

CHEMISTRY

SECTION-A

- 1. The water having more dissolved O_2 is:
 - (1) boiling water
 - (2) water at 80°C
 - (3) polluted water
 - (4) water at 4°C

Official Ans. by NTA (4)

- **Sol.** On heating concentration of O₂ in water decreases. So boiling water and water at 80°C having less O₂ concentration. Polluted water also having less O₂ concentration. So water at 4°C having maximum O₂ concentration.
- **2.** Which one of the following statements for D.I. Mendeleeff, is **incorrect**?
 - (1) He authored the textbook Principles of Chemistry.
 - (2) At the time, he proposed Periodic Table of elements structure of atom was known.
 - (3) Element with atomic number 101 is named after him.
 - (4) He invented accurate barometer.

Official Ans. by NTA (2)

- **Sol.** At the time, he proposed the periodic table but structure of atom was unknown.
- 3. Which purification technique is used for high boiling organic liquid compound (decomposes near its boiling point)?
 - (1) Simple distillation
 - (2) Steam distillation
 - (3) Fractional distillation
 - (4) Reduced pressure distillation

Official Ans. by NTA (4)

- **Sol.** Reduced pressure distillation or vacuum distillation is used for the purification of high boiling organic liquids which decomposes at or below their boiling point.
- 4. Which of the following compounds will provide a tertiary alcohol on reaction with excess of CH₃MgBr followed by hydrolysis?

Official Ans. by NTA (1)

Sol.

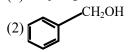
$$\begin{array}{c|c}
CH \xrightarrow{CH_3MgBr} OH \xrightarrow{OH} CH_3-C-CH_3
\end{array}$$

Tertiary alcohol

$$\begin{array}{c} \text{OCH}_2\text{CH}_3\\ \text{NC} \\ \begin{array}{c} \text{CH}_3\text{MgBr}\\ \text{(excess)} \\ \\ \text{H}_3\text{O}^* \end{array} \\ \begin{array}{c} \text{H}_3\text{C}\\ \\ \text{O} \\ \\ \text{CH} \end{array} \\ \begin{array}{c} \text{OCH}_2\text{CH}_3\\ \\ \text{O} \\ \\ \text{CH} \end{array}$$

$$\begin{array}{c|c} O & OH \\ \hline OH & CH_3 & CH_3MgBr \\ \hline (excess) & OH \\ \hline OH & CH_3 \\ \hline OH & OH \\ \end{array}$$

Phenolic –OH group and tertiary alcohol is present thus two functional groups are present in the product


$$\begin{array}{c|c}
O \\
CH_3MgBr \\
(excess) \\
H_3O^{\dagger}
\end{array}$$

$$\begin{array}{c|c}
OH \\
OH \\
OH
\end{array}$$

$$\begin{array}{c|c}
HO \\
CH_3\\
HO \\
CH_3
\end{array}$$

CollegeDekho

- **5.** Which of the following compounds does not exhibit resonance?
 - (1) CH₃CH₂OCH=CH₂

- (3) CH₃CH₂CH₂CONH₂
- (4) CH₃CH₂CH=CHCH₂NH₂

Official Ans. by NTA (4)

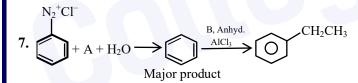
Sol.

 CH_3 – CH_2 –CH = CH– CH_2 – NH_2

No conjugation thus resonance is not possible.

6. Match List-II with List-II

List-I List-II (Elements) (Properties)

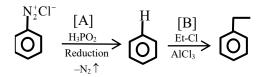

- (a) Ba
- (i) Organic solvent soluble compounds
- (b) Ca
- (ii) Outer electronic configuration 6s²
- (c) Li
- (iii) Oxalate insoluble in water
- (d) Na
- (iv) Formation of very strong monoacidic base

Choose the **correct** answer from the options given below:

- (1) (a)-(ii), (b)-(iii), (c)-(i) and (d)-(iv)
- (2) (a)-(iv), (b)-(i), (c)-(ii) and (d)-(iii)
- (3) (a)-(iii), (b)-(ii), (c)-(iv) and (d)-(i)
- (4) (a)-(i), (b)-(iv), (c)-(ii) and (d)-(iii)

Official Ans. by NTA (1)

- **Sol.** (a) 'Ba' having outer electronic configuration 6s².
 - (b) CaC₂O₄ is water insoluble
 - (c) 'Li' is soluble in organic solvents
 - (d) NaOH is strong Monoacidic base among given.



In the chemical reactions given above A and B respectively are:

- (1) H₃PO₂ and CH₃CH₂Cl
- (2) CH₃CH₂OH and H₃PO₂
- (3) H₃PO₂ and CH₃CH₂OH
- (4) CH₃CH₂Cl and H₃PO₂

Official Ans. by NTA (1)

Sol.

- 8. Isotope(s) of hydrogen which emits low energy β^- particles with $t_{1/2}$ value > 12 years is/are
 - (1) Protium
 - (2) Tritium
 - (3) Deuterium
 - (4) Deuterium and Tritium

Official Ans. by NTA (2)

- **Sol.** ¹₁H and ²₁H are stable while ³₁H is radioactive.
- 9. Match List-II with List-II:

List-I		List-II
(Species)		(Hybrid Orbitals)
(a) SF ₄	(i)	$\mathrm{sp}^{3}\mathrm{d}^{2}$
(b) IF ₅	(ii)	d^2sp^3
(c) NO_2^+	(iii)	sp^3d
(d) NH ₄	(iv)	sp^3
	(v)	sp
C1 .1		0 1

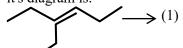
Choose the **correct** answer from the options given below:

- (1) (a)-(i), (b)-(ii), (c)-(v) and (d)-(iii)
- (2) (a)-(ii), (b)-(i), (c)-(iv) and (d)-(v)
- (3) (a)-(iii), (b)-(i), (c)-(v) and (d)-(iv)
- (4) (a)-(iv), (b)-(iii), (c)-(ii) and (d)-(v)

Official Ans. by NTA (3)

- **Sol.** (a) $SF_4 sp^3d$ hybridisation
 - (b) $IF_5 sp^3d^2$ hybridisation
 - (c) NO₂ sp hybridisation
 - (d) $NH_4^+ sp^3$ hybridisation
- **10.** When silver nitrate solution is added to potassium iodide solution then the sol produced is:
 - $(1) \text{ AgI} / I^{-}$
- $(2) AgI / Ag^+$
- (3) KI/NO_3^-
- (4) AgNO₃ / NO₃⁻

Official Ans. by NTA (1)


Sol.
$$\underset{\text{(drop by drop)}}{\text{AgNO}_3(\text{aq.}) + \text{KI(aq.})} \longrightarrow \underset{\text{Sol}}{\text{AgI} / \text{I}^-}$$

- **11.** Which of the following molecules does not show stereo isomerism?
 - (1) 3,4-Dimethylhex-3-ene
 - (2) 3-Methylhex-1-ene
 - (3) 3-Ethylhex-3-ene
 - (4) 4-Methylhex-1-ene

Official Ans. by NTA (3)

CollegeDekho

Sol. 3-Ethylhex-3-ene will not show stereo isomerism it's diagram is.

Not show geometrical isomerism

- (2) Not show optical isomerism
- 12. Given below are the statements about diborane
 - (a) Diborane is prepared by the oxidation of $NaBH_4$ with I_2
 - (b) Each boron atom is in sp² hybridized state
 - (c) Diborane has one bridged 3 centre-2-electron bond
 - (d) Diborane is a planar molecule

The option with **correct** statement(s) is -

- (1) (c) and (d) only
- (2) (a) only
- (3) (c) only
- (4) (a) and (b) only

Official Ans. by NTA (2)

Sol.

Diborane is prepared by the reaction of NaBH₄ with I₂.

 $2NaBH_4 + I_2 \rightarrow B_2H_6 + 2NaI + H_2$

In diborane, 'B' is sp³ hybrid, it is Non-planar and two 3c–2e⁻ bonds are present.

- **13.** Which one of the following group-15 hydride is the strongest reducing agent?
 - (1) AsH_3 (2) BiH_3
- (3) PH₃
- (4) SbH₃

Official Ans. by NTA (2)

Sol.

Among 15th group hydrides, BiH₃ is strongest reducing agent.

14. Match List-I with List-II:

List-I

List-II

(a) Chloroprene

(b) Neoprene

(c) Acrylonitrile

(d) Isoprene

(iv) CH₂=CH-CN

Choose the **correct** answer from the options given below:

- (1) (a) (iii), (b)-(iv), (c) -(ii), (d) -(i)
- (2) (a) (ii), (b)-(iii), (c) -(iv), (d) -(i)
- (3) (a) (ii), (b)-(i), (c) -(iv), (d) -(iii)
- (4) (a) (iii), (b)-(i), (c) -(iv), (d) -(ii)

Official Ans. by NTA (2)

Sol. (a) Chloroprene

(b) Neoprene

(c) Acrylonitrile

(iii) CH₂=CH–CN

(d) Isoprene

15. The set having ions which are coloured and paramagnetic both is -

- (1) Cu²⁺, Cr³⁺, Sc⁺
- (2) Cu^{2+} , Zn^{2+} , Mn^{4+}
- (3) Sc^{3+} , V^{5+} , Ti^{4+}
- (4) Ni²⁺, Mn⁷⁺, Hg²⁺

Official Ans. by NTA (1)

Sol.

 Cu^{2+} : [Ar]3d⁹4s⁰ All are coloured and Cr^{3+} : [Ar]3d³4s⁰ paramagnetic due to Sc^{+} : [Ar]3d¹4s¹ presence of unpaired electrons

- **16.** Thiamine and pyridoxine are also known respectively as:
 - (1) Vitamin B₂ and Vitamin E
 - (2) Vitamin E and Vitamin B₂
 - (3) Vitamin B₆ and Vitamin B₂
 - (4) Vitamin B₁ and Vitamin B₆

Official Ans. by NTA (4)

Sol. Vitamine-B₁ is also known as Thiamine while vitamin B-6 is known as Pyridoxine

17. Sulphide ion is soft base and its ores are common for metals.

- (a) Pb
- (b) A1
- (c) Ag
- (d) Mg

Choose the **correct** answer from the options given below:

- (1) (a) and (c) only
- (2) (a) and (d) only
- (3) (a) and (b) only
- (4) (c) and (d) only

Official Ans. by NTA (1)

- **Sol.** Pb and Ag commonly exist in the form of sulphide ore like PbS (galena) and Ag₂S (Argentite)
 'Al' is mainly found in the form of oxide ore whereas 'Mg' is found in the form of halide ore.
- 18. An organic compound A (C₆H₆O) gives dark green colouration with ferric chloride. On treatment with CHCl₃ and KOH, followed by acidification gives compound B. Compound B can also be obtained from compound C on reaction with pyridinium chlorochromate (PCC). Identify A, B and C.

(1)
$$A = \bigcirc OH$$
 $B = \bigcirc CHO$ CHO CH_2OH

(2)
$$A = \bigcirc OH$$
 CH_2OH OH CHO

(3)
$$A = \bigcirc OH$$
 OH OH CHO CHO OH OH

(4)
$$A = \bigcirc CHO$$
 $B = \bigcirc CH_2OH$
 CHO
 CHO

Official Ans. by NTA (1)

Sol.

19. Which one of the following reactions does not occur?

(1)
$$O$$
 + (CH₃CO)₂O/Pyridine \rightarrow O NHCOCH₃

$$(2) \bigodot^{\mathrm{NH_2}} \quad + \ \mathrm{H_2SO_4} \ \rightarrow \bigodot^{\mathrm{NH_2}}_{\mathrm{SO_3H}}$$

(3)
$$\bigcirc$$
 + AlCl₃ + CH₃Cl \rightarrow \bigcirc \bigcirc CH₃

(4)
$$\bigcirc$$
 + HNO₃/H₂SO₄ \rightarrow \bigcirc NH₂NO₂

Official Ans. by NTA (3)

- (1) Aniline is lewis base give acid base reaction with AlCl₃ and form Anilinium ion
- (2) Anilinium ion has strongest deactivated ring so further Friedel craft Alkylation not occurs.
- **20.** Which one of the following 0.06 M aqueous solutions has lowest freezing point?
 - (1) $Al_2(SO_4)_3$
- $(2) C_6 H_{12} O_6$
- (3) KI

(4) K₂SO₄

Official Ans. by NTA (1)

Sol.
$$T_f - T_f' = i K_f \cdot m$$

For minimum T_f

'i' should be maximum.

 $Al_2(SO_4)_3 i = 5$

 $C_6H_{12}O_6$ i = 1

KI i=2

 K_2SO_4 i=3

SECTION-B

1. The total number of unpaired electrons present in [Co(NH₃)₆]Cl₂ and [Co(NH₃)₆]Cl₃ is

Official Ans. by NTA (1)

Sol.

 $[Co(NH_3)_6]Cl_2$

 Co^{2+} : [Ar]3d⁷4s⁰4p⁰

For this complex Δ_0 < P.E., so pairing of electron does not take place.

sp³d² hybridisation

Total 3 unpaired electrons are present.

 $[Co(NH_3)_6]Cl_3$

 Co^{3+} : [Ar] $3d^6 4s^0 4p^0$

d²sp³ hybridisation

NH₃ acts as SFL because $\Delta_0 > P.E$.

So here all electrons becomes paired.

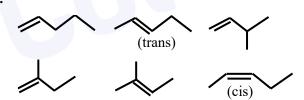
2. Methylation of 10 g of benzene gave 9.2 g of toluene. Calculate the percentage yield of toluene . (Nearest integer)

Official Ans. by NTA (78)

Sol.

$$C_6H_6 + CH_3Cl \longrightarrow C_6H_5CH_3 + HCl$$

$$\frac{10}{78}$$


$$\left(\frac{10}{78} \times 92\right)$$
gm \Rightarrow

$$\frac{A_y}{T_y} = \% \text{ yield} = \frac{9.2}{920} \times 78 \times 100 \Rightarrow 78\%$$

3. The number of acyclic structural isomers (including geometrical isomers) for pentene are _____

Official Ans. by NTA (6)

Sol.

4. Assume a cell with the following reaction

$$Cu_{(s)} + 2Ag^{+}(1 \times 10^{-3} \text{ M}) \rightarrow Cu^{2+}(0.250 \text{ M}) + 2Ag_{(s)}$$

 $E^{1}_{cell} = 2.97 \text{ V}$

 E_{cell} for the above reaction is _____V. (Nearest integer)

[Given : log 2.5 = 0.3979, T = 298 K]

Official Ans. by NTA (3)

- Sol. $E = E^{\circ} \frac{0.059}{2} \log \frac{[Cu^{+2}]}{[Ag^{+}]^{2}}$ = $2.97 - \frac{0.059}{2} \log \frac{0.25}{(10^{-3})^{2}} = 2.81V$
- 5. Value of K_P for the equilibrium reaction $N_2O_{4~(g)} \rightleftharpoons 2NO_{2(g)}$ at 288 K is 47.9. The K_C for this reaction at same temperature is _____. (Nearest integer) $(R = 0.083~L~bar~K^{-1}~mol^{-1})$

Official Ans. by NTA (2)

Sol.
$$K_{c} = \frac{K_{p}}{RT} = \frac{47.9}{0.083 \times 288} = 2$$

6. If the standard molar enthalpy change for combustion of graphite powder is -2.48 × 10² kJ mol⁻¹, the amount of heat generated on combustion of 1 g of graphite powder is _____ kJ. (Nearest integer)

Official Ans. by NTA (21)

Sol. 1 mol graphite = 12 gm C

Ans. =
$$\frac{248}{12}$$
 = 20.67kJ/gm heat evolved

7. A copper complex crystallising in a CCP lattice with a cell edge of 0.4518 nm has been revealed by employing X-ray diffraction studies. The density of a copper complex is found to be 7.62 g cm⁻³. The molar mass of copper complex is _____ g mol⁻¹. (Nearest integer)

[Given : $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$]

Official Ans. by NTA (106)

Sol.
$$d\left(\frac{gm}{cc}\right) = \frac{4 \times \frac{M}{N_A}}{(a \text{ cm})^3}$$

$$7.62 = \frac{4 \times M / 6.022 \times 10^{23}}{(0.4518 \times 10^{-7} \text{cm})^3} \Rightarrow M = 105.8 \text{ g/mol}$$

8. Number of electrons that Vanadium (Z = 23) has in p-orbitals is equal to _____

Official Ans. by NTA (12)

Sol. 23V: 1s² 2s² 2p⁶ 3s² 3p⁶ 3d³ 4s²

Number of electrons in p-orbitals is equal to 12.00

9.
$$N_2O_{5(g)} \rightarrow 2NO_{2(g)} + \frac{1}{2}O_{2(g)}$$

In the above first order reaction the initial concentration of N_2O_5 is 2.40×10^{-2} mol L^{-1} at 318 K. The concentration of N_2O_5 after 1 hour was 1.60×10^{-2} mol L^{-1} . The rate constant of the reaction at 318 K is _____ × 10^{-3} min⁻¹. (Nearest integer)

[Given: $\log 3 = 0.477$, $\log 5 = 0.699$]

Official Ans. by NTA (7)

Sol.
$$K = \frac{2.303}{t} log \frac{[N_2O_5]_0}{[N_2O_5]_t}$$

$$= \frac{2.303}{60} \log \frac{2.4}{1.6} = 6.76 \times 10^{-3} \, \text{min}^{-1} \approx 7 \times 10^{-3} \, \text{min}^{-1}$$

10. If the concentration of glucose ($C_6H_{12}O_6$) in blood is 0.72 g L⁻¹, the molarity of glucose in blood is _____ × 10⁻³M. (Nearest integer)

[Given: Atomic mass of C = 12, H = 1, O = 16 u]

Official Ans. by NTA (4)

Sol. [Glucose] =
$$\frac{C(gm / \ell)}{M(gm / mol)} = \frac{0.72}{180} = 4 \times 10^{-3} M$$