

	FINAL JEE-MAIN EXAMINATION – FEBRUARY, 2021						
	(Held On Friday 26 th February, 20	TIME: 3:00 PM to 6:00 PM					
	CHEMISTRY		TEST PAPER WITH SOLUTION				
	SECTION-A	3.	Match List-I with List-II				
1.	Which of the following forms of hydrogen		List-I List-II				
	emits low energy β^{-} particles?	(a) S (b) I	ucrose (i) β -D-Galactose and β -D-Glucose actose (ii) α -D-Glucose and β -D-Fructose				
	(1) Deuterium ${}^{2}_{1}H$ (2) Tritium ${}^{3}_{1}H$	$(c) \mathbf{N}$	$\begin{array}{c} \text{(ii)} \alpha \neq \beta \text{ of access and } \beta \neq \beta \text{ if access and } \alpha \text{-D-Glucose} \\ \text{(iii)} \alpha \text{-D-Glucose and } \alpha \text{-D-Glucose} \\ \text{(iii)} \alpha \text{-D-Glucose} \text{(iii)} \alpha \text{-D-Glucose} \\ \text{(iii)} \alpha \text{-D-Glucose} \alpha -D-Glu$				
	(3) Protium ${}^{1}_{1}$ H (4) Proton H ⁺		choose the correct answer from the options given below :				
	Official Ans. by NTA (2)		Options :				
Sol.	For tritium $\binom{3}{1}$ H)		(1) (a) \rightarrow (i), (b) \rightarrow (iii), (c) \rightarrow (ii) (2) (c) \rightarrow (iii) (c) \rightarrow (iii)				
	No. of neutron $(n) = 2$		$(2) (a) \rightarrow (111), (b) \rightarrow (1), (c) \rightarrow (111)$ $(3) (a) \rightarrow (ii), (b) \rightarrow (i), (c) \rightarrow (iii)$				
	No. of proton $(p) = 1$		$(4) (a) \rightarrow (ii), (b) \rightarrow (i), (c) \rightarrow (ii)$				
	n o		Official Ans. by NTA (3)				
	$\frac{-}{p} = 2$	Sol.					
	n	(1) S (2) I	Sucrose $\rightarrow \alpha$ -D-Glucose and β -D-Fructose				
	$\frac{1}{p}$ is high,	(2) 1 (3) N	Altose $\rightarrow \alpha$ -D-Glucose and α -D-Glucose				
	tritium wil emit β particle.		$a \rightarrow II$				
2.	Given below are two statements :one is labelled as		$b \rightarrow I$				
	Assertion A and the other is labelled as Reason R	4	$c \rightarrow III$ A Phenyl methanamine				
	Assertion A : In $T\ell I_3$, isomorphous to CsI_3 ,	7.	B. N,N-Dimethylaniline				
	the metal is present in $+1$ oxidation state.		C. N-Methyl aniline				
	Reason R : $T\ell$ metal has fourteen f electrons		D. Benzenamine				
	in the electronic configuration.		Choose the correct order of basic nature of the				
	In the light of the above statements, choose the		(1) $A > C > B > D$ (2) $D > C > B > A$				
	most appropriate answer from the options given		(3) $D > B > C > A$ (4) $A > B > C > D$				
	below:		Official Ans. by NTA (4)				
	(1) A is correct but R is not correct		CH_3				
	(2) Both A and R are correct and R is the correct explanation of \mathbf{A}		CH ₂ –NH ₂ N –CH ₃ NH –CH ₃ NH ₂				
	(3) A is not correct but R is correct						
	(4) Both A and R are correct but R is NOT the	Sol.					
	correct explanation of A .		(A) (B) (C) (D)				
	Official Ans. by NTA (4)						
Sol.	$\mathrm{T}\ell\mathrm{I}_{3} \Longrightarrow \left(\mathrm{T}\ell^{\oplus} \& \mathrm{I}_{3}^{\Theta}\right)$	5.	B.S. order $(A) > (B) > (C) > (D)$ The correct order of electron gain enthalpy is				
		_	(1) $S > Se > Te > O$ (2) $Te > Se > S > O$				
	$\operatorname{CsI}_3 \Longrightarrow \left(\operatorname{Cs}^{\scriptscriptstyle \ominus} \And \operatorname{I}_3^{\scriptscriptstyle \ominus} \right)$		$(3) O > S > Se > Te \qquad (4) S > O > Se > Te$				
	[Both have same crystalline structure is called	Sel	Official Ans. by NTA (1)				
	Isomorphous	301.	O < S > Se > Te				
	$T\ell^{\oplus}_{(81)} = [Xe_{54}]4f^{14}, \ 5d^{10}, \ 6s^2$		\Rightarrow S > Se > Te > O				
	(It is correct due to present 14 f electrons in		(Oxygen shows least electron gain enthalpy				

6.	In $\overset{1}{CH}_{2} = \overset{2}{C} = \overset{3}{CH} - \overset{4}{CH}_{2}$ molecule, the	11. Identify A in the given chemical reaction,
	hybridization of carbon 1,2,3 and 4 respectively	CH ₂ CH ₂ CHO
	are :	$\xrightarrow{\text{Naon}} A(\text{Major produce})$
	(1) sp ³ , sp, sp ³ , sp ³ (2) sp ² , sp ² , sp ² , sp ³	
	(3) sp^2 , sp , sp^2 , sp^3 (4) sp^2 , sp^3 , sp^2 , sp^3	CHO
	Official Ans. by NTA (3)	
Sol.	$\begin{bmatrix} 1 \\ CH_2 = C = C \\ CH_2 = C \\ CH_2 = C \\ CH_3 \end{bmatrix}$	
	$\begin{bmatrix} H & & H \\ H & C = C = C & -C & -H \\ H & H & H \end{bmatrix}$	$(2) \qquad \qquad CH_2CH_2COOH \\ CH_2CH_2CH_2OH $
7.	Seliwanoff test and Xanthoproteic test are used for the identification ofand respectively	(3) C-H
	(1) Aldoses, ketoses (2) Proteins, ketoses	
	(3) Ketoses, proteins (4) Ketoses, aldoses	* 5
	Official Ans. by NTA (3)	0
Sol.	Seliwanoff test for ketose and Xenthoprotic test for proteins.	
8.	2,4-DNP test can be used to identify :	
	(1) Amine (2) Aldehyde	Official Ans. by NTA (3)
	(3) Ether (4) Halogens	Sol.
	Official Ans. by NTA (2)	
Sol.	2,4-DNP test is useful for the identification of carbonyl compounds.	Q
9.	Ceric ammonium nitrate and CHCl ₃ / alc. KOH	СН2-СН-С-Н
	are used for the identification of functional	
	(1) Alashal sharel (2) Amine slashel	CH ₂ -CH ₂ -CH ₂ -CH
	(1) Alcohol, phenol (2) Amine, alcohol (3) Alcohol, amine, (4) Amine, phenol	
	Official Ans. by NTA (3)	K CHO H ← CHO
Sol.	Ceric ammonium nitrate for alcohol and CHCL /	OH OH
501	KOH is carbyl amine test for primary amines	
10.		СанеОН/А СНО
	Which pair of oxides is acidic in nature?	
	(1) B_2O_3 , CaO (2) B_2O_3 , SiO ₂	$-\mathrm{H}_{2}\mathrm{O}$
	Which pair of oxides is acidic in nature?(1) B_2O_3 , CaO(2) B_2O_3 , SiO2(3) N_2O , BaO(4) CaO, SiO2	-H ₂ O
	Which pair of oxides is acidic in nature?(1) B_2O_3 , CaO(2) B_2O_3 , SiO2(3) N_2O , BaO(4) CaO, SiO2Official Ans. by NTA (2)	-H ₂ O
	Which pair of oxides is acidic in nature? (1) B_2O_3 , CaO (2) B_2O_3 , SiO ₂ (3) N_2O , BaO (4) CaO, SiO ₂ Official Ans. by NTA (2) \langle CaO, BaO = Basic Nature	
Sol.	Which pair of oxides is acidic in nature? (1) B_2O_3 , CaO (2) B_2O_3 , SiO ₂ (3) N_2O , BaO (4) CaO, SiO ₂ Official Ans. by NTA (2) $\begin{cases} CaO, BaO = Basic Nature \\ B_2O_3, SiO_2 = Acidic Nature \end{cases}$	-H ₂ O
Sol.	Which pair of oxides is acidic in nature? (1) B_2O_3 , CaO (2) B_2O_3 , SiO ₂ (3) N_2O , BaO (4) CaO, SiO ₂ Official Ans. by NTA (2) $\begin{cases} CaO, BaO = Basic Nature \\ B_2O_3, SiO_2 = Acidic Nature \end{cases}$	-H ₂ O

CollėgeDékho					
18.	Match List-I with List-II.List-IList-II(a)Siderite(i)Cu(b)Calamine(ii)Ca(c)Malachite(iii)Fe(d)Cryolite(iv)Al(v)ZnCaCa	 (b) Titanium is refined by Van-Arkel process (c) Chlorine is prepared by Deacon process (d) Sodium hydroxide is prepared by Castner-Kellner process SECTION-II 1. The NaNO₃ weighed out to make 50 mL of an aqueous solution containing 70.0 mg Na⁺ per mL isg. (Rounded off to the nearest 			
Sol.	Choose the correct answer from the options given below : (1) (a) \rightarrow (iii), (b) \rightarrow (i), (c) \rightarrow (v), (d) \rightarrow (ii) (2) (a) \rightarrow (i), (b) \rightarrow (ii), (c) \rightarrow (v), (d) \rightarrow (iii) (3) (a) \rightarrow (iii), (b) \rightarrow (v), (c) \rightarrow (i), (d) \rightarrow (iv) (4) (a) \rightarrow (i), (b) \rightarrow (ii), (c) \rightarrow (iii), (d) \rightarrow (iv) Official Ans by NTA (3) (a) Siderite = FeCO ₃ = Fe-metal (b) Calamine = ZnCO ₃ = Zn-metal (c) Malachite = Cu(OH) ₂ .CuCO ₂ = Cu-metal	integer) [Given : Atomic weight in g mol ⁻¹ – Na : 23 ; N : 14 ; O : 16] Official Ans by NTA (13) Sol. Na ⁺ present in 50 ml $= \frac{70 \text{mg}}{1 \text{ml}} \times 50 \text{ml} = 3500 \text{ mg} = 3.5 \text{ gm}$ moles of Na ⁺ $= \frac{3.5}{22} = \text{moles of NaNO}_3$			
19.	(d) Cryolite = $Na_3A\ell F_6 = A\ell$ -metal The nature of charge on resulting colloidal particles when FeCl ₃ is added to excess of hot water is : (1) Positive (2) Sometimes positive and sometimes negative	23 weight of NaNO ₃ = $\frac{3.5}{23} \times 85 = 12.993$ gm 2. Emf of the following cell at 298 K in V is $x \times 10^{-2}$. Zn Zn ²⁺ (0.1 M) Ag ⁺ (0.01 M) Ag The value of x is (Rounded off to the			
Sol.	 (3) Neutral (4) Negative Official Ans by NTA (1) If FeCl₃ is added to hot water, a positively charged sol, hydrated ferric oxide is formed due to adsorption of Fe³⁺ ions. 	nearest integer) [Given : $E_{Zn^{2+}/Zn}^{0} = -0.76V$; $E_{Ag^{+}/Ag}^{0} = +0.80V$; $\frac{2.303RT}{F} = 0.059$] Official Ans by NTA (147) Sol. $Zn_{(s)} \rightarrow Zn_{(aq.)}^{2+} + 2e^{-}$ $2Ag_{(aq.)}^{+} + 2e^{-} \rightarrow 2Ag_{(s)}$			
20.	Fe ₂ O ₃ . xH ₂ O/Fe ³⁺ Positively charged. Match List-I with List-II. List-I List-III (a) Sodium Carbonate (i) Deacon (b) Titanium (ii) Castner-Kellner	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			
Sol.	(c) Chlorine (iii) Van-Arkel (d) Sodium hydroxide(iv) Solvay Choose the correct answer from the options given below : (1) (a) \rightarrow (iv), (b) \rightarrow (iii), (c) \rightarrow (i), (d) \rightarrow (ii) (2) (a) \rightarrow (i), (b) \rightarrow (iii), (c) \rightarrow (iv), (d) \rightarrow (ii) (3) (a) \rightarrow (iv), (b) \rightarrow (i), (c) \rightarrow (ii), (d) \rightarrow (iii) (4) (a) \rightarrow (iii), (b) \rightarrow (ii), (c) \rightarrow (i), (d) \rightarrow (iv) Official Ans by NTA (1) (a) Sodium carbonate is prepared by Solvay	$E_{cell} = 1.56 \frac{-0.059}{2} \log \frac{[Zn^{2+}]}{[Ag^{+}]^{2}}$ $= 1.56 - \frac{0.059}{2} \log \frac{0.1}{(0.01)^{2}}$ $= 1.56 - \frac{0.059}{2} \times 3$ $= 1.56 - 0.0885$ $= 1.4715$			

3.	When 12.2 g of benzoic acid is dissolved in					
	100 g of water, the freezing point of solution					
	was found to be -0.93° C (K _f (H ₂ O) = 1.86K kg					
	mol ⁻¹). The number (n) of benzoic ac					
	molecules associated (assuming 100					
	association) is					
	Official Ans by NTA (2)					
Sol.	$\Delta T_f = i \times k_f \times m$					
	$0 - (-0.93) = i \times 1.86 \times \frac{12.2}{122 \times 100} \times 1000$					
	$i = \frac{0.93}{1.86} = 0.5$					
	$i = 1 + \left(\frac{1}{n} - 1\right)\alpha$					
	$\frac{1}{2} = 1 + \left(\frac{1}{n} - 1\right) \times 1$					
	n = 2					
4.	The average S–F bond energy in kJ mol ⁻¹ of					
	SF_6 is .(Rounded off to the nearest					
	integer)					
	[Given : The values of standard enthalpy of					
	formation of $SF_{\ell}(g)$. $S(g)$ and $F(g)$ are -1100 .					
	275 and 80 kJ mol ⁻¹ respectively.]					
	Official Ans by NTA (309)					
Sol.	$SF_{c}(g) \rightarrow S(g) + 6F(g)$					
	If \in - bond enthalpy					
	$\Lambda H = 6 \times \epsilon_{-}$					
	\square_{r}					
	$= \Delta_{f} H(S,g) + 6 \times \Delta_{f} H(F,g) - \Delta_{f} H(SF_{6},g)$					
	$= 275 + 6 \times 80 - (-1100)$					
	= 1855 kJ					

$$\epsilon_{s-F} = \frac{1855}{6} = 309.16 \text{ kJ/mol.}$$

5. A ball weighing 10 g is moving with a velocity of 90 ms⁻¹. If the uncertainty in its velocity is 5%, then the uncertainty in its position is_____×10⁻³³ m. (Rounded off to the nearest integer)

[Given : $h = 6.63 \times 10^{-34} \text{ Js}$]

 $\Delta v = 90 \times \frac{5}{100}$ = 4.5 m/s $\Delta v. \ \Delta x = \frac{h}{4\pi m}$ $\Delta x = \frac{h}{4\pi m . \Delta v}$ $6.63 imes 10^{-34}$ $=\frac{0.001}{4\times3.14\times0.01\times4.5}$ $= 1.17 \times 10^{-33}$ 6. The number of octahedral voids per lattice site in a lattice is _____.(Rounded off to the nearest integer) Official Ans by NTA (1) Sol. If number of lattice points are N. then effective octahedral voids = NSo, octahedral voids / lattice site = 17. In mildly alkaline medium, thiosulphate ion is oxidized by MnO_4^- to "A". The oxidation state of sulphur in "A" is _____ Official Ans by NTA (6) Sol. $\operatorname{MnO}_4^- + \operatorname{S}_2\operatorname{O}_3^{2-} \to \operatorname{MnO}_2^+ + \operatorname{SO}_4^{2-}$ Oxidation state of 'S' in SO₄²⁻ = + 6 8. The number of stereoisomers possible for $[Co(ox)_2(Br)(NH_3)]^{2-}$ is _____.[ox = oxalate] Official Ans by NTA (3) Total number of stereoisomers $[Co(ox)_2Br(NH_3)]^{2\Theta}$ i.e. $\approx [M(AA)_2ab]^{2-}$ Sol. Total in (cis) (trans)

→ cis is optically active isomers and trans is optically inactive isomer

- 9. If the activation energy of a reaction is 80.9 kJ mol⁻¹, the fraction of molecules at 700 K, having enough energy to react to form products is e^{-x}. The value of x is ______. (Rounded off to the nearest integer) [Use R = 8.31 J K⁻¹ mol⁻¹] Official Ans by NTA (14)
 Sol. Fraction of molecules to have enough energy to react = e^{-Ea/RT} So, x = Ea/RT = 80.9×10³/8.31×700 = 13.9
 10. The pH of ammonium phosphate solution, if pK, of phosphoric acid and pk, of ammonium
- pK_a of phosphoric acid and pk_b of ammonium hydroxide are 5.23 and 4.75 respectively, is

Official Ans by NTA (7)

Sol. Since $(NH_4)_3PO_4$ is salt of weak acid (H_3PO_4) & weak base (NH_4OH) .

$$pH = 7 + \frac{1}{2}(pka - pkb)$$

$$= 7 + \frac{1}{2} (5.23 - 4.75)$$
$$= 7.24 \approx 7.$$