


# FINAL JEE-MAIN EXAMINATION - JULY, 2022

(Held On Tuesday 26<sup>th</sup> July, 2022)

TIME : 9 : 00 AM to 12 : 00 NOON



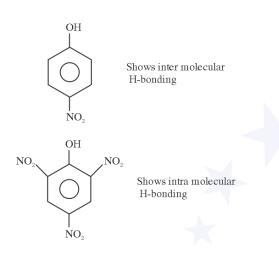
| 2.                                                               | Match List - I with List - II.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                  |  |  |  |  |  |
|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|--|--|--|--|
| -                                                                | List –I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | List – II        |  |  |  |  |  |
|                                                                  | (Processes/Reactions)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (Catalyst)       |  |  |  |  |  |
|                                                                  | (A) $2SO_2(g)+O_2(g)\rightarrow 2SO_3(g)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (I) Fe(s)        |  |  |  |  |  |
|                                                                  | (B) $4NH_3(g)+5O_2(g)\rightarrow 4NO(g)+6H_2O(g)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (II) Pt(s)-Rh(s) |  |  |  |  |  |
|                                                                  | (C) $N_2(g)+3H_2(g)\rightarrow 2NH_3(g)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (III) $V_2O_5$   |  |  |  |  |  |
|                                                                  | (D) Vegetable $oil(l)$ +H <sub>2</sub> $\rightarrow$ Vegetable ghee(s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |  |  |  |  |  |
|                                                                  | Choose the correct answer from the options given                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |  |  |  |  |  |
|                                                                  | below :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |  |  |  |  |  |
|                                                                  | (A) (A) - (III), (B) - (I), (C) - (II), (D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |  |  |  |  |  |
|                                                                  | (B) (A) - (III), (B) - (II), (C) - (I), (D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ,                |  |  |  |  |  |
|                                                                  | (C) (A) - (IV), (B) - (III), (C) - (I), (D) - (II)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |  |  |  |  |  |
|                                                                  | (D) (A) - (IV), (B) - (II), (C) - (III), (C) - (III), (C) - (III), (C) - (III), (C) - (C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | D) - (1)         |  |  |  |  |  |
|                                                                  | Official Ans. by NTA (B)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |  |  |  |  |  |
| ~ •                                                              | <b>Ans. (B)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |  |  |  |  |  |
| Sol.                                                             | $2SO_2(g) + O_2(g) \xrightarrow{V_2O_5} 2SO_3(g):$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |  |  |  |  |  |
|                                                                  | contact pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rocess           |  |  |  |  |  |
|                                                                  | $4\mathrm{NH}_{3}(\mathrm{g})+5\mathrm{O}_{2}(\mathrm{g}) \xrightarrow{\mathrm{Pt}(\mathrm{s})-\mathrm{Rh}(\mathrm{s})} 4\mathrm{NO}(\mathrm{g})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $g)+6H_2O(g)$ :  |  |  |  |  |  |
|                                                                  | Ostwald's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | s process        |  |  |  |  |  |
| $N_2(g) + 3H_2(g) \xrightarrow{Fe(s)} 2NH_3(g);$ Haber's process |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                  |  |  |  |  |  |
|                                                                  | Vegetable oil $(l) + H_2(g) \xrightarrow{Ni(s)} Vegetable oil (l) + H_2(g) \xrightarrow$ | egetable ghee    |  |  |  |  |  |
|                                                                  | : Hy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ydrogenation     |  |  |  |  |  |
| 3.                                                               | Given two statements below :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |  |  |  |  |  |
|                                                                  | Statement I : In Cl <sub>2</sub> molecule the c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ovalent radius   |  |  |  |  |  |
|                                                                  | is double of the atomic radius of chlo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | orine.           |  |  |  |  |  |
|                                                                  | Statement II : Radius of anionic spe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ecies is always  |  |  |  |  |  |
|                                                                  | greater than their parent atomic radiu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IS.              |  |  |  |  |  |
|                                                                  | Choose the <b>most appropriate</b> answe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | er from options  |  |  |  |  |  |
|                                                                  | given below :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |  |  |  |  |  |
|                                                                  | (A) Both Statement I and Statement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | II are correct.  |  |  |  |  |  |
|                                                                  | (B) Both Statement I and State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ement II are     |  |  |  |  |  |
|                                                                  | incorrect.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |  |  |  |  |  |
|                                                                  | (C) Statement I is correct but St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | tatement II is   |  |  |  |  |  |
|                                                                  | incorrect.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  |  |  |  |  |  |
|                                                                  | (D) Statement I is incorrect but State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ment II is       |  |  |  |  |  |
|                                                                  | correct.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |  |  |  |  |  |
|                                                                  | Official Ans. by NTA (D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |  |  |  |  |  |

Ans. (D)



| Sol. | In Cl <sub>2</sub> molecule, the covalent radius is half of                               | 7 |  |  |  |  |
|------|-------------------------------------------------------------------------------------------|---|--|--|--|--|
|      | the internuclear distance, so statement(I) is                                             |   |  |  |  |  |
|      | false.                                                                                    |   |  |  |  |  |
|      | For the same element, anion has lower                                                     |   |  |  |  |  |
|      | effective nuclear charge than atom $\Rightarrow$ so anion                                 |   |  |  |  |  |
|      | is larger than atom. $\Rightarrow$ statement (II) is correct.                             |   |  |  |  |  |
| 4.   | Refining using liquation method is the most                                               |   |  |  |  |  |
|      | suitable for metals with :                                                                | S |  |  |  |  |
|      | (A) Low melting point                                                                     |   |  |  |  |  |
|      | (B) High boiling point                                                                    |   |  |  |  |  |
|      | (C) High electrical conductivity                                                          |   |  |  |  |  |
|      | (D) Less tendency to be soluble in melts than                                             |   |  |  |  |  |
|      | impurities<br>Official Ans. by NTA (A)                                                    |   |  |  |  |  |
|      | Ans. (A)                                                                                  |   |  |  |  |  |
| Sol. |                                                                                           |   |  |  |  |  |
| 501  | lower melting point than impurities present in                                            |   |  |  |  |  |
|      | them.                                                                                     | S |  |  |  |  |
| 5.   | Which of the following can be used to prevent the                                         |   |  |  |  |  |
|      | decomposition of $H_2O_2$ ?                                                               |   |  |  |  |  |
|      | (A) Urea                                                                                  |   |  |  |  |  |
|      | (B) Formaldehyde                                                                          |   |  |  |  |  |
|      | (C) Formic acid                                                                           | 9 |  |  |  |  |
|      | (D) Ethanol                                                                               |   |  |  |  |  |
|      | Official Ans. by NTA (A)                                                                  |   |  |  |  |  |
|      | Ans. (A)                                                                                  |   |  |  |  |  |
| Sol. | Urea acts as stabiliser for $H_2O_2$ .                                                    |   |  |  |  |  |
| 6.   | Reaction of BeCl <sub>2</sub> with LiAlH <sub>4</sub> gives :                             |   |  |  |  |  |
|      | (A) AlCl <sub>3</sub>                                                                     |   |  |  |  |  |
|      | (B) $\operatorname{BeH}_2$                                                                |   |  |  |  |  |
|      | (C) LiH                                                                                   | S |  |  |  |  |
|      | (D) LiCl                                                                                  |   |  |  |  |  |
|      | (E) BeAlH <sub>4</sub><br>Chaosa the common from options given                            |   |  |  |  |  |
|      | Choose the <b>correct</b> answer from options given below :                               |   |  |  |  |  |
|      | (A) (A), (D) and (E)                                                                      | 1 |  |  |  |  |
|      | (B) (A) , (B) and (D)                                                                     |   |  |  |  |  |
|      | (C) (D) and (E)                                                                           |   |  |  |  |  |
|      | (D) (B) , (C) and (D)                                                                     |   |  |  |  |  |
|      | Official Ans. by NTA (B)                                                                  |   |  |  |  |  |
|      | Ans. (B)                                                                                  |   |  |  |  |  |
| Sol. | $2\text{BeCl}_2 + \text{LiAlH}_4 \rightarrow 2\text{BeH}_2 + \text{LiCl} + \text{AlCl}_3$ |   |  |  |  |  |
|      |                                                                                           | S |  |  |  |  |

| 7.         | Borazine, also known as inorganic benzene, can b                                                                                                           |  |  |  |  |  |  |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|            | prepared by the reaction of 3-equivalents of "X                                                                                                            |  |  |  |  |  |  |
|            | with 6-equivalents of "Y". "X" and "Y"                                                                                                                     |  |  |  |  |  |  |
|            | respectively are :                                                                                                                                         |  |  |  |  |  |  |
|            | (A) $B(OH)_3$ and $NH_3$ (B) $B_2H_6$ and $NH_3$                                                                                                           |  |  |  |  |  |  |
|            | (C) $B_2H_6$ and $HN_3$ (D) $NH_3$ and $B_2O_3$                                                                                                            |  |  |  |  |  |  |
|            | Official Ans. by NTA (B)                                                                                                                                   |  |  |  |  |  |  |
| <b>C I</b> | Ans. (B) $^{\Delta}$ > 2D M $\times$ 12 M                                                                                                                  |  |  |  |  |  |  |
|            | $3B_2H_6 + 6NH_3 \xrightarrow{\Lambda} 2B_3N_3H_6 + 12 H_2$                                                                                                |  |  |  |  |  |  |
| 8.         | Which of the given reactions is not an example o                                                                                                           |  |  |  |  |  |  |
|            | disproportionation reaction ?                                                                                                                              |  |  |  |  |  |  |
|            | (A) $2H_2O_2 \rightarrow 2H_2O + O_2$<br>(D) $2NO_2 + H_2O_2 + DNO_2$                                                                                      |  |  |  |  |  |  |
|            | (B) $2NO_2 + H_2O \rightarrow HNO_3 + HNO_2$<br>(C) $MnO_4^- + 4H^+ + 3e^- \rightarrow MnO_2 + 2H_2O$                                                      |  |  |  |  |  |  |
|            | (C) $MnO_4^{-} + 4H^{+} \rightarrow 3e^{-} \rightarrow MnO_2^{-} + 2H_2O^{-}$<br>(D) $3MnO_4^{2-} + 4H^{+} \rightarrow 2MnO_4^{-} + MnO_2^{-} + 2H_2O^{-}$ |  |  |  |  |  |  |
|            | (D) $3MnO_4^2 + 4H \rightarrow 2MnO_4 + MnO_2 + 2H_2O$<br>Official Ans. by NTA (C)                                                                         |  |  |  |  |  |  |
|            | Ans. (C)                                                                                                                                                   |  |  |  |  |  |  |
| Sol.       | -1 2- 0                                                                                                                                                    |  |  |  |  |  |  |
| 501.       |                                                                                                                                                            |  |  |  |  |  |  |
|            | $2 \overset{+4}{NO}_2 + H_2O \rightarrow H\overset{+5}{NO}_3 + H\overset{+3}{NO}_2$ : Disproportionation                                                   |  |  |  |  |  |  |
|            | $MnO_4^- + 4H^+ + 3e^- \rightarrow MnO_2 + 2H_2O$ : reduction                                                                                              |  |  |  |  |  |  |
|            | $^{+6}_{3MnO_4^{2-}} + 4H^+ \rightarrow 2MnO_4^{-} + MnO_2^{-} + 2H_2O$ : Disproportionation                                                               |  |  |  |  |  |  |
| 9.         | The dark purple colour of KMnO4 disappears in                                                                                                              |  |  |  |  |  |  |
|            | the titration with oxalic acid in acidic medium.                                                                                                           |  |  |  |  |  |  |
|            | The overall change in the oxidation number of                                                                                                              |  |  |  |  |  |  |
|            | manganese in the reaction is :                                                                                                                             |  |  |  |  |  |  |
|            | (A) 5 (B) 1                                                                                                                                                |  |  |  |  |  |  |
|            | (C) 7 	(D) 2                                                                                                                                               |  |  |  |  |  |  |
|            | Official Ans. by NTA (A)<br>Ans. (A)                                                                                                                       |  |  |  |  |  |  |
| Sol.       | In acidic medium,                                                                                                                                          |  |  |  |  |  |  |
|            | +7                                                                                                                                                         |  |  |  |  |  |  |
|            | $MnO_4^- \rightarrow Mn^{+2}$                                                                                                                              |  |  |  |  |  |  |
|            | change in ox. no. $= 5$                                                                                                                                    |  |  |  |  |  |  |
| 10.        | $Cl + CH_4 \rightarrow A + B$                                                                                                                              |  |  |  |  |  |  |
|            | A and B in the above atmospheric reaction step are                                                                                                         |  |  |  |  |  |  |
|            | (A) $C_2H_6$ and $Cl_2$ (B) $\dot{C}HCl_2$ and $H_2$                                                                                                       |  |  |  |  |  |  |
|            | (C) $\dot{C}H_3$ and HCl (D) $C_2H_6$ and HCl                                                                                                              |  |  |  |  |  |  |
|            | Official Ans. by NTA (C)                                                                                                                                   |  |  |  |  |  |  |
|            | Ans. (C)                                                                                                                                                   |  |  |  |  |  |  |
| Sol.       | $\dot{\text{Cl}}+\text{CH}_4\longrightarrow\dot{\text{CH}}_3+\text{HCl}$                                                                                   |  |  |  |  |  |  |



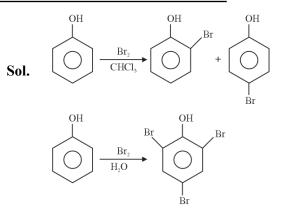

- 11. Which technique among the following, is most appropriate in separation of a mixture of 100 mg of p-nitrophenol and picric acid ?(A) Steam distillation
  - (B) 2-5 ft long column of silica gel
  - (C) Sublimation
  - (D) Preparative TLC (Thin Layer Chromatography)

#### Official Ans. by NTA (D)

Ans. (D)



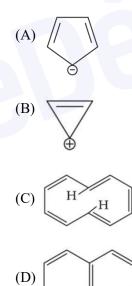



Solvent polarity has been related to  $R_{\rm f}$  value of nitrocompounds.

100 mg p-nitrophenol and picric acid have different  $R_f$  value on silica gel plate

- ∴ Preparative TLC is best to separate 100 mg of para nitrophenol and picric acid
- 12. The difference in the reaction of phenol with bromine in chloroform and bromine in water medium is due to :
  - (A) Hyperconjugation in substrate
  - (B) Polarity of solvent
  - (C) Free radical formation
  - (D) Electromeric effect of the substrate

## Official Ans. by NTA (B)


Ans. (B)

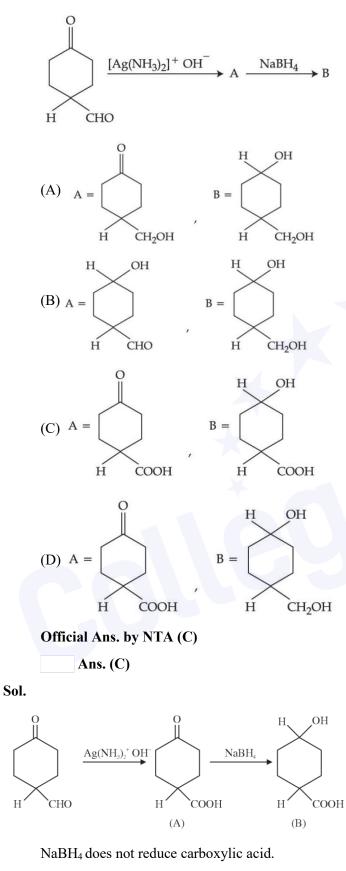


Difference in reactions is observed due to solvent polarity, which

(i) Ionizes phenol to make more reactive phenoxide ion

- (ii) Increases electrophilicity of bromine.
- **13.** Which of the following compounds is **not** aromatic?

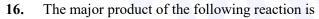


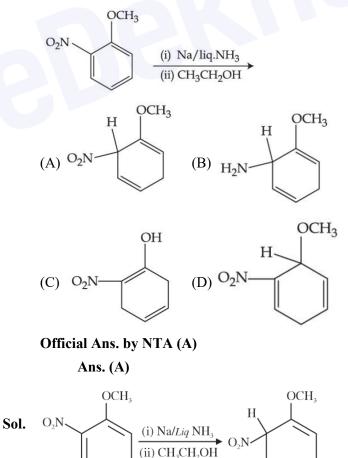

Official Ans. by NTA (C)

## Ans. (C)

Sol. [10] Annulene, although follow  $(4n + 2)\pi$  electron rule, but it is non-aromatic due to its non planar nature. It is nonplanar due to repulsion of C – H bonds present inside the ring.



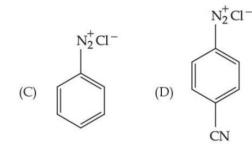

The products formed in the following reaction, A and B are




15. Which reactant will give the following alcohol on reaction with one mole of phenyl magnesium bromide (PhMgBr) followed by acidic hydrolysis ?

Official Ans. by NTA (D) Ans. (D)

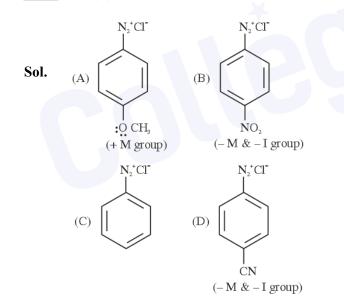
Sol. 
$$Ph - C - CH_3 \xrightarrow{(i) PhMgBr}_{(ii) H^+} Ph - C - OH$$






Given reaction is an example of birch reduction.




| 17. | The               | correct | stability | order | of | the | following | ] |
|-----|-------------------|---------|-----------|-------|----|-----|-----------|---|
|     | diazonium salt is |         |           |       |    |     |           |   |
|     | (A)               | +N2C    |           | в)    |    | CI- |           | s |
|     |                   |         |           |       |    |     |           |   |



$$(A) (A) > (B) > (C) > (D)$$
$$(B) (A) > (C) > (D) > (B)$$
$$(C) (C) > (A) > (D) > (B)$$
$$(D) (C) > (D) > (B) > (A)$$

## Official Ans. by NTA (B)

Ans. (B)



Since diazonium ion is a cation hence it is stabilized by electron donating groups and destabilized by electron withdrawing group. Hence Stability order should be A > C > D > B. 18. Stearic acid and polyethylene glycol react to form which one of the following soap/s detergents ?
(A) Cationic detergent (B) Soap
(C) Anionic detergent (D) Non-ionic detergent
Official Ans. by NTA (D)
Ans. (D)

Sol.

$$CH_{3}(CH_{2})_{16} COOH + OH(CH_{2}CH_{2}O)_{n} CH_{2}CH_{2}OH$$
Stearic acid
$$-H_{2}O$$
Polyethylene glycol
$$-H_{2}O$$

$$CH_{3}(CH_{2})_{16} - C - O - (CH_{2}CH_{2}O)_{n} CH_{2}CH_{2}OH$$
Non-ionic detergent

**19.** Which of the following is reducing sugar?





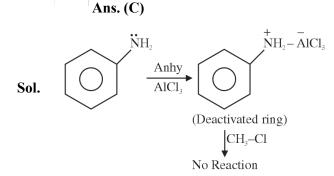
**Sol.** If any sugar is having free –OH group at anomeric carbon then it will be a reducing sugar

Free -OH group 
$$\rightarrow$$
 OH Anomeric carbon  
 $H-C$   
 $H-C$   
 $H-C$ -OH  
 $HO-C-H$  O  
 $H-C$ -OH  
 $H-C$ -OH  
 $H-C$ -OH  
 $H-C$ -OH  
 $H-C$ -OH

20. Given below are two statements : one is labelled asAssertion (A) and the other is labelled as Reason (R).

**Assertion (A) :** Experimental reaction of CH<sub>3</sub>Cl with aniline and anhydrous AlCl<sub>3</sub> does **not** give o and p-methylaniline.

**Reason (R) :** The —  $NH_2$  group of aniline becomes deactivating because of salt formation with anhydrous AlCl<sub>3</sub> and hence yields *m*-methyl aniline as the product.


In the light of the above statements, choose the most appropriate answer from the options given below :

(A) Both (A) and (R) are true and (R) is the correct explanation of (A).

(B) Both (A) and (R) are true but (R) is not the correct explanation of (A).

- (C) (A) is true, but (R) is false.
- (D) (A) is false, but (R) is true.

#### Official Ans. by NTA (C)



Friedel Craft Alkylation does not occur on this deactivated ring.

#### **SECTION-B**

1. Chlorophyll extracted from the crushed green leaves was dissolved in water to make 2 L solution of Mg of concentration 48 ppm. The number of atoms of Mg in this solution is  $x \times 10^{20}$  atoms. The value of x is\_\_\_\_\_\_. (Nearest Integer) (Given : Atomic mass of Mg is 24 g mol<sup>-1</sup>,  $N_A = 6.02 \times 10^{23}$  mol<sup>-1</sup>) Official Ans. by NTA (24)

Sol. ppm = 
$$\frac{W_{Mg}}{V_{soln}} \times 10^6 = 48$$
  
 $\Rightarrow W_{Mg} = \frac{48 \times 2 \times 1000}{10^6}$ 

$$= 48 \times 2 \times 10^{-3} \text{ g}$$
$$n_{Mg} = \frac{W_{Mg}}{24} = \frac{48 \times 2 \times 10^{-3}}{24}$$

 $= 4 \times 10^{-3}$ 

2.

Number of Mg atoms =  $4 \times 10^{-3} \times 6.02 \times 10^{23}$ 

$$= 4 \times 6.02 \times 10^{20}$$
  
= 24.08 × 10<sup>20</sup>

$$\therefore x = 24.08$$

A mixture of hydrogen and oxygen contains 40% hydrogen by mass when the pressure is 2.2 bar. The partial pressure of hydrogen is bar.

10

(Nearest Integer)

Official Ans. by NTA (2)

Ans. (2)

Sol. Let 
$$W_{H_2} = 40 \text{ g} \Rightarrow n_{H_2} = \frac{40}{2} = 20$$
  
 $W_{O_2} = 60 \text{g} \Rightarrow n_{O_2} = \frac{60}{32} = \frac{15}{8}$ 

$$P_{H_2} = \left(\frac{20}{20 + \frac{15}{8}}\right) \times 2.2$$
$$= \frac{20}{20 + 1} \times 2.2$$

$$=\frac{20}{21.875} \times 2.2$$
  
= 2.0114

 $\simeq 2.01$  bar

\_,...★ **N** CollegeDekho

> 3. The wavelength of an electron and a neutron will become equal when the velocity of the electron is x times the velocity of neutron. The value of x is\_\_\_\_\_\_. (Nearest Integer) (Mass of electron is  $9.1 \times 10^{-31}$  kg and mass of neutron is  $1.6 \times 10^{-27}$  kg)

> > Official Ans. by NTA (1758)

Ans. (1758)

Sol. 
$$v_e = x v_N$$
  
 $\lambda_e = \lambda_N$   
 $\Rightarrow \frac{h}{m_e v_e} = \frac{h}{m_N v_N}$   
 $v_e = \frac{m_N}{m_e} \cdot v_N$   
 $= \frac{1.6 \times 10^{-27}}{9.1 \times 10^{-31}} v_N$   
 $v_e = 1758.24 \times v_N$   
 $\therefore x = 1758.24$ 

4. 2.4 g coal is burnt in a bomb calorimeter in excess of oxygen at 298 K and 1 atm pressure.

The temperature of the calorimeter rises from 298 K to 300 K. The enthalpy change during the combustion of coal is  $-x \text{ kJ mol}^{-1}$ . The value of x is \_\_\_\_\_. (Nearest Integer)

(Given : Heat capacity of bomb calorimeter 20.0 kJ

 $K^{-1}$ . Assume coal to be pure carbon)

Official Ans. by NTA (200)

Ans. (200)

Sol.  $C(s) + O_2(g) \rightarrow CO_2(g)$ ;  $\Delta H = -x kJ/mole$  $Q = C\Delta T = 20 kJ \times 2$ 

40 kJ heat is released for 2.4 g of C

For 1 mole 'C' : 
$$Q = \frac{40}{2.4} \times 12$$
  
 $= \frac{400}{24} \times 12 = 200 \text{ kJ/mole}$   
 $Q = \Delta E = \Delta H = 200 \text{ kJ} (\because \Delta n_g = 0)$   
 $x = 200$ 

When 800 mL of 0.5 M nitric acid is heated in a 5. beaker, its volume is reduced to half and 11.5 g of nitric acid is evaporated. The molarity of the remaining nitric acid solution is  $x \times 10^{-2}$  M. (Nearest Integer) (Molar mass of nitric acid is  $63 \text{ g mol}^{-1}$ ) Official Ans. by NTA (54) Ans. (54)  $n_{HNO_3} = 0.5 \times 0.8$ Sol. = 0.4 mole  $(n_{HNO_3})_{remains} = 0.4 - \frac{11.5}{63}$ = 0.4 - 0.1825= 0.2175Molarity =  $\frac{0.2175}{400} \times 1000$  $=\frac{0.2175}{0.2175}$ 0.4 = 0.5437 mole/lit.  $\simeq 0.54$  mole/lit.  $= 54 \times 10^{-2}$  mol/lit. At 298 K, the equilibrium constant is  $2 \times 10^{15}$  for 6. the reaction :  $Cu(s) + 2Ag^{+}(aq) \Longrightarrow Cu^{2+}(aq) + 2Ag(s)$ The equilibrium constant for the reaction  $\overline{2}$  $\overline{2}$ is  $x \times 10^{-8}$ . The value of x is (Nearest Integer) Official Ans. by NTA (2) Ans. (2)  $K'_{eq} = \frac{1}{\sqrt{K_{eq}}} = \frac{1}{\sqrt{2 \times 10^{15}}} = x \times 10^{-8}$ Sol.  $\Rightarrow \frac{1}{\sqrt{20}} \times \frac{1}{10^7} = x \times 10^{-8}$  $\Rightarrow \frac{1}{\sqrt{20}} \times 10^{-7} = x \times 10^{-8}$  $\frac{10}{10} = x$ 

$$\sqrt{20} \qquad \Rightarrow x = \frac{\sqrt{10}}{\sqrt{2}} = \sqrt{5} = 2.236$$



The amount of charge in F (Faraday) required to 7. obtain one mole of iron from Fe<sub>3</sub>O<sub>4</sub> is (Nearest Integer)

9.

Official Ans. by NTA (3)

Ans. (3)

**Sol.**  $\operatorname{Fe}_{3}\operatorname{O}_{4} \xrightarrow{+8e^{-}} 3\operatorname{Fe}$ 

Charge for 1 mole Fe = 8/3 F

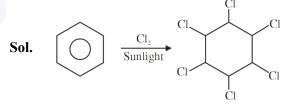
- = 2.67 F
- For a reaction  $A \rightarrow 2B + C$  the half lives are 100 s 8. and 50 s when the concentration of reactant A is 0.5 and 1.0 mol  $L^{-1}$  respectively. The order of the reaction is \_\_\_\_\_. (Nearest Integer)

Official Ans. by NTA (2)

Ans. (2)

1

## Sol.


 $[100] \propto \frac{1}{(0.5)^{n-1}}$ 

$$(50) \propto \frac{1}{(1)^{n-1}}$$
$$[2]^{1} = \left[\frac{1}{0.5}\right]^{n-1}$$
$$[2]^{1} = [2]^{n-1}$$
$$n - 1 = 1$$
$$n = 2$$

order = 2

- The difference between spin only magnetic moment  $[Co(H_2O)_6]Cl_2$ values of and  $[Cr(H_2O)_6]Cl_3$  is Official Ans. by NTA (0) Ans. (0) **Sol.**  $[Co(H_2O)_{a}]^{2+}$ 3d  $\operatorname{Co}^{+2}$ :  $\left[ 1 \right]$ 1 1 number of unpaired  $e^- = 3$  $\mu = \sqrt{15}BM$  $[Cr(H_{2}O)_{6}]^{3+}$  $Cr^{+3}: 1$ 1 number of unpaired  $e^- = 3$  $\mu = \sqrt{15}BM$ Difference in spin only magnetic moment = 0
- In the presence of sunlight, benzene reacts with Cl<sub>2</sub> 10. to give product, X. The number of hydrogens in X is .

Official Ans. by NTA (6) Ans. (6)

