \} \right]$$
$$= (13! + 12! - 2! - 3!) - 8(11! - 1)$$
$$= (12.13 + 12 - 8).11! - 8 + 8$$
$$= (160)(11)!$$
Hence $\alpha = 160$

The term independent of x in the expansion of

$$\left[\frac{x+1}{x^{2/3}-x^{1/3}+1}-\frac{x-1}{x-x^{1/2}}\right]^{10}, x \neq 1, \text{ is equal to}$$

Official Ans. by NTA (210)

Sol.
$$\left(\left(x^{1/3} + 1 \right) - \left(\frac{\sqrt{x} + 1}{\sqrt{x}} \right) \right)^{10}$$

4.

$$(x^{1/3} - x^{-1/2})^{10}$$

$$T_{r+1} = {}^{10}C_r(x^{1/3})^{10-r} (-x^{-1/2})^r$$

$$\frac{10-r}{3} - \frac{r}{2} = 0 \implies 20 - 2r - 3r = 0$$

$$\implies r = 4$$

$$T_5 = {}^{10}C_4 = \frac{10 \times 9 \times 8 \times 7}{4 \times 3 \times 2 \times 1} = 210$$

5. Let P(x) be a real polynomial of degree 3 which vanishes at x = -3. Let P(x) have local minima at x = 1, local maxima at x = -1 and

 $\int_{-1}^{1} P(x) dx = 18$, then the sum of all the

coefficients of the polynomial P(x) is equal to

Official Ans. by NTA (8)

Sol. Let
$$p'(x) = a(x - 1) (x + 1) = a(x^2 - 1)$$

 $p(x) = a \int (x^2 - 1) dx + c$
 $= a \left(\frac{x^3}{3} - x \right) + c$
Now $p(-3) = 0$
 $\Rightarrow a \left(-\frac{27}{3} + 3 \right) + c = 0$
 $\Rightarrow -6a + c = 0 \dots(1)$
Now $\int_{-1}^{1} \left(a \left(\frac{x^3}{3} - x \right) + c \right) dx = 18$
 $= 2c = 18 \Rightarrow c = 9 \dots(2)$

3

$$\Rightarrow p(x) = \frac{3}{2} \left(\frac{x^3}{3} - x \right) + 9$$

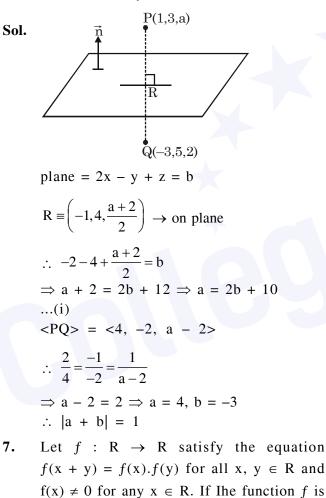
sum of coefficient

$$=\frac{1}{2}-\frac{3}{2}+9$$

= 8

6. Let the mirror image of the point (1, 3, a) with respect to the plane $\vec{r} \cdot (2\hat{i} - \hat{j} + \hat{k}) - b = 0$ be (-3, 5, 2). Then the value of |a + b| is equal to Sol.

Official Ans. by NTA (1)



 $\lim_{h\to 0}\frac{1}{h}(f(h)-1)$ is equal to _____.

differentiable at x = 0 and f'(0) = 3, then

Official Ans. by NTA (3)

 $f(\mathbf{x}) = \mathbf{a}^{\mathbf{x}} \Rightarrow f'(\mathbf{x}) = \mathbf{a}^{\mathbf{x}}.\ell\mathbf{n}\mathbf{a}$ $\Rightarrow f'(0) = \ell na = 3 \Rightarrow a = e^3$ $\Rightarrow f(\mathbf{x}) = (\mathbf{e}^3)^{\mathbf{x}} = \mathbf{e}^{3\mathbf{x}}$ $\lim_{x \to 0} \frac{f(x) - 1}{x} = \lim_{x \to 0} \left(\frac{e^{3x} - 1}{3x} \times 3 \right) = 1 \times 3 = 3$ Let ⁿC_r denote the binomial coefficient of x^r in 8. the expansion of $(1 + x)^n$. If $\sum_{k=0}^{10} (2^2 + 3k)^n C_k = \alpha \cdot 3^{10} + \beta \cdot 2^{10}, \ \alpha, \ \beta \in \mathbb{R},$ then $\alpha + \beta$ is equal to _____. Official Ans. by NTA (19) Answer (Bonus) Sol. BONUS Instead of ${}^{n}C_{k}$ it must be ${}^{10}C_{k}$ i.e. $\sum_{k=0}^{10} (2^2 + 3k)^{10} C_k = \alpha . 3^{10} + \beta . 2^{10}$ LHS = $4\sum_{k=0}^{10} {}^{10}C_k + 3\sum_{k=0}^{10} k \cdot \frac{10}{k} \cdot {}^{9}C_{k-1}$ $= 4.2^{10} + 3.10.2^{9}$ $= 19.2^{10} = \alpha.3^{10} + \beta.2^{10}$ $\Rightarrow \alpha = 0, \beta = 19 \Rightarrow \alpha + \beta = 19$ 9. Let P be a plane containing the line $\frac{x-1}{3} = \frac{y+6}{4} = \frac{z+5}{2}$ and parallel to the line $\frac{x-3}{4} = \frac{y-2}{-3} = \frac{z+5}{7}$. If the point (1, -1, α) lies on the plane P, then the value of $|5\alpha|$ is equal to _____ Official Ans. by NTA (38) Sol. Equation of plane is $\begin{vmatrix} x-1 & y+6 & z+5 \\ 3 & 4 & 2 \\ 4 & -3 & 7 \end{vmatrix} = 0$

If $f(x + y) = f(x) \cdot f(y) & f'(0) = 3$ then

Now $(1, -1, \alpha)$ lies on it so

$$\begin{vmatrix} 0 & 5 & \alpha + 5 \\ 3 & 4 & 2 \\ 4 & -3 & 7 \end{vmatrix} = 0 \implies 5\alpha + 38 = 0 \implies |5\alpha| =$$

10. Let y = y(x) be the solution of the differential equation $xdy - ydx = \sqrt{(x^2 - y^2)} dx$, $x \ge 1$, with y(1) = 0. If the area bounded by the line x = 1, $x = e^{\pi}$, y = 0 and y = y(x) is $\alpha e^{2\pi} + \beta$, then the value of $10(\alpha + \beta)$ is equal to _____. Official Ans. by NTA (4)

Sol.
$$xdy - ydx = \sqrt{x^2 - y^2} dx$$

$$\Rightarrow \frac{xdy - ydx}{x^2} = \frac{1}{x} \sqrt{1 - \frac{y^2}{x^2}} dx$$

$$\Rightarrow \int \frac{d\left(\frac{y}{x}\right)}{\sqrt{1-\left(\frac{y}{x}\right)^2}} = \int \frac{dx}{x}$$
$$\Rightarrow \sin^{-1}\left(\frac{y}{x}\right) = \ln|x| + c$$
at $x = 1, y = 0 \Rightarrow c = 0$
$$y = x\sin(\ln x)$$
$$A = \int_{1}^{e^{\pi}} x\sin(\ln x) dx$$
$$x = e^{t}, dx = e^{t}dt \Rightarrow \int_{0}^{\pi} e^{2t}\sin(t) dt = A$$
$$\alpha e^{2\pi} + \beta = \left(\frac{e^{2t}}{5}(2\sin t - \cos t)\right)_{0}^{\pi} = \frac{1+e^{2\pi}}{5}$$
$$\alpha = \frac{1}{5}, \beta = \frac{1}{5} \text{ so } 10(\alpha + \beta) = 4$$