

MATHEMATICS

Sol.

SECTION-A

- The point P (a,b) undergoes the following three 1. transformations successively:
 - (a) reflection about the line y = x.
 - (b) translation through 2 units along the positive direction of x-axis.
 - (c) rotation through angle $\frac{\pi}{4}$ about the origin in the anti-clockwise direction.

If the co-ordinates of the final position of the point

P are
$$\left(-\frac{1}{\sqrt{2}}, \frac{7}{\sqrt{2}}\right)$$
, then the value of 2a + b is

equal to:

- (1) 13
- (2)9
- (3) 5
- (4)7

Official Ans. by NTA (2)

Image of A(a,b) along y = x is B(b,a). Translating it 2 units it becomes C(b + 2, a).

Now, applying rotation theorem

$$-\frac{1}{2} + \frac{7}{\sqrt{2}}i = ((b+2) + ai)\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$$

$$\frac{-1}{\sqrt{2}} + \frac{7}{\sqrt{2}}i = \left(\frac{b+2}{\sqrt{2}} - \frac{a}{\sqrt{2}}\right) + i\left(\frac{b+2}{\sqrt{2}} + \frac{a}{\sqrt{2}}\right)$$

- \Rightarrow b a + 2 = -1(i)
- and b + 2 + a = 7....(ii)
- \Rightarrow a = 4; b = 1
- \Rightarrow 2a + b = 9
- A possible value of 'x', for which the ninth term in 2. the expansion of $\left\{3^{\log_3\sqrt{25^{x-1}+7}} + 3^{\left(-\frac{1}{8}\right)\log_3(5^{x-1}+1)}\right\}^{10}$ in the increasing powers of $3^{\left(-\frac{1}{8}\right)\log_3\left(5^{x-1}+1\right)}$ is equal to 180, is:
 - (1) 0
- (2) -1
- (3) 2
- **(4)** 1

Official Ans. by NTA (4)

- $^{10}C_{s}(25^{(x-1)}+7)\times(5^{(x-1)}+1)^{-1}=180$ $\Rightarrow \frac{25^{x-1}+7}{5^{(x-1)}+1}=4$ $\Rightarrow \frac{t^2+7}{t+1}=4;$
 - \Rightarrow t = 1, 3 = 5^{x-1}
 - \Rightarrow x 1 = 0 (one of the possible value).
 - $\Rightarrow x = 1$
- For real numbers α and $\beta \neq 0$, if the point of 3. intersection of the straight lines

$$\frac{x-\alpha}{1} = \frac{y-1}{2} = \frac{z-1}{3}$$
 and $\frac{x-4}{\beta} = \frac{y-6}{3} = \frac{z-7}{3}$,

lies on the plane x + 2y - z = 8, then $\alpha - \beta$ is equal to :

(1) 5

For intersection

- (2)9
- (3) 3

Official Ans. by NTA (4)

First line is $(\phi + \alpha, 2\phi + 1, 3\phi + 1)$ Sol.

and second line is $(q\beta + 4, 3q + 6, 3q + 7)$.

$$\phi + \alpha = q\beta + 4 \quad ...(i)$$

$$2\phi + 1 = 3q + 6$$
 ...(i)
 $3\phi + 1 = 3q + 7$...(iii)

for (ii) & (iii)
$$\phi = 1$$
, $q = -1$

So, from (i)
$$\alpha + \beta = 3$$

Now, point of intersection is $(\alpha + 1,3,4)$

It lies on the plane.

Hence,
$$\alpha = 5 \& \beta = -2$$

4. Let $f : \mathbf{R} \square \mathbf{R}$ be defined as

$$f(x + y) + f(x - y) = 2 f(x) f(y), f(\frac{1}{2}) = -1.$$
 Then,

the value of $\sum_{k=1}^{20} \frac{1}{\sin(k)\sin(k+f(k))}$ is equal to :

- (1) $\csc^2(21)\cos(20)\cos(2)$
- $(2) \sec^2(1) \sec(21) \cos(20)$
- (3) $\csc^2(1) \csc(21) \sin(20)$
- $(4) \sec^2(21) \sin(20) \sin(2)$

Official Ans. by NTA (3)

Sol. $f(x) = \cos \lambda x$

$$\therefore f\left(\frac{1}{2}\right) = -1$$

So,
$$-1 = \cos \frac{\lambda}{2}$$

$$\Rightarrow \lambda = 2\pi$$

Thus $f(x) = \cos 2\pi x$

Now k is natural number

Thus f(k) = 1

$$\sum_{k=1}^{20} \frac{1}{\sin k \sin(k+1)} = \frac{1}{\sin 1} \sum_{k=1}^{20} \left[\frac{\sin((k+1)-k)}{\sin k \cdot \sin(k+1)} \right]$$

$$= \frac{1}{\sin 1} \sum_{k=1}^{20} (\cot k - \cot (k+1)$$

$$=\frac{\cot 1 - \cot 21}{\sin 1} = \csc^2 1 \csc(21) \cdot \sin 20$$

5. Let \mathbb{C} be the set of all complex numbers. Let

$$S_1 = \{z \in \mathbb{C} : |z-2| \le 1\}$$
 and

$$S_2 = \left\{ z \in \mathbb{C} : z(1+i) + \overline{z}(1-i) \ge 4 \right\}.$$

Then, the maximum value of $\left|z - \frac{5}{2}\right|^2$ for

 $z \in S_1 \cap S_2$ is equal to:

$$(1) \ \frac{3 + 2\sqrt{2}}{4}$$

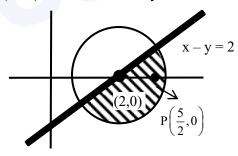
(2)
$$\frac{5+2\sqrt{2}}{2}$$

$$(3) \ \frac{3+2\sqrt{2}}{2}$$

(4)
$$\frac{5+2\sqrt{2}}{4}$$

Official Ans. by NTA (4)

Sol. $|t-2| \le 1$ Put t = x + iy



$$(x-2)^2 + y^2 \le 1$$

Also,
$$t(1+i) + \overline{t}(1-i) \ge 4$$

Gives
$$x - y \ge 2$$

Let point on circle be $A(2 + \cos \theta, \sin \theta)$

$$\theta \in \left[-\frac{3\pi}{4}, \frac{\pi}{4} \right]$$

$$(AP)^2 = \left(2 + \cos\theta - \frac{5}{2}\right)^2 + \sin^2\theta$$

$$=\cos^2\theta-\cos\theta+\frac{1}{4}+\sin^2\theta$$

$$=\frac{5}{4}-\cos\theta$$

For $(AP)^2$ maximum $\theta = -\frac{3\pi}{4}$

$$(AP)^2 = \frac{5}{4} + \frac{1}{\sqrt{2}} = \frac{5\sqrt{2} + 4}{4\sqrt{2}}$$

6. A student appeared in an examination consisting of 8 true—false type questions. The student guesses the answers with equal probability. The smallest value of n, so that the probability of guessing at

least 'n' correct answers is less than $\frac{1}{2}$, is:

- (1)5
- (2)6
- (3) 3
- (4) 4

Official Ans. by NTA (1)

Sol. $P(E) < \frac{1}{2}$

$$\Rightarrow \sum_{r=n}^{8} {}^{8}C_{r} \left(\frac{1}{2}\right)^{8-r} \left(\frac{1}{2}\right)^{r} < \frac{1}{2}$$

$$\Rightarrow \sum_{r=n}^{8} {}^{8}C_{r} \left(\frac{1}{2}\right)^{8} < \frac{1}{2}$$

$$\Rightarrow$$
 ${}^{8}C_{n} + {}^{8}C_{n+1} + + {}^{8}C_{8} < 128$

$$\Rightarrow 256 - ({}^{8}C_{0} + {}^{8}C_{1} + + {}^{8}C_{n-1}) < 128$$

$$\Rightarrow {}^{8}C_{0} + {}^{8}C_{1} + \dots + {}^{8}C_{n-1} > 128$$

$$\Rightarrow$$
 n-1 \ge 4

$$\Rightarrow$$
 n \geq 5

7. If $\tan\left(\frac{\pi}{9}\right)$, x, $\tan\left(\frac{7\pi}{18}\right)$ are in arithmetic

progression and $\tan\left(\frac{\pi}{9}\right)$, y, $\tan\left(\frac{5\pi}{18}\right)$ are also in

arithmetic progression, then |x - 2y| is equal to :

- (1)4
- (2) 3
- (3) 0
- **(4)** 1

Official Ans. by NTA (3)

Sol.
$$x = \frac{1}{2} \left(\tan \frac{\pi}{9} + \tan \frac{7\pi}{18} \right)$$

and
$$2y = \tan \frac{\pi}{9} + \tan \frac{5\pi}{18}$$

so,
$$x - 2y = \frac{1}{2} \left(\tan \frac{\pi}{9} + \tan \frac{7\pi}{18} \right)$$

$$-\left(\tan\frac{\pi}{9}+\tan\frac{5\pi}{18}\right)$$

$$\Rightarrow |x - 2y| = \left| \frac{\cot \frac{\pi}{9} - \tan \frac{\pi}{9}}{2} - \tan \frac{5\pi}{18} \right|$$

$$= \left| \cot \frac{2\pi}{9} - \cot \frac{2\pi}{9} \right| = 0$$

$$\left(as \tan \frac{5\pi}{18} = \cot \frac{2\pi}{9}; \tan \frac{7\pi}{18} = \cot \frac{\pi}{9}\right)$$

Let the mean and variance of the frequency 8. distribution

$$x: x_1=2$$

$$x_2 = 6$$

$$x_2 = 6$$
 $x_3 = 8$ $x_4 = 9$

be 6 and 6.8 respectively. If x₃ is changed from 8 to 7, then the mean for the new data will be:

$$(3) \frac{17}{3}$$

$$(4) \frac{16}{3}$$

Official Ans. by NTA (3)

Sol. Given
$$32 + 8\alpha + 9\beta = (8 + \alpha + \beta) \times 6$$

$$\Rightarrow 2\alpha + 3\beta = 16$$
 ...(i)

Also,
$$4 \times 16 + 4 \times \alpha + 9\beta = (8 + \alpha + \beta) \times 6.8$$

$$\Rightarrow$$
 640 + 40\alpha + 90\beta = 544 + 68\alpha + 68\beta

$$\Rightarrow 28\alpha - 22\beta = 96$$

$$\Rightarrow 14\alpha - 11\beta = 48$$

from (i) & (ii)

$$\alpha = 5 \& \beta = 2$$

so, new mean =
$$\frac{32+35+18}{15} = \frac{85}{15} = \frac{17}{3}$$

The area of the region bounded by y - x = 2 and 9. $x^2 = y$ is equal to :-

$$(1) \frac{16}{2}$$
 $(2) \frac{2}{3}$ $(3) \frac{9}{2}$ $(4) \frac{4}{3}$

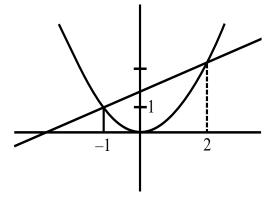
(2)
$$\frac{2}{3}$$

(3)
$$\frac{9}{2}$$

(4)
$$\frac{4}{3}$$

Official Ans. by NTA (3)

Sol.



$$y-x=2$$
, $x^2=y$

Now,
$$x^2 = 2 + x$$

$$\Rightarrow$$
 $x^2 - x - 2 = 0$

$$\Rightarrow$$
 $(x+1)(x-2)=0$

Area =
$$\int_{-1}^{2} (2 + x - x^2)$$

$$= \left| 2x + \frac{x^2}{2} - \frac{x^3}{3} \right|_{-1}^{2}$$

$$=\left(4+2-\frac{8}{3}\right)-\left(-2+\frac{1}{2}+\frac{1}{3}\right)$$

$$=6-3+2-\frac{1}{2}=\frac{9}{2}$$

Let y = y(x) be the solution of the differential equation $(x - x^3)dy = (y + yx^2 - 3x^4)dx, x > 2$. If y(3) = 3, then y(4) is equal to :

Official Ans. by NTA (2)

Sol.
$$(x-x^3)dy = (y + yx^2 - 3x^4)dx$$

$$\Rightarrow$$
 xdy - ydx = (yx² - 3x⁴)dx + x³dy

$$\Rightarrow \frac{xdy - ydx}{x^2} = (ydx + xdy) - 3x^2dx$$

$$\Rightarrow d\left(\frac{y}{x}\right) = d(xy) - d(x^3)$$

Integrate

$$\Rightarrow \frac{y}{x} = xy - x^3 + c$$

given
$$f(3) = 3$$

CollegeDekho

$$\Rightarrow \frac{3}{3} = 3 \times 3 - 3^3 + c$$

$$\Rightarrow$$
 c = 19

$$\therefore \frac{y}{x} = xy - x^3 + 19$$

at
$$x = 4$$
, $\frac{y}{4} = 4y - 64 + 19$

$$15y = 4 \times 45$$

$$\Rightarrow$$
 y = 12

11. The value of $\lim_{x \to 0} \left(\frac{x}{\sqrt[8]{1 - \sin x} - \sqrt[8]{1 + \sin x}} \right)$ is equal

to:

$$(3) - 4$$

$$(4) -1$$

Official Ans. by NTA (3)

Sol.
$$\lim_{x\to 0} \left(\frac{x}{\sqrt[8]{1-\sin x} - \sqrt[8]{1+\sin x}} \right)$$

$$= \lim_{x \to 0} \left(\frac{x}{\sqrt[8]{1 - \sin x} - \sqrt[8]{1 + \sin x}} \right)$$

$$= \lim_{x \to 0} \left(\frac{x}{\sqrt[8]{1-\sin x} - \sqrt[8]{1+\sin x}} \right)$$

$$\left(\frac{\left(\sqrt[8]{1-\sin x}+\sqrt[8]{1+\sin x}\right)}{\sqrt[8]{1-\sin x}+\sqrt[8]{1+\sin x}}\right)$$

$$\left(\frac{\left(\sqrt[4]{1-\sin x} + \sqrt[4]{1+\sin x}\right)}{\sqrt[4]{1-\sin x} + \sqrt[4]{1+\sin x}}\right)$$

$$\left(\frac{\left(\sqrt[2]{1-\sin x} + \sqrt[2]{1+\sin x}\right)}{\sqrt[2]{1-\sin x} + \sqrt[2]{1+\sin x}}\right)$$

$$= \lim_{x \to 0} \left(\frac{x}{1 - \sin x - (1 + \sin x)} \right)$$

$$\left(\sqrt[8]{1-\sin x} + \sqrt[8]{1+\sin x}\right)\left(\sqrt[4]{1-\sin x} + \sqrt[4]{1+\sin x}\right)$$

$$\left(\sqrt[2]{1-\sin x} + \sqrt[2]{1+\sin x}\right)$$

$$= \lim_{x \to 0} \frac{x}{(-2\sin x)} \left(\sqrt[8]{1 - \sin x} + \sqrt[8]{1 + \sin x} \right)$$

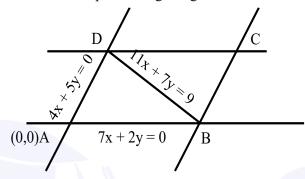
$$\left(\sqrt[4]{1-\sin x} + \sqrt[4]{1+\sin x}\right)\left(\sqrt[2]{1-\sin x} + \sqrt[2]{1+\sin x}\right)$$

$$= \lim_{x \to 0} \left(-\frac{1}{2} \right) (2) (2) (2) \left\{ \because \lim_{x \to 0} \frac{\sin x}{x} = 1 \right\} = -4$$

12. Two sides of a parallelogram are along the lines 4x + 5y = 0 and 7x + 2y = 0. If the equation of one of the diagonals of the parallelogram is 11x + 7y = 9, then other diagonal passes through the point:

Official Ans. by NTA (2)

Sol. Both the lines pass through origin.



point D is equal of intersection of 4x + 5y = 0 & 11x + 7y = 9

So, coordinates of point $D = \left(\frac{5}{3}, -\frac{4}{3}\right)$

Also, point B is point of intersection of 7x + 2y = 0& 11x + 7y = 9

So, coordinates of point B = $\left(-\frac{2}{3}, \frac{7}{3}\right)$

diagonals of parallelogram intersect at middle let middle point of B,D

$$\Rightarrow \left(\frac{\frac{5}{3} - \frac{2}{3}}{2}, \frac{-4}{\frac{3}{3}} + \frac{7}{3}\right) = \left(\frac{1}{2}, \frac{1}{2}\right)$$

equation of diagonal AC

$$\Rightarrow (y-0) = \frac{\frac{1}{\alpha} - 0}{\frac{1}{\alpha} - 0} (\pi - 0)$$

$$y = x$$

diagonal AC passes through (2, 2).

CollegeDekho

13. Let $\alpha = \max_{x \in \mathbb{R}} \{ 8^{2\sin 3x} \cdot 4^{4\cos 3x} \}$ and

$$\beta = \min_{x \in \mathbf{P}} \left\{ 8^{2\sin 3x} \cdot 4^{4\cos 3x} \right\}$$
. If $8x^2 + bx + c = 0$ is a

quadratic equation whose roots are $\alpha^{1/5}$ and $\beta^{1/5}$, then the value of c-b is equal to :

Official Ans. by NTA (1)

Sol.
$$\alpha = \max\{8^{2\sin 3x} \cdot 4^{4\cos 3x}\}$$

$$= \max \{2^{6\sin 3x} \cdot 2^{8\cos 3x}\}$$

$$= \max \{2^{6\sin 3x + 8\cos 3x}\}$$

and
$$\beta = min\{8^{2sin3x} \cdot 4^{4cos3x}\} = min\{2^{6sin3x + 8cos3x}\}$$

Now range of $6 \sin 3x + 8 \cos 3x$

$$=\left[-\sqrt{6^2+8^2},+\sqrt{6^2+8^2}\right]=\left[-10,10\right]$$

$$\alpha = 2^{10} \& \beta = 2^{-10}$$

So,
$$\alpha^{1/5} = 2^2 = 4$$

$$\Rightarrow \beta^{1/5} = 2^{-2} = 1/4$$

quadratic
$$8x^2 + bx + c = 0$$
, $c - b = 0$

 $8 \times [(product of roots] + (sum of roots)]$

$$= 8 \times \left[4 \times \frac{1}{4} + 4 + \frac{1}{4} \right] = 8 \times \left[\frac{21}{4} \right] = 42$$

14. Let $f:[0,\infty)\to[0,3]$ be a function defined by

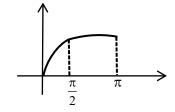
$$f(x) = \begin{cases} \max\{\sin t : 0 \le t \le x\}, \ 0 \le x \le \pi \\ 2 + \cos x, & x > \pi \end{cases}$$

Then which of the following is true?

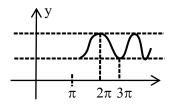
- (1) f is continuous everywhere but not differentiable exactly at one point in $(0, \infty)$
- (2) f is differentiable everywhere in $(0, \infty)$
- (3) f is not continuous exactly at two points in $(0, \infty)$
- (4) f is continuous everywhere but not differentiable exactly at two points in $(0, \infty)$

Official Ans. by NTA (2)

Sol. Graph of max $\{ \sin t : 0 \le t \le x \}$ in $x \in [0, \pi]$

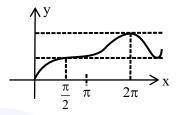


& graph of cos for $x \in [\pi, \infty)$



So graph of

$$f(x) = \begin{cases} \max \{ \sin t : 0 \le t \le x, & 0 \le x \le \pi \\ 2 + \cos x & x > h \end{cases}$$



f(x) is differentiable everywhere in $(0,\infty)$

15. Let N be the set of natural numbers and a relation

R on N be defined by

$$R = \{(x,y) \in \mathbb{N} \times \mathbb{N} : x^3 - 3x^2y - xy^2 + 3y^3 = 0\}.$$

Then the relation R is:

- (1) symmetric but neither reflexive nor transitive
- (2) reflexive but neither symmetric nor transitive
- (3) reflexive and symmetric, but not transitive
- (4) an equivalence relation

Official Ans. by NTA (2)

Sol.
$$x^3 - 3x^2y - xy^2 + 3y^3 = 0$$

$$\Rightarrow$$
 x(x² - y²) - 3y (x² - y²) = 0

$$\Rightarrow$$
 $(x-3y)(x-y)(x+y)=0$

Now,
$$x = y \ \forall (x,y) \in N \times N$$
 so reflexive

But not symmetric & transitive

See, (3,1) satisfies but (1,3) does not. Also (3,1) &

(1,-1) satisfies but (3,-1) does not

16. Which of the following is the negation of the statement "for all M > 0, there exists $x \in S$ such that

 $x \ge M''$?

- (1) there exists M > 0, such that x < M for all $x \in S$
- (2) there exists M > 0, there exists $x \in S$ such that $x \ge M$
- (3) there exists M > 0, there exists $x \in S$ such that x < M
- (4) there exists M > 0, such that $x \ge M$ for all $x \in S$

Official Ans. by NTA (1)

Sol. P: for all M > 0, there exists $x \in S$ such that $x \ge M$.

 $\sim P$: there exists M > 0, for all $x \in S$

Such that x < m

Negation of 'there exsits' is 'for all'.

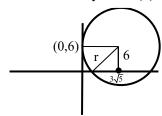
17. Consider a circle C which touches the y-axis at (0, 6) and cuts off an intercept $6\sqrt{5}$ on the x-axis. Then the radius of the circle C is equal to:

(1)
$$\sqrt{53}$$

(4)
$$\sqrt{82}$$

Official Ans. by NTA (2)

Sol.



$$r = \sqrt{6^2 + (3\sqrt{5})^2}$$

$$=\sqrt{36+45}=9$$

Let \vec{a}, \vec{b} and \vec{c} be three vectors such that 18. $\vec{a} = \vec{b} \times (\vec{b} \times \vec{c})$. If magnitudes of the vectors \vec{a}, \vec{b} and \vec{c} are $\sqrt{2}$,1 and 2 respectively and the angle between \vec{b} and \vec{c} is $\theta \left(0 < \theta < \frac{\pi}{2} \right)$, then the value of $1+ \tan \theta$ is equal to:

$$(1) \sqrt{3} + 1$$

(4)
$$\frac{\sqrt{3}+1}{\sqrt{3}}$$

Official Ans. by NTA (2)

Sol.
$$\vec{a} = (\vec{b} \cdot \vec{c})\vec{b} - (\vec{b} \cdot \vec{b})\vec{c}$$

$$=1.2\cos\theta\vec{b}-\vec{c}$$

$$\Rightarrow \vec{a} = 2\cos\theta \vec{b} - \vec{c}$$

$$|\vec{a}|^2 = (2\cos\theta)^2 + 2^2 - 2.2\cos\theta \vec{b} \cdot \vec{c}$$

$$\Rightarrow 2 = 4\cos^2\theta + 4 - 4\cos\theta \cdot 2\cos\theta$$

$$\Rightarrow$$
 $-2 = -4\cos^2\theta$

$$\Rightarrow \cos^2 \theta = \frac{1}{2}$$

$$\Rightarrow \sec^2 \theta = 2$$

$$\Rightarrow \tan^2 \theta = 1$$

$$\Rightarrow \theta = \frac{\pi}{4}$$

$$1 + \tan \theta = 2$$
.

19. Let A and B be two 3×3 real matrices such that $(A^2 - B^2)$ is invertible matrix. If $A^5 = B^5$ and $A^{3}B^{2} = A^{2}B^{3}$, then the value of the determinant of the matrix A^3+B^3 is equal to :

Official Ans. by NTA (4)

Sol.
$$C = A^2 - B^2$$
; $|C| \neq 0$

$$A^5 = B^5$$
 and $A^3B^2 = A^2B^2$

Now,
$$A^5 - A^3B^2 = B^5 - A^2B^3$$

$$\Rightarrow A^3(A^2-B^2)+B^3(A^2-B^2)=0$$

$$\Rightarrow$$
 $(A^3 + B^3)(A^2 - B^2) = 0$

Post multiplying inverse of $A^2 - B^2$:

$$A^3 + B^3 = 0$$

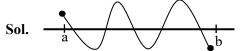
Let $f:(a,b) \to \mathbf{R}$ be twice differentiable function 20. such that $f(x) = \int_{0}^{x} g(t) dt$ for a differentiable function g(x). If f(x) = 0 has exactly five distinct roots in (a, b), then g(x)g'(x) = 0 has at least :

(1) twelve roots in (a, b) (2) five roots in (a, b)

(3) seven roots in (a, b)

(4) three roots in (a, b)

Official Ans. by NTA (3)



$$f(x) = \int_{a}^{x} g(t)dt$$

$$f(x) \rightarrow 5$$

$$g(x) \rightarrow 4$$

$$g'(x) \rightarrow 3$$

SECTION-B

1. Let $\vec{a} = \hat{i} - \alpha \hat{j} + \beta \hat{k}$, $\vec{b} = 3\hat{i} + \beta \hat{j} - \alpha \hat{k}$ and $\vec{c} = -\alpha \hat{i} - 2\hat{j} + \hat{k}$, where α and β are integers. If $\vec{a} \cdot \vec{b} = -1$ and $\vec{b} \cdot \vec{c} = 10$, then $(\vec{a} \times \vec{b}) \cdot \vec{c}$ is equal to .

Official Ans. by NTA (9)

Sol.
$$\vec{a} = (1, -\alpha, \beta)$$

 $\vec{b} = (3, \beta, -\alpha)$
 $\vec{c} = (-\alpha, -2, 1); \alpha, \beta \in I$
 $\vec{a}.\vec{b} = -1 \Rightarrow 3 - \alpha\beta - \alpha\beta = -1$

$$\Rightarrow \alpha\beta = 2$$

$$1 \quad 2$$

$$2 \quad 1$$

$$-1 \quad -2$$

$$-2 \quad -1$$

$$\vec{b} \cdot \vec{c} = 10$$

$$\Rightarrow -3\alpha - 2 \beta - \alpha = 10$$

$$\Rightarrow 2\alpha + \beta + 5 = 0$$

$$\therefore \alpha = -2; \beta = -1$$

$$\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix} = \begin{vmatrix} 1 & 2 & -1 \\ 3 & -1 & 2 \\ 2 & -2 & 1 \end{vmatrix}$$
$$= 1(-1+4) - 2(3-4) - 1(-6+2)$$
$$= 3+2+4=9$$

The distance of the point P(3, 4, 4) from the point of intersection of the line joining the points. Q(3, -4, -5) and R(2, -3, 1) and the plane 2x + y + z = 7, is equal to_____.

Official Ans. by NTA (7)

Sol.
$$\overrightarrow{QR}: -\frac{x-3}{1} = \frac{y+4}{-1} = \frac{z+5}{-6} = r$$

 $\Rightarrow (x,y,z) \equiv (r+3, -r-4, -6r-5)$
Now, satisfying it in the given plane.
We get $r = -2$.

so, required point of intersection is
$$T(1,-2,7)$$
.
Hence, $PT = 7$.

3. If the real part of the complex number $z = \frac{3 + 2i\cos\theta}{1 - 3i\cos\theta}, \ \theta \in \left(0, \frac{\pi}{2}\right) \text{ is zero, then the value}$ of $\sin^2 3\theta + \cos^2 \theta$ is equal to .

Official Ans. by NTA (1)

Sol. Re (z) =
$$\frac{3 - 6\cos^2 \theta}{1 + 9\cos^2 \theta} = 0$$

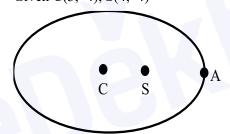
$$\Rightarrow \theta = \frac{\pi}{4}$$

Hence, $\sin^2 3\theta + \cos^2 \theta = 1$.

4. Let E be an ellipse whose axes are parallel to the co-ordinates axes, having its center at (3, -4), one focus at (4, -4) and one vertex at (5, -4). If mx - y = 4, m > 0 is a tangent to the ellipse E, then the value of $5m^2$ is equal to

Official Ans. by NTA (3)

Sol. Given C(3,-4), S(4,-4)



and A(5,-4)

Hence, a = 2 & ae = 1

$$\Rightarrow e = \frac{1}{2}$$

$$\Rightarrow$$
 b² = 3.

So, E:
$$\frac{(x-3)^2}{4} + \frac{(y+4)^2}{3} = 1$$

Intersecting with given tangent.

$$\frac{x^2 - 6x + 9}{4} + \frac{m^2 x^2}{3} = 1$$

Now, D = 0 (as it is tangent)

So,
$$5m^2 = 3$$
.

5. If $\int_0^{\pi} (\sin^3 x) e^{-\sin^2 x} dx = \alpha - \frac{\beta}{e} \int_0^1 \sqrt{t} e^t dt$, then $\alpha + \beta$ is equal to

Official Ans. by NTA (5)

CollegeDekho

Sol.
$$I = 2 \int_{0}^{\pi/2} \sin^{3} x \, e^{-\sin^{2} x} dx$$

$$= 2 \int_{0}^{\pi/2} \sin x \, e^{-\sin^{2} x} dx + \int_{0}^{\pi/2} \cos x \, \underbrace{e^{-\sin^{2} x} \left(-\sin 2x\right)}_{I} dx$$

$$= 2 \int_{0}^{\pi/2} \sin x e^{-\sin^{2} x} dx + \left[\cos x \, e^{-\sin^{2} x}\right]_{0}^{\pi/2}$$

$$+\int_{0}^{\pi/2} \sin x \, e^{-\sin^2 x} \, dx$$

$$=3\int_{0}^{\pi/2}\sin x \, e^{-\sin^2 x} dx - 1$$

$$= \frac{3}{2} \int_{-1}^{0} \frac{e^{\alpha} d\alpha}{\sqrt{1 + \alpha}} - 1 \text{ (Put - sin}^{2} x = t)$$

$$= \frac{3}{2e} \int_{0}^{1} \frac{e^{x}}{\sqrt{x}} dx - 1 \text{ (put } 1 + \alpha = x)$$

$$= \frac{3}{2e} \int_{0}^{1} e^{x} \frac{1}{\sqrt{x}} dx - 1$$

$$=2-\frac{3}{e}\int_{0}^{1}e^{x}\sqrt{x}\,dx$$

Hence,
$$\alpha + \beta = \boxed{5}$$

6. The number of real roots of the equation $e^{4x} - e^{3x} - 4e^{2x} - e^{x} + 1 = 0$ is equal to _____

Official Ans. by NTA (2)

Sol.
$$t^4 - t^3 - 4t^2 - t + 1 = 0, e^x = t > 0$$

$$\implies t^2 - t - 4 - \frac{1}{t} + \frac{1}{t^2} = 0$$

$$\Rightarrow \alpha^2 - \alpha - 6 = 0, \alpha = t + \frac{1}{t} \ge 2$$

$$\Rightarrow \alpha = 3, -2 \text{ (reject)}$$

$$\Rightarrow$$
 t + $\frac{1}{t}$ = 3

 \Rightarrow The number of real roots = 2

7. Let y=y(x) be the solution of the differential equation $dy=e^{\alpha x+y}\ dx;\ \alpha\in {\bf N}.$ If $y(\log_e 2)=\log_e 2$ and $y(0)=\log_e\Bigl(\frac{1}{2}\Bigr)$, then the value of α is equal to____.

Official Ans. by NTA (2)

Sol.
$$\int e^{-y} dy = \int e^{\alpha x} dx$$

$$\Rightarrow e^{-y} = \frac{e^{\alpha x}}{\alpha} + c \qquad ...(i)$$

Put
$$(x,y) = (\ell n2, \ell n2)$$

$$\frac{-1}{2} = \frac{2^{\alpha}}{\alpha} + C \qquad ...(ii)$$

Put
$$(x,y) \equiv (0,-\ell n2)$$
 in (i)

$$-2 = \frac{1}{\alpha} + C \qquad \dots(iii)$$

$$\frac{2^{\alpha}-1}{\alpha}=\frac{3}{2}$$

$$\Rightarrow \alpha = 2 \text{ (as } \alpha \in \mathbb{N} \text{)}$$

8. Let n be a non-negative integer. Then the number of divisors of the form "4n + 1" of the number $(10)^{10}$. $(11)^{11}$. $(13)^{13}$ is equal to_____.

Official Ans. by NTA (924)

Sol. $N = 2^{10} \times 5^{10} \times 11^{11} \times 13^{13}$

Now, power of 2 must be zero,

power of 5 can be anything,

power of 13 can be anything.

But, power of 11 should be even.

So, required number of divisors is

$$1 \times 11 \times 14 \times 6 = 924$$

9. Let $A = \{n \in \mathbb{N} \mid n^2 \le n + 10,000\}$, $B = \{3k + 1 \mid k \in \mathbb{N}\}$ and $C = \{2k \mid k \in \mathbb{N}\}$, then the sum of all the elements of the set $A \cap (B - C)$ is equal to_____.

Official Ans. by NTA (832)

Sol.
$$B-C \equiv \{7,13,19,...97,...\}$$

Now,
$$n^2 - n \le 100 \times 100$$

$$\Rightarrow$$
 n(n-1) \leq 100 \times 100

$$\Rightarrow$$
 A = {1,2,..., 100}.

So,
$$A \cap (B-C) = \{7.13.19.....97\}$$

Hence, sum =
$$\frac{16}{2}(7+97) = 832$$

10. If
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$
 and $M = A + A^2 + A^3 + \dots + A^{20}$,

then the sum of all the elements of the matrix M is equal to

Official Ans. by NTA (2020)

Sol.
$$A^{n} = \begin{bmatrix} 1 & n & \frac{n^{2} + n}{2} \\ 0 & 1 & n \\ 0 & 0 & 1 \end{bmatrix}$$

So, required sum

$$= 20 \times 3 + 2 \times \left(\frac{20 \times 21}{2}\right) + \sum_{r=1}^{20} \left(\frac{r^2 + r}{2}\right)$$
$$= 60 + 420 + 105 + 35 \times 41 = 2020$$