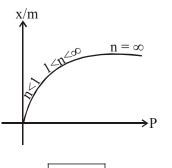


CollegeDekho

Sol. Isostructural means same structure 5. Al_2O_3 was leached with alkali to get X. The solution of X on passing of gas Y, forms Z. X, : Tetrahedral (A) SO_4^{2-} Y and Z respectively are : (1) $X = Na[Al(OH)_4], Y = SO_2, Z = Al_2O_3$ (2) $X = Na[Al(OH)_4], Y = CO_2, Z = Al_2O_3.xH_2O$ CrO₄²⁻ : Tetrahedral (3) $X = Al(OH)_3$, $Y = CO_2$, $Z = Al_2O_3$ (4) $X = Al(OH)_3$, $Y = SO_2$, $Z = Al_2O_3.xH_2O_3$: Tetrahedral $SiCl_4$ Official Ans. by NTA (2) **(B) Sol.** $Al_2O_{3(s)} + 2NaOH_{(aq)} + 3H_2O_{(d)}$: Tetrahedral TiCl₄ $2Na[Al(OH)_4]_{(aq.)}$ CO_2 : Triagonal pyramidal (C) NH_3 Ή $Al_2O_3.xH_2O_{(s)} + 2NaHCO_{3(aq.)}$: Triagonal planar NO_3^- So B–Cl : Triagonal planar BCl₃ $X : Na[Al(OH)_{4}]$ (D) $Y : CO_{2}$ $Z : Al_2O_3.xH_2O$ Cl-Br BrCl₃ : T-shape 6. Which of the following are isostructural pairs ? A. SO_4^{2-} and CrO_4^{2-} 7. What is the final product (major) 'A' in the given reaction ? B. SiCl₄ and TiCl₄ CH₃ OH C. NH₃ and $NO_3^ CH_3 \xrightarrow{HCl} (major product)$ D. BCl₃ and BrCl₃ BCl₃ and BrCl₃ (1) C and D only $CH_2 - CH_3$ (2) CH. (2) A and B only (3) CH=CH₂ (3) A and C only (4) **í** CH. (4) B and C only

- (1) log n with (n > 1)
- (2) n with (n, 0.1 to 0.5)


(3)
$$\log \frac{1}{n}$$
 with $(n < 1)$
(4) $\frac{1}{n}$ with $\left(\frac{1}{n} = 0 \text{ to } 1\right)$

ol.
$$\frac{x}{m} = K(P)^{\frac{1}{r}}$$

$$\log\left(\frac{x}{m}\right) = \log K + \frac{1}{n}\log P$$

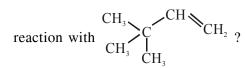
$$y = c + mx$$

m = 1/n so slope will be equal to 1/n.

 $0 \leq \frac{1}{n} \leq 1$

Hence

- 10. (A) HOCl + $H_2O_2 \rightarrow H_3O^+ + Cl^- + O_2$ (B) $I_2 + H_2O_2 + 2OH^- \rightarrow 2I^- + 2H_2O + O_2$ Choose the correct option.
 - H₂O₂ acts as reducing and oxidising agent respectively in equation (A) and (B)
 - (2) H₂O₂ acts as oxidising agent in equation (A) and (B)
 - (3) H₂O₂ acts as reducing agent in equation (A) and (B)
 - (4) H₂O₂ act as oxidizing and reducing agent respectively in equation (A) and (B)


Official Ans. by NTA (3)

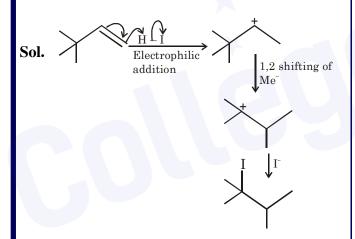
- (A) $HOC1 + H_2O_2 \rightarrow H_3O^+ + C1^- + O_2$ In this equation, H_2O_2 is reducing chlorine from +1 to -1.
- (B) $I_2 + H_2O_2 + 2OH^- \rightarrow 2I^- + 2H_2O + O_2$ In this equation, H_2O_2 is reducing iodine from 0 to -1.
- Sol. In (A) reduction of HOCl occurs so it will be a oxidising agent hence H₂O₂ will be a reducing agent.
 In(B) reduction of I₂ occurs so it will be a oxidising agent and H₂O₂ will be a reducing

11.

What is the major product formed by HI on

(1)
$$CH_3 \xrightarrow{I} CH_3 CH - CH_2I$$

 $\downarrow I CH_3 H$


(2)
$$CH_3 - CH_3 - CH - CH_3$$

 $I - CH - CH_3 - CH - CH_3$
 $CH_3 I - CH_3$

$$(3) CH_{3} - CH_{2} - CH_{3} - CH_{3}$$

$$(4) \begin{array}{c} CH_{3} - CH - CH - CH_{2} - CH_{3} \\ I \\ CH_{3} \\ I \end{array}$$

Official Ans. by NTA (3)

11. Official Ans. by NTA ()

12. Which of the following reagent is used for the following reaction ?

 $CH_3CH_2CH_3 \xrightarrow{?} CH_3CH_2CHO$

- (1) Manganese acetate
- (2) Copper at high temperature and pressure
- (3) Molybdenum oxide
- (4) Potassium permanganate

Official Ans. by NTA (3)

 MO_2O_3

13. Given below are two statements :

Statement I : Colourless cupric metaborate is reduced to cuprous metaborate in a luminous flame.

Statement II : Cuprous metaborate is obtained by heating boric anhydride and copper sulphate in a non-luminous flame.

In the light of the above statements, choose the most appropriate answer from the options given below.

(1) Statement I is true but Statement II is false
 (2) Both Statement I and Statement II are false
 (3) Statement I is false but Statement II is true
 (4) Both Statement I and Statement II are true

Official Ans. by NTA (2)

Sol.

(i) Blue cupric metaborate is reduced to colourless cuprous metaborate in a luminous flame

 $2Cu(BO_2)_2 + 2NaBO_2 + C$

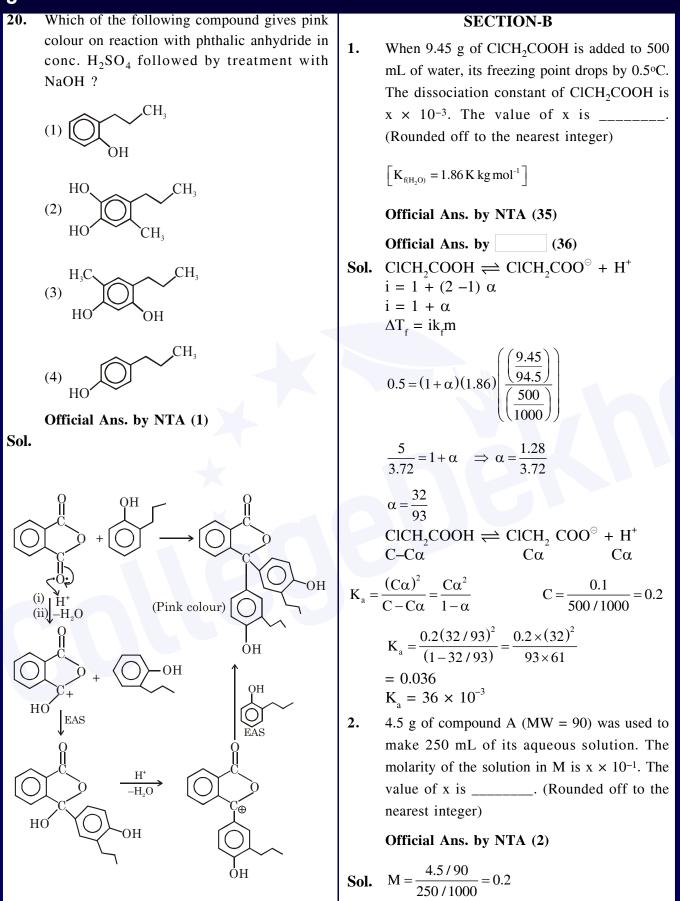
 \downarrow Luminous flame

 $2CuBO_2 + Na_2B_4O_7 + CO$

(ii) Cupric metaborate is obtained by heating boric anhydride and copper sulphate in a non luminous flame.

$$CuSO_4 + B_2O_3 \frac{Non-luminous}{Flame}$$

 $Cu(BO_2)_2 + SO_3$
Cupric metaborate
(Blue-green)


- 14. Out of the following, which type of interaction is responsible for the stabilisation of α -helix structure of proteins ?
 - (1) Ionic bonding
 - (2) Hydrogen bonding
 - (3) Covalent bonding
 - (4) vander Waals forces

Official Ans. by NTA (2)

Sol. Hydrogen bonding is responsible for the

15.	Match List I with List II		17.	The major components in "Gun Metal" are :
	List I	List II		(1) Cu, Zn and Ni (2) Cu, Sn and Zn
	(Monomer Unit)	(Polymer)		(3) Al, Cu, Mg and Mn(4) Cu, Ni and Fe
	(a) Caprolactum	(i) Natural rubber	Official Ans. by NTA (2) The major components in "Gun Metal" are	
	(b) 2-Chloro-1,3-butadiene (ii) Buna-N			Cu: 87%
	(c) Isoperene	(iii) Nylon 6		Zn : 3% Sn : 10%
	(d) Acrylonitrile	(iv) Neoprene	18.	The electrode potential of M^{2+} / M of 3d-series
	Choose the correct answ given below : (1) (a) \rightarrow (iv), (b) \rightarrow (iii) (2) (a) \rightarrow (ii), (b) \rightarrow (i), (c)	$(c) \rightarrow (ii), (d) \rightarrow (i)$ $(c) \rightarrow (iv), (d) \rightarrow (iii)$	Sol.	elements shows positive value of : (1) Zn (2) Fe (3) Co (4) Cu Official Ans. by NTA (4) Only copper shows positive value for electrode potential of M^{2+}/M of 3d-series elements.
	(3) (a) \rightarrow (iii), (b) \rightarrow (iv) (4) (a) \rightarrow (i), (b) \rightarrow (ii), (d) Official Ans. by NTA (2)	$(c) \rightarrow (iii), (d) \rightarrow (iv)$	19.	$E^{\circ} / V_{(Cu^{2+}/Cu)} : +0.34$ Identify products A and B :
Sol.		tum is the monomeric $HN - (CH_2)_5 - C_0 = 0$		$(1) A : \bigcirc CH_{3} \\ OH \\ OH \\ OH \\ OH \\ B : \bigcirc CH_{3} \\ OH \\ OH \\ OH \\ OH \\ B : \bigcirc CH_{3} \\ OH \\ O$
	(b) 2-Chlorobuta-1, 3-dien of polymer neoprene.	e is the monomeric unit		он о О
	 (c) 2-Methylbuta-1, 3-dien of polymer natural rub (d) CH₂ = CH - CN (Acry the monomeric unit of 	ylonitrile) is the one of		(3) A : OHC—CH ₂ CH ₂ CH ₂ —CH ₃ $\begin{array}{c} O\\ B\\ B : HOOC—CH2CH2CH2—C—CH3\\ \hline CH3\\ \hline $
16.	The gas released during anaerobic degradation of vegetation may lead to : (1) Ozone hole			(4) A : (4) $(4$
	(2) Acid rain(3) Corrosion of metals(4) Global warming and		Sol.	$\begin{array}{c c} & \underline{\operatorname{dil}.\mathrm{KMnO_4}} \\ & \underline{\mathrm{CrO_3}} \end{array} \xrightarrow{\mathrm{dil}.\mathrm{KMnO_4}} \\ & & \underline{\mathrm{CrO_3}} \end{array}$
Sol.	Official Ans. by NTA (4 The gas CH_{4} evolved			

At 1990 K and 1 atm pressure, there are equal number of Cl₂ molecules and Cl atoms in the reaction mixture. The value K_P for the reaction Cl_{2(g)} ⇒ 2Cl_(g) under the above conditions is x × 10⁻¹. The value of x is _____. (Rounded of to the nearest integer)

Official Ans. by NTA (5)

Sol. $Cl_2 \rightleftharpoons 2Cl$

Let mol of both of Cl₂ and Cl is x

 $P_{C1} = \frac{x}{2x} \times 1 = \frac{1}{2}$

 $P_{Cl_2} = \frac{x}{2x} \times 1 = \frac{1}{2}$

$$K_{p} = \frac{\left(\frac{1}{2}\right)^{2}}{\frac{1}{2}} = \frac{1}{2} = 0.5 \Longrightarrow 5 \times 10^{-1}$$

4. Number of amphoteric compound among the following is _____

(A) BeO (B) BaO

(C) $Be(OH)_2$ (D) $Sr(OH)_2$

Official Ans. by NTA (2)

Sol. Both compounds BeO and $Be(OH)_2$ are amphoteric in nature.

and both compounds BaO and $Sr(OH)_2$ are basic in nature.

5. The reaction of sulphur in alkaline medium is the below:

 $S_{\boldsymbol{8}(\boldsymbol{s})} + a ~ OH^{-}_{(aq)} \rightarrow b ~ S^{2-}_{(aq)} + c ~ S_2 O_3^{~2-}_{~(aq)} + d ~ H_2 O_{(\ell)}$

The values of 'a' is _____. (Integer answer)

Sol.

$$\begin{array}{r} 16e^{\circ} + S_{8} \longrightarrow 8S^{2^{-}} \\ 12H_{2}O + S_{8} \longrightarrow 4S_{2}O_{3}^{2^{-}} + 24H^{+} + 16e^{\circ} \\ \hline 2S_{8} + 12H_{2}O \longrightarrow 8S^{2^{-}} + 4S_{2}O_{3}^{2^{-}} + 24H^{+} \\ \end{array}$$

for balancing in basic medium add equal number of OH^{\odot} that of H^{+}

- $2S_{8} + 12H_{2}O + 24OH^{\odot} \longrightarrow 8S^{2-} + 4S_{2}O_{8}^{2-} + 24H_{2}O$ $2S_{8} + 24OH^{\odot} \rightarrow 8S^{2-} + 4S_{2}O_{8}^{2-} + 12H_{2}O$ $S_{8} + 12OH^{\odot} \rightarrow 4S^{2-} + 2S_{2}O_{8}^{2-} + 6H_{2}O$ a = 12
- 6. For the reaction $A_{(g)} \rightarrow (B)_{(g)}$, the value of the equilibrium constant at 300 K and 1 atm is equal to 100.0. The value of $\Delta_r G$ for the reaction at 300 K and 1 atm in J mol⁻¹ is xR, where x is ______ (Rounded of to the nearest integer) (R = 8.31 J mol⁻¹ K⁻¹ and ln 10 = 2.3)

Official Ans. by NTA (1380)

6. $\Delta G^{\circ} = -RT \ln Kp$ = -R(300) (2) ln(10)

 $= -R(300 \times 2 \times 2.3)$

 $\Delta G^{o} = -1380 R$

7. A proton and a Li³⁺ nucleus are accelerated by the same potential. If λ_{Li} and λ_P denote the de Broglie wavelengths of Li³⁺ and proton

respectively, then the value of $\frac{\lambda_{\text{Li}}}{\lambda_{\text{p}}}$ is x \times 10-

¹. The value of x is _____.

(Rounded off to the nearest integer) (Mass of $Li^{3+} = 8.3$ mass of proton)

Sol.
$$\lambda = \frac{h}{\sqrt{2 \text{ mqV}}}$$
$$\frac{\lambda_{\text{Li}}}{\lambda_{\text{p}}} = \sqrt{\frac{m_{\text{p}}(e)V}{m_{\text{Li}}(3e)(V)}} \qquad m_{\text{Li}} = 8$$
$$\frac{\lambda_{\text{Li}}}{\lambda_{\text{p}}} = \sqrt{\frac{1}{8.3 \times 3}} = \frac{1}{5} = 0.2 = 2 \times 10^{-1}$$

8. The stepwise formation of
$$[Cu(NH_3)_4]^{2+}$$
 is given below

8.3 m

 $Cu^{2+} + NH_3 = [Cu(NH_3)]^{2+}$

 $[Cu(NH_3)]^{2+} + NH_3 \underbrace{\overset{K_2}{\longleftarrow}} [Cu(NH_3)_2]^{2+}$

 $[Cu(NH_3)_2]^{2+} + NH_3 \underbrace{\overset{K_3}{\longleftarrow}} [Cu(NH_3)_3]^{2+}$

$$[Cu(NH_3)_3]^{2+} + NH_3 \underbrace{K_4}_{K_4} [Cu(NH_3)_4]^{2+}$$

The value of stability constants K_1 , K_2 , K_3 and K_4 are 10⁴, 1.58 × 10³, 5 × 10² and 10² respectively. The overall equilibrium constants for dissociation of $[Cu(NH_3)_4]^{2+}$ is x × 10⁻¹². The value of x is ______. (Rounded off to the nearest integer)

Official Ans. by NTA (1)

Sol. $Cu^{2+} + NH_3 \xrightarrow{K_1} [Cu(NH_3)]^{2+}$

$$[Cu(NH_{3})]^{2+} + NH_{3} \xleftarrow{K_{2}} [Cu(NH_{3})_{2}]^{2+}$$

$$[Cu(NH_{3})_{2}]^{2+} + NH_{3} \xleftarrow{K_{3}} [Cu(NH_{3})_{3}]^{2+}$$

$$[Cu(NH_{3})_{3}]^{2+} + NH_{3} \xleftarrow{K_{4}} [Cu(NH_{3})_{4}]^{2+}$$

$$Cu^{2+} + 4NH_{3} \xleftarrow{K} [Cu(NH_{3})_{4}]^{2+}$$
So
$$K = K_{1} \times K_{2} \times K_{3} \times K_{4}$$

$$= 10^{4} \times 1.58 \times 10^{3} \times 5 \times 10^{2} \times 10^{2}$$

K = 7.9 × 10¹¹

Where $K \rightarrow Equilibrium constant for$ formation of [Cu(NH₃)₄]²⁺So equilibrium constant (K') for dissociation $of [Cu(NH₃)₄]²⁺ is <math>\frac{1}{K}$ $K' = \frac{1}{K}$ $K' = \frac{1}{K}$ $K' = \frac{1}{7.9 \times 10^{11}}$ $= 1.26 \times 10^{-12} = (x \times 10^{-12})$ So the value of x = 1.26 OMR Ans = 1 (After rounded off to the nearest integer) The coordination number of an atom in a bodycentered cubic structure is _____.

[Assume that the lattice is made up of atoms.]

Official Ans. by NTA (8)

Sol. 8

9.

10. Gaseous cyclobutene isomerizes to butadiene in a first order process which has a 'k' value of 3.3×10^{-4} s⁻¹ at 153°C. The time in minutes it takes for the isomerization to proceed 40 % to completion at this temperature is _____. (Rounded off to the nearest integer)

Official Ans. by NTA (26)

Sol.

$$\longrightarrow H_2C = HC-CH = CH_2$$

$$Kt = ln \frac{[A]_0}{[A]_t}$$

$$3.3 \times 10^{-4} \times t = ln \left(\frac{100}{60}\right)$$

$$t = 1547.956 \text{ sec}$$

$$t = 25.799 \text{ min}$$

$$26 \text{ min}$$