

MATHEMATICS

SECTION-A

1. The Boolean expression $(p \land \sim q) \Rightarrow (q \lor \sim p)$ is equivalent to :

> (1) $q \Rightarrow p$ (2) $p \Rightarrow q$ (3) $\sim q \Rightarrow p$ (4) $p \Rightarrow \sim q$ Official Ans. by NTA (2)

Sol.

р	q	~p	~q	$p \wedge \sim q$	$q \lor \sim p$	$(p \land \sim q)$ $\Rightarrow (q \lor \sim p)$	p⇒q
Т	F	F	Т	Т	F	F	F
F	Т	Т	F	F	Т	Т	Т
Т	Т	F	F	F	Т	Т	Т
F	F	Т	Т	F	Т	Т	Т

 $\therefore (p \wedge \sim q) \implies (q \vee \sim p)$

 $\equiv p \Rightarrow q$

So, option (2) is correct.

2. Let a be a positive real number such that $\int_0^a e^{x-[x]} dx = 10e - 9 \text{ where } [x] \text{ is the greatest}$ integer less than or equal to x. Then a is equal to : (1) $10 - \log_e(1 + e)$ (2) $10 + \log_e 2$ (3) $10 + \log_e 3$ (4) $10 + \log_e(1 + e)$ Official Ans. by NTA (2)

Sol. a > 0

Let $n \le a \le n + 1$, $n \in W$

G.I.F Fractional part

Here
$$[a] = n$$

Now,
$$\int_{0}^{a} e^{x-[x]} dx = 10e - 9$$

 $\Rightarrow \int_{0}^{n} e^{\{x\}} dx + \int_{n}^{a} e^{x-[x]} dx = 10e - 9$

:.
$$n \int_{0}^{1} e^{x} dx + \int_{n}^{a} e^{x-n} dx = 10e - 9$$

$$\Rightarrow n(e-1) + (e^{a-n}-1) = 10e-9$$

 \therefore n=0 and $\{a\} = \log_e 2$

So,
$$a = [a] + \{a\} = (10 + \log_e 2)$$

- \Rightarrow Option (2) is correct.
- 3. The mean of 6 distinct observations is 6.5 and their variance is 10.25. If 4 out of 6 observations are 2, 4, 5 and 7, then the remaining two observations are:

Official Ans. by NTA (1)

Sol. Let other two numbers be a, (21 – a) Now,

$$10.25 = \frac{\left(4 + 16 + 25 + 49 + a^2 + (21 - a)^2\right)}{6} - (6.5)^2$$

(Using formula for variance)

$$\Rightarrow 6(10.25) + 6(6.5)^2 = 94 + a^2 + (21 - a)^2$$

$$\Rightarrow a^2 + (21 - a)^2 = 221$$

 \therefore a = 10 and (21 – a) = 21 – 10 = 11

So, remaining two observations are 10, 11.

 \Rightarrow Option (1) is correct.

4. The value of the integral $\int_{-1}^{1} \log_e(\sqrt{1-x} + \sqrt{1+x}) dx$

is equal to :

(1) $\frac{1}{2}\log_e 2 + \frac{\pi}{4} - \frac{3}{2}$ (2) $2\log_e 2 + \frac{\pi}{4} - 1$ (3) $\log_e 2 + \frac{\pi}{2} - 1$ (4) $2\log_e 2 + \frac{\pi}{2} - \frac{1}{2}$

Official Ans. by NTA (3)

Sol. Let
$$I = 2 \int_{0}^{1} \frac{\ln(\sqrt{1-x} + \sqrt{1+x})}{(1)} \int_{(II)}^{1} dx}{(IIBP.)}$$

 $\therefore I = 2 \Big[\Big(x \cdot \ln(\sqrt{1-x} + \sqrt{1-x}) \Big)_{0}^{1} \Big]$
 $- \int_{0}^{1} x \Big(\frac{1}{\sqrt{1-x} + \sqrt{1+x}} \Big) \cdot \Big(\frac{1}{2\sqrt{1+x}} - \frac{1}{2\sqrt{1-x}} \Big) dx \Big]$
 $= 2 \Big(\ln \sqrt{2} - 0 \Big) - \frac{2}{2} \int_{0}^{1} \frac{x\sqrt{1-x} - \sqrt{1+x} dx}{(\sqrt{1-x} + \sqrt{1+x})\sqrt{1-x^{2}}} \Big]$
 $= \Big(\log_{e} 2 \Big) - \int_{0}^{1} \frac{x \cdot (2 - 2\sqrt{1-x^{2}})}{-2x\sqrt{1-x^{2}}} dx$
 $(After rationalisation)$
 $= \Big(\log_{e} 2 \Big) + \int_{0}^{1} \Big(\frac{1 - \sqrt{1-x^{2}}}{\sqrt{1-x^{2}}} \Big) dx$
 $= \Big(\log_{e} 2 \Big) + (\sin^{-1}x)_{0}^{1} - 1 \Big]$
 $= \log_{e} 2 + \Big(\frac{\pi}{2} - 0 \Big) - 1$
 $\therefore I = \Big(\log_{e} 2 \Big) + \frac{\pi}{2} - 1$
 $\Rightarrow Option (3) is correct.$
5. If α and β are the distinct roots of the equation $x^{2} + (3)^{1/4}x + 3^{1/2} = 0$, then the value of $\alpha^{96}(\alpha^{12} - 1) + \beta^{96}(\beta^{12} - 1)$ is equal to :
 $(1) 56 \times 3^{25}$ (2) 56×3^{24}
 $(3) 52 \times 3^{24}$ (4) 28×3^{25}
Official Ans. by NTA (3)
Sol. As, $(\alpha^{2} + \sqrt{3}) = -(3)^{1/4} \cdot \alpha$
 $\Rightarrow (\alpha^{4} + 2\sqrt{3}\alpha^{2} + 3) = \sqrt{3}\alpha^{2}$ (On squaring)
 $\therefore (\alpha^{4} + 3) = (-\sqrt{3}\alpha^{2})$
 $\Rightarrow \alpha^{8} + 6\alpha^{4} + 9 = 3\alpha^{4}$ (Again squaring)
 $\therefore \alpha^{8} + 3\alpha^{4} + 9 = 0$
 $\Rightarrow \overline{[\alpha^{8} = -9 - 3\alpha^{4}]}$
(Multiply by α^{4})
So, $\alpha^{12} = -9\alpha^{4} - 3\alpha^{8}$
 $\therefore \alpha^{12} = -9\alpha^{4} - 3\alpha^{8}$
 $\therefore \alpha^{12} = -9\alpha^{4} - 3\alpha^{4}$

Hence, $\alpha^{12} = (27)^2$ $\Rightarrow (\alpha^{12})^8 = (27)^8$ $\Rightarrow \alpha^{96} = (3)^{24}$ Similarly $\beta^{96} = (3)^{24}$:. $\alpha^{96}(\alpha^{12}-1)+\beta^{96}(\beta^{12}-1)=(3)^{24}\times 52$ \Rightarrow Option (3) is correct. Let $A = \begin{bmatrix} 2 & 3 \\ a & 0 \end{bmatrix}$, $a \in \mathbf{R}$ be written as P + Q where P 6. is a symmetric matrix and Q is skew symmetric matrix. If det(Q) = 9, then the modulus of the sum of all possible values of determinant of P is equal to : (1) 36(2) 24(3) 45(4) 18Official Ans. by NTA (1) **Sol.** $A = \begin{bmatrix} 2 & 3 \\ a & 0 \end{bmatrix}, a \in \mathbb{R}$ and $P = \frac{A + A^{T}}{2} = \begin{vmatrix} 2 & \frac{3 + a}{2} \\ \frac{a + 3}{2} & 0 \end{vmatrix}$ and $Q = \frac{A - A^{T}}{2} = \begin{bmatrix} 0 & \frac{3 - a}{2} \\ \frac{a - 3}{2} & 0 \end{bmatrix}$ As, det (Q) = 9 $\Rightarrow (a-3)^2 = 36$ \Rightarrow a = 3 ± 6 \therefore a = 9, -3 $\therefore \qquad \det.(P) = \begin{vmatrix} 2 & \frac{3+a}{2} \\ a+3 & 2 \\ 0 \end{vmatrix}$ $=0-\frac{(a-3)^2}{4}=0$, for a=-3 $=0-\frac{(a-3)^2}{4}=-\frac{1}{4}(12)(12)$, for a = 9 : Modulus of the sum of all possible values of det. (P) = |-36| + |0| = 36 Ans. \Rightarrow Option (1) is correct

_,.*★ **N** CollegeDekho

7. If z and
$$\omega$$
 are two complex numbers such that
 $|z\omega| = 1$ and $\arg(z) - \arg(\omega) = \frac{3\pi}{2}$, then
 $\arg\left(\frac{1-2\bar{z}\omega}{1+3\bar{z}\omega}\right)$ is :
(Here $\arg(z)$ denotes the principal argument of
complex number z)
(1) $\frac{\pi}{4}$ (2) $-\frac{3\pi}{4}$ (3) $-\frac{\pi}{4}$ (4) $\frac{3\pi}{4}$
Official Ans. by NTA (2)
Sol. As $|z\omega| = 1$
 \Rightarrow If $|z| = r$, then $|\omega| = \frac{1}{r}$
Let $\arg(z) = \theta$
 $\therefore \arg(\omega) = \left(\theta - \frac{3\pi}{2}\right)$
So, $z = re^{i\theta}$
 $\Rightarrow \bar{z} = re^{i(-\theta)}$
 $\omega = \frac{1}{r}e^{i\left(\frac{-3\pi}{2}\right)}$
Now, consider
 $\frac{1-2\bar{z}\omega}{1+3\bar{z}\omega} = \frac{1-2e^{i\left(-\frac{3\pi}{2}\right)}}{1+3e^{i\left(-\frac{3\pi}{2}\right)}} = \left(\frac{1-2i}{1+3i}\right)$
 $= \frac{(1-2i)(1-3i)}{(1+3i)(1-3i)} = -\frac{1}{2}(1+i)$
 $\therefore \text{ prin arg}\left(\frac{1-2\bar{z}\omega}{1+3\bar{z}\omega}\right)$
 $= \text{ prin arg}\left(\frac{1-2\bar{z}\omega}{1+3\bar{z}\omega}\right)$
 $= \left(-\frac{1}{2}(1+i)\right)$
 $= -\left(\pi - \frac{\pi}{4}\right) = -\frac{3\pi}{4}$

So, option (2) is correct.

If in a triangle ABC, AB = 5 units, $\angle B = \cos^{-1}\left(\frac{3}{5}\right)$ and radius of circumcircle of $\triangle ABC$ is 5 units, then the area (in sq. units) of $\triangle ABC$ is : (1) $10 + 6\sqrt{2}$ (2) $8 + 2\sqrt{2}$

(3)
$$6 + 8\sqrt{3}$$
 (4) $4 + 2\sqrt{3}$

Official Ans. by NTA (3)

Sol.

8.

CollegeDekho

9.	Let [x] denote the greatest integer \leq x, where	Sol.	We have
	$x \in \mathbf{R}$. If the domain of the real valued function		x
	$f(x) = \sqrt{\frac{[[x]] - 2}{[[x]] - 3}}$		$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{X}{2}$
	is $(-\infty,a)\cup[b,c)\cup[4,\infty), a < b < c$, then the value		dv v
	of $a + b + c$ is:		$\therefore \frac{dy}{dx} = \frac{y}{x}$
	(1) 8 (2)1		- V
	(3) -2 (4) -3		$Put \frac{y}{x} = v$
	Official Ans. by NTA (3)		\Rightarrow y = vr
Sol.	For domain,		dy
	$\frac{\ [x]\ - 2}{\ [x]\ - 3} \ge 0$		$\frac{dx}{dx} = v$
	Case I : When $ [\mathbf{x}] - 2 \ge 0$		dv
	and $ [x] - 3 > 0$		$v + n \frac{dv}{dx}$
	$\therefore x \in (-\infty, -3) \cup [4, \infty) \qquad \dots \dots (1)$		$\Rightarrow \int (\tan \theta)$
	Case II : When $ [\mathbf{x}] - 2 \le 0$		J
	and $ [x] - 3 < 0$		∴ ln sec
	$\therefore x \in [-2, 3)$ (2)		
	So, from (1) and (2)		$\operatorname{As}\left(\frac{1}{2}\right) =$
	we get		(2)
	Domain of function		$\therefore \sec\left(\frac{y}{y}\right)$
	$=(-\infty,-3)\cup[-2,3)\cup[4,\infty)$		
	∴ $(a + b + c) = -3 + (-2) + 3 = -2 (a < b < c)$		$\Rightarrow \cos\left(\frac{y}{y}\right)$
	\Rightarrow Option (3) is correct.		
10.	Let $y = y(x)$ be the solution of the differential		$\therefore y = x c$
	equation $x \tan\left(\frac{y}{y}\right) dy = \left(y \tan\left(\frac{y}{y}\right) - x\right) dx$,		So, requi
			$\sqrt{1/\sqrt{2}}$
	$-1 \le x \le 1, y\left(\frac{1}{2}\right) = \frac{\pi}{6}$. Then the area of the region		$= \int_{0}^{1} \frac{\mathbf{x}}{(\mathbf{II})}$
	bounded by the curves $x = 0$, $x = \frac{1}{\sqrt{2}}$ and $y = y$		(I.B.P.)
	(x) in the upper half plane is:	11	The coe
			$(1 - x)^{101}$
	(1) $\frac{1}{8}(\pi - 1)$ (2) $\frac{1}{12}(\pi - 3)$		$(1)^{100}C_{12}$
	$(3) \frac{1}{2}(\pi, 2)$ $(4) \frac{1}{2}(\pi, 1)$		(3) - 100
	$(3) \frac{1}{4}(\pi^{-2})$ (4) $\frac{1}{6}(\pi^{-1})$		Official
	Official Ans. by NTA (1)		S III VIUL

 $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{x\left(\frac{y}{x} \cdot \tan\frac{y}{x} - 1\right)}{x\tan\frac{y}{x}}$ $\therefore \frac{dy}{dx} = \frac{y}{x} - \cot\left(\frac{y}{x}\right)$ Put $\frac{y}{x} = v$ \Rightarrow y = vn $\therefore \frac{\mathrm{d}y}{\mathrm{d}x} = v + \frac{\mathrm{n}\mathrm{d}v}{\mathrm{d}x}$ Now, we get $v + n \frac{dv}{dx} = v - \cot(v)$ $\Rightarrow \int (\tan) dv = -\int \frac{dx}{x}$ $\therefore \ell n \left| \sec \left(\frac{y}{x} \right) \right| = -\ell n |x| + c$ $\operatorname{As}\left(\frac{1}{2}\right) = \left(\frac{y}{x}\right) \Longrightarrow \boxed{C = 0}$ $\therefore \sec\left(\frac{y}{x}\right) = \frac{1}{x}$ $\Rightarrow \cos\left(\frac{y}{x}\right) = x$ $\therefore \mathbf{y} = \mathbf{x} \cos^{-1}(\mathbf{x})$

So, required bounded area

$$= \int_{0}^{\frac{1}{\sqrt{2}}} x_{(II)} (\cos^{-1}_{(I)} x) dx = \left(\frac{\pi - 1}{8}\right)$$

 \therefore option (1) is correct.

The coefficient of x^{256} in the expansion of 11. $(1-x)^{101} (x^2 + x + 1)^{100}$ is: $(1)^{100}C_{16}$ $(2)^{100}C_{15}$ $(3) - {}^{100}C_{16}$ $(4) - {}^{100}C_{15}$

Official Ans. by NTA (2)

Sol.
$$(1-x)^{100} \cdot (x^2 + x + 1)^{100} \cdot (1-x)$$

$$= ((1-x)(x^2 + x + 1))^{100}(1-x)$$

$$= (1^3 - x^3)^{100}(1-x)$$

$$= (1-x^3)^{100}(1-x)$$

$$= \underbrace{(1-x^3)^{100}}_{\text{Noterm of } x^{256}} - \underbrace{x(1-x^3)^{100}}_{\text{We find cofficient of } x^{255}}$$

Required coefficient $(-1) \times (-{}^{100}C_{85})$ = ${}^{100}C_{85} = {}^{100}C_{15}$

12. Let $A = [a_{ij}]$ be a 3 × 3 matrix, where

$$\mathbf{a}_{ij} = \begin{cases} 1 & , & \text{if } i = j \\ -x & , & \text{if } |i - j| = 1 \\ 2x + 1 & , & \text{otherwise.} \end{cases}$$

Let a function $f : \mathbf{R} \square \mathbf{R}$ be defined as f(x) = det(A). Then the sum of maximum and minimum values of f on **R** is equal to:

88

27

(1)
$$-\frac{20}{27}$$
 (2) $\frac{88}{27}$
(3) $\frac{20}{27}$ (4) $-\frac{8}{2}$

Official Ans. by NTA (4)

Sol.
$$A = \begin{bmatrix} 1 & -x & 2x+1 \\ -x & 1 & -x \\ 2x+1 & -x & 1 \end{bmatrix}$$
$$|A| = 4x^{3} - 4x^{2} - 4x = f(x)$$
$$f(x) = 4(3x^{2} - 2x - 1) = 0$$
$$\Rightarrow x = 1 \ ; \ x = \frac{-1}{3}$$
$$\therefore \ \underbrace{f(1) = -4}_{\min} \ ; \ \underbrace{f\left(-\frac{1}{3}\right) = \frac{20}{27}}_{\max}$$
$$Sum = -4 + \frac{20}{27} = -\frac{88}{27}$$

13. Let $\vec{a} = 2\hat{i} + \hat{j} - 2\hat{k}$ and $\vec{b} = \hat{i} + \hat{j}$. If \vec{c} is a vector such that $\vec{a} \cdot \vec{c} = |\vec{c}|, |\vec{c} - \vec{a}| = 2\sqrt{2}$ and the angle between $(\vec{a} \times \vec{b})$ and \vec{c} is $\frac{\pi}{6}$, then the value of $\left| (\vec{a} \times \vec{b}) \times \vec{c} \right|$ $(1) \frac{2}{3}$ (2) 4 (3) 3 (4) $\frac{3}{2}$ Official Ans. by NTA (4) Sol. $|\vec{a}| = 3 = a; \vec{a}.\vec{c} = c$ Now $|\vec{c} - \vec{a}| = 2\sqrt{2}$ $\Rightarrow c^2 + a^2 - 2\vec{c}.\vec{a} = 8$ $\Rightarrow c^2 + 9 - 2 (c) = 8$ $\Rightarrow c^2 - 2c + 1 = 0 \Rightarrow c = 1 = |\vec{c}|$ Also, $\vec{a} \times \vec{b} = 2\hat{i} - 2\hat{j} + \hat{k}$ Given $(\vec{a} \times \vec{b}) = |\vec{a} \times \vec{b}| |\vec{c}| \sin \frac{\pi}{6}$ = (3) (1) (1/2) = 3/214. The number of real roots of the equation

$$\tan^{-1} \sqrt{x(x+1)} + \sin^{-1} \sqrt{x^2 + x + 1} = \frac{\pi}{4} \text{ is :}$$
(1) 1
(2) 2
(3) 4
(4) 0

Official Ans. by NTA (4)

Sol.
$$\tan^{-1}\sqrt{x^2 + x} + \sin^{-1}\sqrt{x^2 + x + 1} = \frac{\pi}{4}$$

For equation to be defined,

$$\mathbf{x}^2 + \mathbf{x} \ge \mathbf{0}$$

 \Rightarrow $x^2 + x + 1 \ge 1$

 \therefore only possibility that the equation is defined

$$x^2+x=0 \qquad \Rightarrow \ x=0; \ x=-1$$

None of these values satisfy

 \therefore No of roots = 0

15. Let y = y(x) be the solution of the differential equation $e^x \sqrt{1-y^2} dx + \left(\frac{y}{x}\right) dy = 0, y(1) = -1.$

 $\int \frac{dy}{dx} = 0, y(1) = 0$

Then the value of $(y(3))^2$ is equal to:

(1) $1 - 4e^3$ (2) $1 - 4e^6$

 $(3)1 + 4e^3 \qquad (4) \ 1 + 4e^6$

Official Ans. by NTA (2)

Sol.
$$e^x \sqrt{1-y^2} dx + \frac{y}{x} dy = 0$$

 $\Rightarrow e^x \sqrt{1-y^2} dx + \frac{-y}{x} dy$
 $\Rightarrow \int \frac{-y}{\sqrt{1-y^2}} dy = \int_{II}^{e^x} \frac{x}{1} dx$
 $\Rightarrow \sqrt{1-y^2} = e^x(x-1) + c$
Given : At $x = 1$, $y = -1$
 $\Rightarrow 0 = 0 + c \Rightarrow c = 0$
 $\therefore \sqrt{1-y^2} = e^x(x-1)$
At $x = 3$ $1-y^2 = (e^3 2)^2 \Rightarrow y^2 = 1-4e^6$
16. Let 'a' be a real number such that the function
 $f(x) = ax^2 + 6x - 15, x \in \mathbf{R}$ is increasing in
 $\left(-\infty, \frac{3}{4}\right)$ and decreasing in $\left(\frac{3}{4}, \infty\right)$. Then the
function $g(x) = ax^2 - 6x + 15, x \in \mathbf{R}$ has a:
(1) local maximum at $x = -\frac{3}{4}$
(2) local minimum at $x = -\frac{3}{4}$
(3) local maximum at $x = \frac{3}{4}$
(4) local minimum at $x = \frac{3}{4}$
Official Ans. by NTA (1)
Sol.
 $\frac{-B}{2A} = \frac{3}{4}$
 $\Rightarrow a = \frac{-6 \times 4}{6} \Rightarrow a = -4$
 $\therefore g(x) = 4x^2 - 6x + 15$

Local max. at
$$x = \frac{-B}{2A} = -\frac{(-6)}{2(-4)}$$

-3

17. Let a function
$$f : \mathbf{R} \to \mathbf{R}$$
 be defined as

$$f(x) = \begin{cases} \sin x - e^x & \text{if } x \le 0\\ a + [-x] & \text{if } 0 < x < 1\\ 2x - b & \text{if } x \ge 1 \end{cases}$$

Where [x] is the greatest integer less than or equal to x. If f is continuous on **R**, then (a + b) is equal to:

(1) 4 (2) 3 (3) 2 (4) 5 **Official Ans. by NTA (2) Sol.** Continuous at x = 0 $f(0^+) = f(0^-) \Rightarrow a - 1 = 0 - e^0$ $\Rightarrow a = 0$ Continuous at x = 1 $f(1^+) = f(1^-)$ $\Rightarrow 2(1) - b = a + (-1)$ $\Rightarrow b = 2 - a + 1 \Rightarrow b = 3$ $\therefore a + b = 3$

18. Words with or without meaning are to be formed using all the letters of the word EXAMINATION. The probability that the letter M appears at the fourth position in any such word is:

(1)
$$\frac{1}{66}$$
 (2) $\frac{1}{11}$ (3) $\frac{1}{9}$ (4) $\frac{2}{11}$

Official Ans. by NTA (2)

Sol. AAEIIMNNOTX ------M-----Total words with M at fourth Place = $\frac{10!}{2!2!2!}$ Total words = $\frac{11!}{2!2!2!}$ Required probability = $\frac{10!}{11!} = \frac{1}{11}$

19. The probability of selecting integers $a \in [-5, 30]$ such that $x^2 + 2(a + 4)x - 5a + 64 > 0$, for all $x \in \mathbf{R}$, is:

(1)
$$\frac{7}{36}$$
 (2) $\frac{2}{9}$ (3) $\frac{1}{6}$ (4) $\frac{1}{4}$

Official Ans. by NTA (2) Sol. D < 0 $\Rightarrow 4(a+4)^2 - 4(-5a+64) < 0$ $\Rightarrow a^2 + 16 + 8a + 5a - 64 < 0$ $\Rightarrow a^2 + 13a - 48 < 0$ \Rightarrow (a + 16) (a - 3) < 0 \Rightarrow a \in (-16, 3) : Possible a : $\{-5, -4, ..., 3\}$

$$\therefore$$
 Required probability = $\frac{8}{36}$

$$=\frac{2}{9}$$

Let the tangent to the parabola $S : y^2 = 2x$ at the 20. point P(2, 2) meet the x-axis at Q and normal at it meet the parabola S at the point R. Then the area (in sq. units) of the triangle PQR is equal to:

(1) $\frac{25}{2}$ (2) $\frac{35}{2}$ (3) $\frac{15}{2}$ (4) 25

Official Ans. by NTA (1)

Sol.

Tangent at P: y(2) = 2(1/2)(x+2) $\Rightarrow 2y = x + 2$ $\therefore Q = (-2, 0)$ Normal at P : $y - 2 = -\frac{(2)}{2 \cdot \frac{1}{2}}(x - 2)$ \Rightarrow y - 2 = -2(x - 2) \Rightarrow y = 6 - 2x \therefore Solving with $y^2 = 2x \implies R\left(\frac{9}{2} - 3\right)$ $\therefore \text{ Ar } (\Delta PQR) = \frac{1}{2} \begin{vmatrix} 2 & 2 & 1 \\ -2 & 1 & 1 \\ 9 & 3 & -1 \end{vmatrix}$ $=\frac{25}{2}$ sq.units

SECTION-B

1.

2.

Let \vec{a} , \vec{b} , \vec{c} be three mutually perpendicular vectors of the same magnitude and equally inclined at an angle θ , with the vector $\vec{a} + \vec{b} + \vec{c}$. Then $36 \cos^2 2\theta$ is equal to . Official Ans. by NTA (4) **Sol.** $|\vec{a} + \vec{b} + \vec{c}|^2 = |\vec{a}|^2 + |\vec{b}|^2 + |\vec{c}|^2 + 2(\vec{a}.\vec{b} + \vec{a}.\vec{c} + \vec{b}.\vec{c})$ = 3 $\Rightarrow |\vec{a} + \vec{b} + \vec{c}| = \sqrt{3}$ $\vec{a}.(\vec{a}+\vec{b}+\vec{c}) = |\vec{a}| + |\vec{a}+\vec{b}+\vec{c}|\cos\theta$ $\Rightarrow 1 = \sqrt{3} \cos\theta$ $\Rightarrow \cos 2\theta = -\frac{1}{2}$ $\Rightarrow 36 \cos^2 2\theta = 4$ Let $A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$ and $B = 7A^{20} - 20A^7 + 2I$, where I is an identity matrix of order 3×3 . If $B = [b_{ij}]$, then b_{13} is equal to Official Ans. by NTA (910) **Sol.** Let $A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} = I + C$ where $I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, C = \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix}$ $\mathbf{C}^2 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$ $\mathbf{C}^{3} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \mathbf{C}^{4} = \mathbf{C}^{5} = \dots$ $B = 7 A^{20} - 20 A^7 + 2I$ $= 7 (I + C)^{20} - 20 (I + C)^{7} + 2I$ $= 7(I + 20C + {}^{20}C_2 C^2) - 20 (I + 7C + {}^{7}C_2 C^2) + 2I$ So

 $b_{13} = 7 \times {}^{20}C_2 - 20 \times {}^{7}C_2 = 910$

3. Sol.	Let P be a plane passing through the points (1, 0, 1), (1, -2, 1) and (0, 1, -2). Let a vector $\vec{a} = \alpha \hat{i} + \beta \hat{j} + \gamma \hat{k}$ be such that \vec{a} is parallel to the plane P, perpendicular to $(\hat{i} + 2\hat{j} + 3\hat{k})$ and $\vec{a} \cdot (\hat{i} + \hat{j} + 2\hat{k}) = 2$, then $(\alpha - \beta + \gamma)^2$ equals Official Ans. by NTA (81) Equation of plane :	Sol.	If $\vec{r} = \vec{a} + \vec{c}$ then short $L = \frac{(\vec{a} - \vec{c})}{ \vec{b} }$ $\therefore \vec{a} - \vec{c} = \vec{c}$ $\frac{\vec{b} \times \vec{d}}{ \vec{b} \times \vec{d} } = \vec{c}$ $\therefore ((\alpha + 4))$
	$\begin{vmatrix} x - 1 & y - 0 & z - 1 \\ 1 - 1 & 2 & 1 - 1 \\ 1 - 0 & 0 - 1 & 1 + 2 \end{vmatrix} = 0$ $\Rightarrow 3x - z - 2 = 0$ $\vec{a} = \alpha \hat{i} + \beta \hat{j} + \gamma \hat{k} \parallel \text{to } 3x - z - 2 = 0$	6.	or $\alpha = 6$ Let T be at the po- bounded and $x =$
	$\Rightarrow 3\alpha - 8 = 0$ (1)		und A
	$\vec{a} + \vec{i} + 2\hat{i} + 3\hat{k}$		$ \alpha + \beta + \gamma $
	$ \overrightarrow{a} + \overrightarrow{1+2j+3k} $ $ \overrightarrow{\rightarrow} \overrightarrow{a} + 28 + 28 = 0 $ $ (2) $		Official A
	$\Rightarrow \hat{a} + 2\hat{p} + 3\hat{s} = 0$ (2) $\vec{a} \cdot (\hat{i} + \hat{j} + 2\hat{k}) = 0$	Sol.	
	$\Rightarrow \alpha + \beta + 28 = 2 \qquad \dots (3)$		
	on solving 1, 2 & 3		\langle
	$\alpha = 1, \beta = -5, 8 = 3$		
	So $(\alpha - \beta + 8) = \lfloor 81 \rfloor$		$\mathbf{E} \cdot \mathbf{v}^{2} \pm$
4.	The number of rational terms in the binomial		
	expansion of $\left(4^{\frac{1}{4}} + 5^{\frac{1}{6}}\right)^{120}$ is		Tangent a
	Official Ans. by NTA (21)		Required
Sol.	$\left(4^{\frac{1}{4}}+5^{\frac{1}{6}}\right)^{120}$		$=\int_{1}^{\sqrt{3}}\left(\frac{5}{4}\right)$
	$T_{r,1} = {}^{120}C_r (2^{1/2})^{120-r} (5)^{r/6}$		5x
	for rational terms $r = 6\lambda$ $0 \le r \le 120$		$= \left \frac{4}{4} \right $
	so total no of forms are 21.		5 —
5.	If the shortest distance between the lines		$=\frac{5}{4}\sqrt{5}$
	$\vec{r_1} = \alpha \hat{i} + 2\hat{j} + 2\hat{k} + \lambda \left(\hat{i} - 2\hat{j} + 2\hat{k}\right), \ \lambda \in \mathbf{R}, \ \alpha > 0$		It we assu
	and $\vec{r_2} = -4\hat{i} - \hat{k} + \mu(3\hat{i} - 2\hat{j} - 2\hat{k}), \mu \in \mathbf{R}$ is 9,		then $\alpha = \frac{1}{2}$
	then α is equal to		
	Official Ans. by NTA (6)		$ \alpha + \beta + \gamma $

 $\lambda \vec{b}$ and $\vec{r} = \vec{c} + \lambda \vec{d}$ test distance between two lines is \vec{c}). $(\vec{b} \times \vec{d})$ b×d| $((\alpha+4)\hat{i}+2\hat{j}+3\hat{k})$ $\frac{(2\hat{i}+2\hat{j}+\hat{k})}{3}$ 4) $\hat{i} + 2\hat{j} + 3\hat{k}$. $\frac{(2\hat{i} + 2\hat{j} + \hat{k})}{3} = 9$ the tangent to the ellipse $E: x^2 + 4y^2 = 5$ point P(1, 1). If the area of the region by the tangent T, ellipse E, lines x = 1 $\sqrt{5}$ is $\alpha\sqrt{5} + \beta + \gamma \cos^{-1}\left(\frac{1}{\sqrt{5}}\right)$, then is equal to ____ Ans. by NTA (1) x=1 $P(1,1) | x = \sqrt{5}$ $\sqrt{5},0)$ $4y^2 = 5$ at P: x + 4y = 5Area 2)

$$= \int_{1}^{\sqrt{2}} \left[\frac{5-x}{4} - \frac{\sqrt{5-x^2}}{2} \right] dx$$
$$= \left[\frac{5x}{4} - \frac{x^2}{8} - \frac{x}{4}\sqrt{5-x^2} - \frac{5}{2}\sin^{-1}\frac{x}{\sqrt{5}} \right]_{1}^{\sqrt{5}}$$
$$= \frac{5}{4}\sqrt{5} - \frac{5}{4} - \frac{5}{4}\cos^{-1}\left(\frac{1}{\sqrt{5}}\right)$$

t we assume $\alpha, \beta, \gamma, \in Q$ (Not given in question)

then
$$\alpha = \frac{5}{4}$$
, $\beta = -\frac{5}{4}$ & $\gamma = -\frac{5}{4}$
 $|\alpha + \beta + \gamma| = 1.25$

_,*★**``** CollegeDekho

Let a, b, c, d be in arithmetic progression with 7. common difference λ . If x+a-c x+b x+ax - 1 $|\mathbf{x} + \mathbf{c} - \mathbf{x} + \mathbf{b}| = 2$, x-b+d x+d x+cthen value of λ^2 is equal to _____ Official Ans. by NTA (1) $|\mathbf{x}+\mathbf{a}-\mathbf{c} \mathbf{x}+\mathbf{b} \mathbf{x}+\mathbf{a}|$ Sol. x - 1 x + c x + b = 2 $|\mathbf{x} - \mathbf{b} + \mathbf{d} + \mathbf{x} + \mathbf{d} + \mathbf{x} + \mathbf{c}|$ $C_2 \rightarrow C_2 - C_3$ $|\mathbf{x}-2\lambda \quad \lambda \quad \mathbf{x}+\mathbf{a}|$ $\Rightarrow |\mathbf{x} - 1 \quad \lambda \quad \mathbf{x} + \mathbf{b}| = 2$ $|\mathbf{x}+2\lambda \quad \lambda \quad \mathbf{x}+\mathbf{c}|$ $R_2 \rightarrow R_2 - R_1$, $R_3 \rightarrow R_3 - R_1$ $|\mathbf{x}-2\lambda \quad \mathbf{1} \quad \mathbf{x}+\mathbf{a}|$ $\Rightarrow \lambda | 2\lambda - 1 = 0$ $\lambda = 2$ 4λ 0 2λ $\Rightarrow 1 (4\lambda^2 - 4\lambda^2 + 2\lambda) = 2$ $\Rightarrow \lambda^2 = 1$

8. There are 15 players in a cricket team, out of which 6 are bowlers, 7 are batsmen and 2 are wicketkeepers. The number of ways, a team of 11 players be selected from them so as to include at least 4 bowlers, 5 batsmen and 1 wicketkeeper, is

Official Ans. by NTA (777)

Sol. 15: Players

- 6: Bowlers
- 7: Batsman
- 2 : Wicket keepers

Total number of ways for :

at least 4 bowlers, 5 batsman & 1 wicket keeper = ${}^{6}C(7C \times {}^{2}C + 7C \times {}^{2}C) + {}^{6}C \times {}^{7}C \times {}^{2}C$

$$= {}^{\circ}C_{4}({}^{\circ}C_{6} \times {}^{\circ}C_{1} + {}^{\circ}C_{5} \times {}^{\circ}C_{2}) + {}^{\circ}C_{5} \times {}^{\circ}C_{5} \times {}^{\circ}C_{1}$$
$$= [777]$$

9. Let y = mx + c, m > 0 be the focal chord of $y^2 = -64x$, which is tangent to $(x + 10)^2 + y^2 = 4$. Then, the value of $4\sqrt{2} (m + c)$ is equal to_____. Official Ans. by NTA (34)

Sol.
$$y^2 = -64x$$

focus : (-16, 0)
 $y = mx + c$ is focal chord
 $\Rightarrow c = 16m$ (1)
 $y = mx + c$ is tangent to $(x + 10)^2 + y^2 = 4$
 $\Rightarrow y = m(x + 10) \pm 2\sqrt{1 + m^2}$
 $\Rightarrow c = 10m \pm 2\sqrt{1 + m^2}$
 $\Rightarrow 6m = 2\sqrt{1 + m^2}$ (m > 0)
 $\Rightarrow 9m^2 = 1 + m^2$
 $\Rightarrow m = \frac{1}{2\sqrt{2}} \& c = \frac{8}{\sqrt{2}}$
 $4\sqrt{2}(m + c) = 4\sqrt{2}(\frac{17}{2\sqrt{2}}) = [34]$
10. If the value of $\lim_{x\to 0} (2 - \cos x\sqrt{\cos 2x})^{\left(\frac{x+2}{x^2}\right)}$ is equal
to e^a, then a is equal to _______.
Official Ans. by NTA (3)
Sol. $\lim_{x\to 0} (2 - \cos x\sqrt{\cos 2x})^{\frac{x+2}{x^2}}$
form: 1[∞]
 $= e^{\lim_{x\to 0} \frac{1 - \cos x\sqrt{\cos 2x}}{x^2}} \times (-2\sin 2x)$
 $\lim_{x\to 0} \frac{\sin x \cos 2x - \sin x \times \frac{1}{2\sqrt{\cos 2x}} \times (-2\sin 2x)}{2x}$
(by L' Hospital Rule)
 $\lim_{x\to 0} \frac{\sin x \cos 2x + \sin 2x \cdot \cos x}{2x}$
 $= \frac{1}{2} + 1 = \frac{3}{2}$
So, $e^{\lim_{x\to 0} (\frac{1 - \cos x\sqrt{\cos 2x}}{x^2})(x+2)}$
 $= e^{\frac{3}{2}x^2} = e^3$
 $\Rightarrow [a = 3]$