

MATHEMATICS

3.

Let r_1 and r_2 be the radii of the largest and smallest circles, respectively, which pass through the point (- 4,1) and having their centres on the circumference of the circle $x^2 + y^2 + 2x + 4y - 4 = 0$.

If
$$\frac{r_1}{r_2} = a + b\sqrt{2}$$
, then $a + b$ is equal to :

Official Ans. by NTA (3)

Centre of smallest circle is A Centre of largest circle is B

$$r_2 = |CP - CA| = 3\sqrt{2} - 3$$

$$r_1 = CP + CB = 3\sqrt{2} + 3$$

$$\frac{\mathbf{r}_1}{\mathbf{r}_2} = \frac{3\sqrt{2}+3}{3\sqrt{2}-3} = \frac{(3\sqrt{2}+3)^2}{9} = (\sqrt{2}+1)^2 = 3 + 2\sqrt{2}$$

a = 3, b = 2

4.

Consider the following three statements :

(A) If 3 + 3 = 7 then 4 + 3 = 8.

(B) If 5 + 3 = 8 then earth is flat.

(C) If both (A) and (B) are true then 5 + 6 = 17. Then, which of the following statements is correct?

(1) (A) is false, but (B) and (C) are true

(2) (A) and (C) are true while (B) is false

(3) (A) is true while (B) and (C) are false

(4) (A) and (B) are false while (C) is true (A = A + A)

Official Ans. by NTA (2)

,∗***N** CollegeDekho

Sol.	Truth Table
	P q P q
	T T T
	T F F
	F T T
	F F T
5.	The lines $x = ay - 1 = z - 2$ and
	$x = 3y - 2 = bz - 2$, ($ab \neq 0$) are coplanar, if :
	(1) $b = 1$, $a \in R - \{0\}$ (2) $a = 1$, $b \in R - \{0\}$
	(3) $a = 2, b = 2$ (4) $a = 2, b = 3$
	Official Ans. by NTA (1)
Sol.	$\frac{x+1}{2} = y = \frac{z-1}{2}$
	x + 2 z
	$\frac{x+2}{3} = y = \frac{z}{3/b}$
	(-2 0 01
	$(-1, 0, 1)$ $3\hat{i} + \hat{j} + \frac{3}{b}\hat{k}$
	lines are Co-planar
	a 1 a
	$2 1 3 0 \rightarrow \begin{pmatrix} 3 \\ 2 \end{pmatrix} 1 0 \rightarrow \begin{pmatrix} 3 \\ 2 \end{pmatrix} 0$
	$\begin{vmatrix} 5 & 1 & -b \end{vmatrix} = 0 \Rightarrow -(b - a) - 1(a - 5) = 0$
	-1 0 -1
	$a - \frac{3}{2} - a + 3 = 0$
	b
	$b = 1, a \in \mathbb{R} - \{0\}$
6.	If $[x]$ denotes the greatest integer less than or equal
	to x, then the value of the integral r^{2}
	$\int_{-\pi/2}^{\pi/2} [[x] - \sin x] dx$ is equal to :
	(1) $-\pi$ (2) π (3) 0 (4) 1
	Official Ans. by NTA (1)
	$\frac{\pi}{2}$
Sol.	$I = \int_{\frac{-\pi}{2}} \left([x] + [-\sin x] \right) dx \dots (i)$
	$\frac{\pi}{2}$
	$I = \int ([-x] + [\sin x]) dx \dots (2)$
	$\frac{-\pi}{2}$

(King property)

$$2I = \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \left(\underbrace{[x] + [-x]}_{-1} \right) + \left(\underbrace{[\sin x] + [-\sin x]}_{-1} \right) dx$$

$$2I = \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} (-2)dx = -2(\pi)$$

$$I = -\pi$$
7. If the real part of the complex number

$$(1 - \cos\theta + 2i\sin\theta)^{-1} is \frac{1}{5} \text{ for } \theta \in (0, \pi), \text{ then the}$$
value of the integral $\int_{0}^{0} \sin x \, dx$ is equal to :

$$(1) 1 \qquad (2) 2 \qquad (3) - 1 \qquad (4) 0$$
Official Ans. by NTA (1)
Sol. $z = \frac{1}{1 - \cos\theta + 2i\sin\theta}$

$$= \frac{2\sin^{2}\frac{\theta}{2} - 2i\sin\theta}{(1 - \cos\theta)^{2} + 4\sin^{2}\theta}$$

$$= \frac{\sin\frac{\theta}{2} - 2i\cos\frac{\theta}{2}}{4\sin\frac{\theta}{2}\left(\sin^{2}\frac{\theta}{2} + 4\cos^{2}\frac{\theta}{2}\right)}$$
Re(z) $= \frac{1}{2\left(\sin^{2}\frac{\theta}{2} + 4\cos^{2}\frac{\theta}{2}\right)} = \frac{1}{5}$

$$\sin\frac{2\theta}{2} + 4\cos^{2}\frac{\theta}{2} = \frac{5}{2}$$

$$1 - \cos^{2}\frac{\theta}{2} + 4\cos\frac{\theta}{2} = \frac{5}{2}$$

$$3\cos^{2}\frac{\theta}{2} = \frac{3}{2}$$

$$\cos^{2}\frac{\theta}{2} = \frac{1}{2}$$

$$\frac{\theta}{2} = n\pi \pm \frac{\pi}{4}$$

$$\theta = 2n\pi \pm \frac{\pi}{2}$$

 $\theta \in (0,\pi)$ $\theta = \frac{\pi}{2}$ $\int_{0}^{\frac{\pi}{2}} \sin\theta \, d\theta - \left[-\cos\theta\right]_{0}^{\frac{\pi}{2}}$ = -(0-1)= 1 Let $f: \mathbf{R} - \left\{\frac{\alpha}{6}\right\} \rightarrow \mathbf{R}$ be defined by $f(x) = \frac{5x+3}{6x-\alpha}$. 8. Then the value of α for which (fof)(x) = x, for all $\mathbf{x} \in \mathbf{R} - \left\{\frac{\alpha}{6}\right\}, \text{ is }$: (1) No such α exists (2)5(3) 8(4) 6Official Ans. by NTA (2) **Sol.** $f(x) = \frac{5x+3}{6x-\alpha} = y$(i) $5x + 3 = 6xy - \alpha y$ $x (6y - 5) = \alpha y + 3$ $x = \frac{\alpha y + 3}{6y - 5}$ $f^{-1}(x) = \frac{\alpha x + 3}{6x - 5}$(ii) fo f(x) = x $f(x) = f^{-1}(x)$ From $eq^{n}(i)$ & (ii) Clearly ($\alpha = 5$) 9. If $f : \mathbf{R} \to \mathbf{R}$ is given by $f(\mathbf{x}) = \mathbf{x} + 1$, then the value of $\lim_{n\to\infty}\frac{1}{n}\left|f(0)+f\left(\frac{5}{n}\right)+f\left(\frac{10}{n}\right)+\ldots+f\left(\frac{5(n-1)}{n}\right)\right|,$ is : (1) $\frac{3}{2}$ (2) $\frac{5}{2}$

(3)
$$\frac{1}{2}$$
 (4) $\frac{7}{2}$

Sol.
$$I = \sum_{r=0}^{n-1} f\left(\frac{5r}{n}\right) \frac{1}{n}$$
$$I = \int_{0}^{1} f(5x) dx$$
$$I = \int_{0}^{1} (5x+1) dx$$
$$I = \left[\frac{5x^{2}}{2} + x\right]_{0}^{1}$$
$$I = \frac{5}{2} + 1 = \frac{7}{2}$$

- 10.
 - Let A, B and C be three events such that the probability that exactly one of A and B occurs is (1 - k), the probability that exactly one of B and C occurs is (1 - 2k), the probability that exactly one of C and A occurs is (1 - k) and the probability of all A, B and C occur simultaneously is k^2 , where 0 < k < 1. Then the probability that at least one of A, B and C occur is :

(1) greater than
$$\frac{1}{8}$$
 but less than $\frac{1}{4}$
(2) greater than $\frac{1}{2}$
(3) greater than $\frac{1}{4}$ but less than $\frac{1}{2}$
(4) exactly equal to $\frac{1}{2}$
Official Ans. by NTA (2)
Sol. $P(\overline{A} \cap B) + P(A \cap \overline{B}) = 1 - k$
 $P(\overline{A} \cap C) + P(A \cap \overline{C}) = 1 - 2k$
 $P(\overline{B} \cap C) + P(B \cap \overline{C}) = 1 - k$
 $P(A \cap B \cap C) = k^2$
 $P(A) + P(B) - 2 P(A \cap B) = 1 - k$ (i)
 $P(B) + P(C) - 2P(B \cap C) = 1 - k$ (ii)
 $P(C) + P(A) - 2P(A \cap C) = 1 - 2k$ (iii)
 $(1) + (2) + (3)$
 $P(A) + P(B) + P(C) - P(A \cap B) - P(B \cap C)$
 $-P(C \cap A) = \frac{-4k + 3}{2}$

So,

$$P(A \cup B \cup C) = \frac{-4k+3}{2} + k^{2}$$

$$P(A \cup B \cup C) = \frac{2k^{2} - 4k+3}{2}$$

$$= \frac{2(k-1)^{2} + 1}{2}$$

$$P(A \cup B \cup C) > \frac{1}{2}$$

The sum of all the local minimum values of the 11. twice differentiable function $f : \mathbf{R} \to \mathbf{R}$ defined by

$$f(\mathbf{x}) = \mathbf{x}^3 - 3\mathbf{x}^2 - \frac{3f''(2)}{2}\mathbf{x} + f''(1) \text{ is :}$$

(1) -22 (2) 5 (3) -27 (4) 0
Official Ans. by NTA (3)

(::)

Sol.
$$f(x) = x^3 - 3x^2 - \frac{3}{2}f''(2)x + f''(1) \dots(i)$$

$$f'(x) = 3x^{2} - 6x - \frac{3}{2}f''(2) \dots (ii)$$

$$f''(x) = 6x - 6 \dots (iii)$$
Now is 3rd equation
$$f''(2) = 12 - 6 = 6$$

$$f''(11 = 0)$$
Use (ii)
$$f(x) = 3x^{2} - 6x - \frac{3}{2}f''(2)$$

$$f'(x) = 3x^{2} - 6x - \frac{3}{2} \times 6$$

$$f(x) = 3x^{2} - 6x - 9$$

$$f(x) = 0$$

$$3x^{2} - 6x - 9 = 0$$

$$\Rightarrow x = -1 \& 3$$
Use (iii)
$$f''(x) = 6x - 6$$

f''(-1) = -12 < 0 maxima

f''(3) = 12 > 0 minima.

Use (i)

$$f(x) = x^{3} - 3x^{2} - \frac{3}{2} f''(2) x + f''(1)$$

$$f(x) = x^{3} - 3x^{2} - \frac{3}{2} \times 6 \times x + 0$$

$$f(x) = x^{3} - 3x^{2} - 9x$$

$$f(3) = 27 - 27 - 9 \times 3 = -27$$

12. Let in a right angled triangle, the smallest angle be θ . If a triangle formed by taking the reciprocal of its sides is also a right angled triangle, then $\sin\theta$ is equal to :

(1)
$$\frac{\sqrt{5}+1}{4}$$
 (2) $\frac{\sqrt{5}-1}{2}$ (3) $\frac{\sqrt{2}-1}{2}$ (4) $\frac{\sqrt{5}-1}{4}$

 $\cos\theta$

	$\frac{4R^2\cos^2\theta}{4R^2\sin^2\theta} = 4R^2\cos^2\theta + 4R^2$
	$\cos^2 \theta = \sin^2 \theta \cos^2 \theta + \sin^2 \theta$
	$1 \sin^2 \theta = \sin^2 \theta (1 \sin^2 \theta) + \sin^2 \theta$
	$1 - \sin \theta - \sin \theta (1 - \sin \theta) + \sin \theta$
	$\sin^2 \theta = \frac{3 - \sqrt{5}}{2}$
	$\Rightarrow \sin\theta = \frac{\sqrt{5} - 1}{2}$
13.	Let $y=y(x)$ satisfies the equation $\frac{dy}{dx} - A = 0$,
	for all x > 0 , where A = $\begin{bmatrix} y & \sin x & 1 \\ 0 & -1 & 1 \\ 2 & 0 & \frac{1}{x} \end{bmatrix}$. If
	$y(\pi) = \pi + 2$, then the value of $y\left(\frac{\pi}{2}\right)$ is :
	(1) $\frac{\pi}{2} + \frac{4}{\pi}$ (2) $\frac{\pi}{2} - \frac{1}{\pi}$ (3) $\frac{3\pi}{2} - \frac{1}{\pi}$ (4) $\frac{\pi}{2} - \frac{4}{\pi}$
	Official Ans. by NTA (1)
Sol.	$ \mathbf{A} = -\frac{\mathbf{y}}{\mathbf{x}} + 2\sin\mathbf{x} + 2$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathbf{A} $
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{y}{x} + 2\sin x + 2$
	$\frac{dy}{dx} + \frac{y}{x} = 2\sin x + 2$
	$I.F. = e^{\int \frac{1}{x} dx} = x$
	\Rightarrow yx = $\int x(2\sin x + 2)dx$
	$y_{V} = y^{2} - 2y \cos y + 2\sin y + c$ (i)
	Now $x = \pi - 2x \cos x + 2 \sin x + c \dots(1)$
	Use in (i) $X = \frac{1}{2}$
	c = 0
	Now (i) be comes
	$xy = x^2 - 2x \cos x + 2 \sin x$
	put $x = \pi/2$
	$\frac{\pi}{2}y = \left(\frac{\pi}{2}\right)^2 - 2 \cdot \frac{\pi}{2}\cos\frac{\pi}{2} + 2\sin\frac{\pi}{2}$
	$\frac{\pi}{2}\mathbf{y} = \frac{\pi^2}{4} + 2$

14	Consider the line I given by the equation
17.	y = 3 $y = 1$ $z = 2$
	$\frac{x-y}{2} = \frac{y-1}{1} = \frac{z-z}{1}$. Let Q be the mirror image of
	the point $(2, 3, -1)$ with respect to L. Let a plane P
	be such that it passes through Q, and the line L is
	perpendicular to P. Then which of the following
	points is on the plane P?
	(1) (-1, 1, 2) (2) (1, 1, 1)
	(3) (1, 1, 2) (4) (1, 2, 2)
	Official Ans. by NTA (4)
Sol.	Plane p is \perp ^r to line
	$\frac{x-3}{2} = \frac{y-1}{1} = \frac{z-2}{1}$
	& passes through pt. (2, 3) equation of plane p
	2(x-2) + 1 (y-3) + 1 (z+1) = 0
	2x + y + z - 6 = 0
	pt (1,2,2) satisfies above equation
15.	If the mean and variance of six observations
	7, 10, 11, 15, a, b are 10 and $\frac{20}{3}$, respectively,
	then the value of $ a - b $ is equal to :
	(1) 9 (2) 11 (3) 7 (4) 1
	Official Ans. by NTA (4)
Sal	10 - 7 + 10 + 11 + 15 + a + b
501.	6
	$\Rightarrow a + b = 17 \qquad \dots(i)$
	$\frac{20}{20} = \frac{7^2 + 10^2 + 11^2 + 15^2 + a^2 + b^2}{10^2} - 10^2$
	3 6
	$a^2 + b^2 = 145$ (ii)
	Solve (1) and (11) $a = 9$, $b = 8$ or $a = 8$, $b = 9$ a - b = 1
16.	Let $g(t) = \int_{-\pi/2}^{\pi/2} \cos\left(\frac{\pi}{4}t + f(x)\right) dx$, where
	$f(\mathbf{x}) = \log_{e} \left(\mathbf{x} + \sqrt{\mathbf{x}^{2} + 1} \right)$, $\mathbf{x} \in \mathbf{R}$. Then which one
	of the following is correct ?
	(1) $g(1) = g(0)$ (2) $\sqrt{2}g(1) = g(0)$
	(3) $g(1) = \sqrt{2}g(0)$ (4) $g(1) + g(0) = 0$
	$(3) g(1) - \sqrt{2}g(0) \qquad (4) g(1) + g(0) = 0$
	Official Alis. Dy INTA (2)

Sol.
$$g(t) = \int_{-\pi/2}^{\pi/2} \left(\cos \frac{\pi}{4} t + f(x) \right) dx$$

 $g(t) = \pi \cos \frac{\pi}{4} t + \int_{-\pi/2}^{\pi/2} f(x) dx$
 $g(t) = \pi \cos \frac{\pi}{4} t$
 $g(1) = \frac{\pi}{\sqrt{2}}, g(0) = \pi$
17. Let P be a variable point on the parabola
 $y = 4x^2 + 1$. Then, the locus of the mid-point of the
point P and the foot of the perpendicular drawn
from the point P to the line $y = x$ is :
(1) $(3x - y)^2 + (x - 3y) + 2 = 0$
(2) $2(3x - y)^2 + (x - 3y) + 2 = 0$
(3) $(3x - y)^2 + (3x - y) + 2 = 0$
(4) $2(x - 3y)^2 + (3x - y) + 2 = 0$
Official Ans. by NTA (2)

parabola

18.	The value of $k \in \mathbf{R}$, for which the following system
	of linear equations
	3x - y + 4z = 3,
	$\mathbf{x} + 2\mathbf{y} - 3\mathbf{z} = -2,$
	6x + 5y + kz = -3,
	has infinitely many solutions, is :
	(1) 3 (2) -5 (3) 5 (4) -3
	Official Ans. by NTA (2)
Sol.	$\begin{vmatrix} 3 & -1 & 4 \\ 1 & 2 & -3 \\ 6 & 5 & K \end{vmatrix} = 0$
	$\Rightarrow 3(2K+15) + K + 18 - 28 = 0$
	\Rightarrow 7K + 35 = 0 \Rightarrow K = -5
19.	If sum of the first 21 terms of the series
	$\log_{9^{1/2}} x + \log_{9^{1/3}} x + \log_{9^{1/4}} x +$, where $x > 0$ is
	504, then x is equal to
	(1) 243 (2) 9 (3) 7 (4) 81
	Official Ans. by NTA (4)
Sol.	$s = 2\log_9 x + 3 \log_9 x + \dots + 22 \log_9 x$
	$s = \log_9 x (2 + 3 + \dots + 22)$
	$s = \log_9 x \left\{ \frac{21}{2} (2+22) \right\}$
	Given $252 \log_9 x = 504$
	$\Rightarrow \log_9 x = 2 \Rightarrow x = 81$
20.	In a triangle ABC, if $ \overrightarrow{BC} = 3$, $ \overrightarrow{CA} = 5$ and
	$ \overrightarrow{BA} = 7$, then the projection of the vector \overrightarrow{BA} on
	\overrightarrow{BC} is equal to
	(1) $\frac{19}{2}$ (2) $\frac{13}{2}$
	11 15

(3)
$$\frac{11}{2}$$
 (4) $\frac{15}{2}$

Official Ans. by NTA (3)

CollegeDekho

Projection of \overrightarrow{BA}

on \overrightarrow{BC} is equal to

 $= |\vec{BA}| \cos \angle ABC$

$$= 7 \left| \frac{7^2 + 3^2 - 5^2}{2 \times 7 \times 3} \right| = \frac{11}{2}$$

SECTION-B

1. Let
$$A = \{a_{ij}\}$$
 be a 3 × 3 matrix, where

 $a_{ij} = \begin{cases} (-1)^{j-i} \mbox{ if } i < j \,, \\ 2 \mbox{ if } i = j \,, \\ (-1)^{i+j} \mbox{ if } i > j \,, \end{cases}$

then det $(3Adj(2A^{-1}))$ is equal to

Official Ans. by NTA (108)

Sol.
$$\mathbf{A} = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$$

|A| = 4

$$|3adj(2A^{-1})| = |3.2^2 adj(A^{-1})|$$

$$= 12^{3} \left| \operatorname{adj}(\mathbf{A}^{-1}) \right| = 12^{3} \left| \mathbf{A}^{-1} \right|^{2} = \frac{12^{3}}{\left| \mathbf{A} \right|^{2}} = \frac{12^{3}}{16} = 108$$

The number of solutions of the equation 2.

> $\log_{(x+1)}(2x^2 + 7x + 5) + \log_{(2x+5)}(x+1)^2 - 4 = 0,$ x > 0, is

Official Ans. by NTA (1)

Sol.
$$\log_{(x+1)}(2x^2 + 7x + 5) + \log_{(2x+5)}(x + 1)^2 - 4 = 0$$

 $\log_{(x+1)}(2x + 5)(x + 1) + 2\log_{(2x+5)}(x + 1) = 4$
 $\log_{(x+1)}(2x + 5) + 1 + 2\log_{(2x+5)}(x + 1) = 4$
Put $\log_{(x+1)}(2x + 5) = 1$
 $t + \frac{2}{t} = 3 \implies t^2 - 3t + 2 = 0$
 $t = 1, 2$
 $\log_{(x+1)}(2x + 5) = 1$ & $\log_{(x+1)}(2x + 5) = 2$
 $x + 1 = 2x + 3$ & $2x + 5 = (x + 1)^2$
 $x = -4$ (rejected) $x^2 = 4 \implies x = 2, -2$ (rejected)
So, $x = 2$
No. of solution = 1
3. Let a curve $y = y(x)$ be given by the solution of the differential equation
 $\cos(\frac{1}{2}\cos^{-1}(e^{-x}))dx = \sqrt{e^{2x} - 1} dy$
If it intersects y-axis at $y = -1$, and the intersection point of the curve with x-axis is $(\alpha, 0)$, then e^{α} is equal to
.
Official Ans. by NTA (2)
Sol. $\cos(\frac{1}{2}\cos^{-1}(e^{-x}))dx = \sqrt{e^{2x} - 1} dy$
Put $\cos^{-1}(e^{-x}) \theta$, $\theta \in [0, \pi]$
 $\cos\theta = e^{-x} \Rightarrow 2\cos^2\frac{\theta}{2} - 1 = e^{-x}$

If it intersects y-axis at
$$y = -1$$
, and the intersection
point of the curve with x-axis is (α , 0), then e^{α} is
equal to _____.

Sol.
$$\cos\left(\frac{1}{2}\cos^{-1}(e^{-x})\right)dx = \sqrt{e^{2x} - 1} dy$$

Put $\cos^{-1}(e^{-x}) \theta$, $\theta \in [0, \pi]$
 $\cos\theta = e^{-x} \Rightarrow 2\cos^2\frac{\theta}{2} - 1 = e^{-x}$
 $\cos\frac{\theta}{2} = \sqrt{\frac{e^{-x} + 1}{2}} = \sqrt{\frac{e^x + 1}{2c^x}}$
 $\sqrt{\frac{e^x + 1}{2c^x}} dx = \sqrt{e^{2x} - 1} dy$
 $\frac{1}{\sqrt{2}} \int \frac{dx}{\sqrt{e^x}\sqrt{e^x - 1}} = \int dy$
Put $e^x = t$, $\frac{dt}{dx} = e^x$
 $\frac{1}{\sqrt{2}} \int \frac{dt}{e^x\sqrt{e^x}\sqrt{e^x - 1}} = \int dy$
 $\int \frac{dt}{t\sqrt{t^2 - t}} = \sqrt{2}y$

Put
$$t = \frac{1}{z}, \frac{dt}{dz} = -\frac{1}{z^2}$$

$$\int \frac{-\frac{dz}{z^2}}{\frac{1}{z}\sqrt{\frac{1}{z^2} - \frac{1}{z}}} = \sqrt{2}y$$

$$-\int \frac{dz}{\sqrt{1-z}} = \sqrt{2}y$$

$$\frac{-2(1-z)^{1/2}}{-1} = \sqrt{2}y + c$$

$$2\left(1 - \frac{1}{t}\right)^{1/2} = \sqrt{2}y + c$$

$$2(1 - e^{-x})^{1/2} = \sqrt{2}y + c \xrightarrow{(0,-1)} \Rightarrow \Rightarrow c = \sqrt{2}$$

$$2(1 - e^{-x})^{1/2} = \sqrt{2}(y+1), \text{ passes through } (\alpha, 0)$$

$$2(1 - e^{-\alpha})^{1/2} = \sqrt{2}$$

$$\sqrt{1 - e^{-\alpha}} = \frac{1}{\sqrt{2}} \Rightarrow 1 - e^{-\alpha} = \frac{1}{2}$$

$$e^{-\alpha} = \frac{1}{2} \Rightarrow e^{\alpha} = 2$$

4. For p > 0, a vector $\vec{v}_2 = 2\hat{i} + (p+1)\hat{j}$ is obtained by rotating the vector $\vec{v}_1 = \sqrt{3}p\hat{i} + \hat{j}$ by an angle θ about origin in counter clockwise direction. If $\tan \theta = \frac{(\alpha\sqrt{3}-2)}{(4\sqrt{3}+3)}$, then the value of α is equal to

Official Ans. by NTA (6)

$$\cos\theta = \frac{\overrightarrow{V_{1}} \cdot \overrightarrow{V_{2}}}{|\overrightarrow{V_{1}}||\overrightarrow{V_{2}}|} = \frac{2\sqrt{3}P + (P+1)}{\sqrt{(P+1)^{2} + 4}\sqrt{3}P^{2} + 1}$$
$$\cos\theta = \frac{4\sqrt{3} + 3}{\sqrt{13}\sqrt{13}} = \frac{4\sqrt{3} + 3}{13}$$
$$\tan\theta = \frac{\sqrt{112 - 24\sqrt{3}}}{4\sqrt{3} + 3} = \frac{6\sqrt{3} - 2}{4\sqrt{3} + 3} = \frac{\alpha\sqrt{3} - 2}{4\sqrt{3} + 3}$$
$$\Rightarrow \alpha = 6$$

5. Consider a triangle having vertices A(-2, 3), B(1, 9) and C(3, 8). If a line L passing through the circum-centre of triangle ABC, bisects line BC, and intersects y-axis at point $\left(0,\frac{\alpha}{2}\right)$, then the value of real number α is _____.

Official Ans. by NTA (9)

Sol.

$$\begin{array}{c}
A(-2,3) \\
\hline
y \\
B(1,9) \\
\sqrt{5} \\
\hline
y \\
C(3,8) \\
(\sqrt{50})^2 = (\sqrt{45})^2 + (\sqrt{5})^2 \\
\angle B = 90^\circ \\
Circum-center = \left(\frac{1}{2},\frac{11}{2}\right) \\
Mid point of BC = \left(2,\frac{17}{2}\right) \\
Mid point of BC = \left(2,\frac{17}{2}\right) \\
Line : \left(y - \frac{11}{2}\right) = 2\left(x - \frac{1}{2}\right) \Rightarrow y = 2x + \frac{9}{2} \\
Passing though \left(0,\frac{\alpha}{2}\right) \\
\frac{\alpha}{2} = \frac{9}{2} \Rightarrow \alpha = 9
\end{array}$$

CollegeDekho

6.	If the point on the curve $y^2 = 6x$, nearest to the
	point $\left(3,\frac{3}{2}\right)$ is (α,β) , then $2(\alpha+\beta)$ is equal to

Official Ans. by NTA (9)

Normal at point P

 $tx + y = 3t + \frac{3}{2}t^3$ Passes through $\left(3,\frac{3}{2}\right)$ $\Rightarrow 3t + \frac{3}{2} = 3t + \frac{3}{2}t^3$ $\mathbf{P} \equiv \left(\frac{3}{2}, 3\right) = \left(\alpha, \beta\right)$ \Rightarrow t³ = 1 \Rightarrow t = 1 $2(\alpha+\beta)=2\left(\frac{3}{2}+3\right)=9$

Let a function $g : [0, 4] \rightarrow R$ be defined as 7.

$$g(x) = \begin{cases} \max_{0 \le t \le x} \{t^3 - 6t^2 + 9t - 3\}, & 0 \le x \le 3\\ 4 - x, & 3 < x \le 4 \end{cases}$$

then the number of points in the interval (0, 4)where g(x) is NOT differentiable, is _____.

Official Ans. by NTA (1)

Sol.
$$f(x) = x^3 - 6x^2 + 9x - 3$$

 $f'(x) = 3x^2 - 12x + 9 = 3(x - 1) (x - 3)$
 $f(1) = 1 f(3) = -3$

$$g(x) = \begin{bmatrix} f(x) & 0 \le x \le 1 \\ 0 & 1 \le x \le 3 \\ -1 & 3 < x \le 4 \end{bmatrix}$$

$$g(x) \text{ is continuous}$$

$$g'(x) = \begin{bmatrix} 3(x-1)(x-3) & 0 \le x \le 1 \\ 0 & 1 \le x \le 3 \\ -1 & 3 < x \le 4 \end{bmatrix}$$

$$g(x) \text{ is non-differentiable at } x = 3$$

8. For $k \in N$, let

$$\frac{1}{\alpha(\alpha+1)(\alpha+2).....(\alpha+20)} = \sum_{k=0}^{20} \frac{A_k}{\alpha+k},$$

where $\alpha > 0$. Then the value of $100 \left(\frac{A_{14}}{A_{13}} \right)$ is
equal to ______.
Official Ans. by NTA (9)
Sol. $\frac{1}{\alpha(\alpha+1)....(\alpha+20)} = \sum_{k=0}^{20} \frac{A_k}{\alpha+k}$

$$A_{14} = \frac{1}{(-14)(-13)....(-1)(1)....(6)} = \frac{1}{14! \cdot 6!}$$

$$A_{15} = \frac{1}{(-15)(-14)....(-1)(1)....(5)} = \frac{1}{15! \cdot 5!}$$

$$A_{13} = \frac{1}{(-13)....(-1)(1)....(7)} = \frac{-1}{13! \cdot 7!}$$

$$\frac{A_{14}}{A_{13}} = \frac{1}{14! \cdot 6!} \times -13! \times 7! = \frac{-7}{14} = -\frac{1}{2}$$

$$\frac{A_{15}}{A_{13}} = -\frac{1}{15! \times 5!} \times -13! \times 7! = \frac{42}{15 \times 14} = \frac{1}{5}$$

$$100 \left(\frac{A_{14}}{A_{13}} + \frac{A_{15}}{A_{13}} \right)^2 = 100 \left(-\frac{1}{2} + \frac{1}{5} \right)^2 = 9$$

8.

,****≥** CollegeDekho

9.	Let $\{a_n\}_{n=1}^{\infty}$ be a sequence such that $a_1 = 1$, $a_2 = 1$
	and $a_{n+2} = 2a_{n+1} + a_n$ for all $n \ge 1$. Then the value
	of $47\sum_{n=1}^{\infty} \frac{a_n}{2^{3n}}$ is equal to
	Official Ans. by NTA (7)
Sol.	$a_{n+2} = 2a_{n+1} + a_n$, $let \sum_{n=1}^{\infty} \frac{a_n}{8^n} = P$
	Divide by 8 ⁿ we get
	$\frac{a_{n+2}}{8^n} = \frac{2a_{n+1}}{8^n} + \frac{a_n}{8^n}$
	$\Longrightarrow 64 \frac{a_{n+2}}{8^{n+2}} = \frac{16a_{n+1}}{8^{n+1}} + \frac{a_n}{8^n}$
	$64\sum_{n=1}^{\infty} \frac{a_{n+2}}{8^{n+2}} = 16\sum_{n=1}^{\infty} \frac{a_{n+1}}{8^{n+1}} + \sum_{n=1}^{\infty} \frac{a_n}{8^n}$
	$64\left(P - \frac{a_1}{8} - \frac{a_2}{8^2}\right) = 16\left(P - \frac{a_1}{8}\right) + P$
	$\Rightarrow 64\left(P - \frac{1}{8} - \frac{1}{64}\right) = 16\left(P - \frac{1}{8}\right) + P$
	64P - 8 - 1 = 16P - 2 + P
	47P = 7

10. If $\lim_{x \to 0} \frac{\alpha x e^x - \beta \log_e(1+x) + \gamma x^2 e^{-x}}{x \sin^2 x} = 10, \quad \alpha, \beta, \gamma \in$ **R**, then the value of $\alpha + \beta + \gamma$ is . Official Ans. by NTA (3) $\lim_{x \to 0} \frac{\alpha x \left(1 + x + \frac{x^2}{2}\right) - \beta \left(x - \frac{x^2}{2} + \frac{x^3}{3}\right) + \gamma x^2 (1 - x)}{x^3}$ Sol. $\lim_{x\to 0} \frac{x(\alpha-\beta) + x^2\left(\alpha+\frac{\beta}{2}+\gamma\right) + x^3\left(\frac{\alpha}{2}-\frac{\beta}{3}-\gamma\right)}{x^3} = 10$ For limit to exist $\alpha - \beta = 0, \ \alpha + \frac{\beta}{2} + \gamma = 0$ $\frac{\alpha}{2} - \frac{\beta}{3} - \gamma = 10 \dots (i)$ $\beta = \alpha, \gamma = -3\frac{\alpha}{2}$ Put in (i) $\frac{\alpha}{2} - \frac{\alpha}{3} + \frac{3\alpha}{2} = 10$ $\frac{\alpha}{6} + \frac{3\alpha}{2} = 10 \implies \frac{\alpha + 9\alpha}{6} = 10$ $\Rightarrow \alpha = 6$ $\alpha = 6, \beta = 6, \gamma = -9$ $\alpha + \beta + \gamma = 3$