FINAL JEE-MAIN EXAMINATION - JULY, 2022

(Held On Wednesday 27th July, 2022)

SECTION-A

1. The domain of the function

$$f(x) = \sin^{-1}[2x^2 - 3] + \log_2\left(\log_{\frac{1}{2}}(x^2 - 5x + 5)\right),$$

where [t] is the greatest integer function, is:

$$(A)\left(-\sqrt{\frac{5}{2}},\frac{5-\sqrt{5}}{2}\right)$$

(A)
$$\left(-\sqrt{\frac{5}{2}}, \frac{5-\sqrt{5}}{2}\right)$$
 (B) $\left(\frac{5-\sqrt{5}}{2}, \frac{5+\sqrt{5}}{2}\right)$

(C)
$$\left(1, \frac{5-\sqrt{5}}{2}\right)$$

(C)
$$\left(1, \frac{5-\sqrt{5}}{2}\right)$$
 (D) $\left[1, \frac{5+\sqrt{5}}{2}\right]$

Official Ans. by NTA (C)

Ans. (C)

Sol.
$$f(x) = \sin^{-1}[2x^2 - 3] + \log_2\left(\log_{\frac{1}{2}}(x^2 - 5x + 5)\right)$$

$$P_1: -1 \le \lceil 2x^2 - 3 \rceil < 1$$

$$\Rightarrow -1 \le 2x^2 - 3 < 2$$

$$\Rightarrow 2 < 2x^2 < 5$$

$$\Rightarrow 1 < x^2 < \frac{5}{2}$$

$$\Rightarrow P_1: x \in \left(-\sqrt{\frac{5}{2}}, -1\right) \cup \left(1, \sqrt{\frac{5}{2}}\right)$$

$$P_2: x^2 - 5x + 5 > 0$$

$$\Rightarrow \left(x - \left(\frac{5 - \sqrt{5}}{2}\right)\right) \left(x - \left(\frac{5 + \sqrt{5}}{2}\right)\right) > 0$$

$$P_3: \log_{\frac{1}{2}}(x^2-5x+5)>0$$

$$\Rightarrow$$
 x² - 5x - 5 < 1

$$\Rightarrow$$
 x² - 5x + 4 < 0

$$\Rightarrow P_3: x \in (1,4)$$

So,
$$P_1 \cap P_2 \cap P_3 = \left(1, \frac{5-\sqrt{5}}{2}\right)$$

Let S be the set of all (α, β) , $\pi < \alpha, \beta < 2\pi$, for 2. which the complex number $\frac{1-i\sin\alpha}{1+2i\sin\alpha}$ is purely imaginary and $\frac{1+i\cos\beta}{1-2i\cos\beta}$ is purely real. Let $Z_{\alpha\beta} = \sin 2\alpha + i\cos 2\beta, (\alpha, \beta) \in S.$

TIME: 3:00 PM to 6:00 PM

Then
$$\sum_{(\alpha,\beta)\in S} \left(i Z_{\alpha\beta} + \frac{1}{i \overline{Z}_{\alpha\beta}}\right)$$
 is equal to :

(A) 3

(B) 3 i

(C) 1

(D) 2 - i

Official Ans. by NTA (C)

Ans. (C)

Sol.
$$\pi < \alpha, \beta < 2\pi$$

$$\frac{1 - i \sin \alpha}{1 + i (2 \sin \alpha)} = \text{Purely imaginary}$$

$$\Rightarrow \frac{(1 - i \sin \alpha) (1 - i(2 \sin \alpha))}{1 + 4 \sin^2 \alpha} = \text{Purely imaginary}$$

$$\Rightarrow$$
 $1-2\sin^2\alpha$

$$\Rightarrow \sin^2 \alpha = \frac{1}{2}$$

$$\Rightarrow \alpha = \left\{ \frac{5\pi}{4}, \frac{7\pi}{4} \right\}$$

&
$$\frac{1+i\cos\beta}{1+i(-2\cos\beta)}$$
 = Purely real

$$\Rightarrow \frac{(1+i\cos\beta)(1+2i\cos\beta)}{1+4\cos^2\beta} = \text{Purely real}$$

$$\Rightarrow 3 \cos \beta = 0$$

$$\Rightarrow \boxed{\beta = \frac{3\pi}{2}}$$

$$\Rightarrow Z_{\alpha\beta} = \sin \frac{5\pi}{2} + i\cos 3\pi = 1 - i$$

$$Z_{\alpha\beta} = \sin\frac{7\pi}{2} + i\cos 3\pi = -1 - i$$

Required value =
$$\left[i(1-i) + \frac{1}{i(1+i)} \right] + \left[i(-1-i) + \frac{1}{i(-1+i)} \right]$$

=
$$i(-2i) + \frac{1}{i} \frac{2i}{(-2)} \Rightarrow 2 - 1 = 1$$

3. If α , β are the roots of the equation

$$x^{2} - \left(5 + 3^{\sqrt{\log_{3} 5}} - 5^{\sqrt{\log_{5} 3}}\right) + 3\left(3^{(\log_{3} 5)^{\frac{1}{3}}} - 5^{(\log_{5} 3)^{\frac{2}{3}}} - 1\right) = 0$$

then the equation, whose roots are

$$\alpha + \frac{1}{\beta}$$
 and $\beta + \frac{1}{\alpha}$,

(A)
$$3x^2 - 20x - 12 = 0$$

(B)
$$3x^2 - 10x - 4 = 0$$

(C)
$$3x^2 - 10x + 2 = 0$$

(D)
$$3x^2 - 20x + 16 = 0$$

Official Ans. by NTA (Drop)

Ans. (Bonus)

Sol. Bonus because 'x' is missing the correct will be,

$$x^{2}$$
 - $\sqrt{}$ $\sqrt{}$ $3\left(3^{(\log_{3}5)^{\frac{1}{3}}} - 5^{(\log_{5}3)^{\frac{2}{3}}} - \right)$

$$3^{\sqrt{\log_3 5}} = 3^{\sqrt{\log_3 5}.\sqrt{\log_3 5}.\sqrt{\log_5 3}} = 3^{\log_3 5.\sqrt{\log_5 3}}$$

$$= \left(3^{\log_3 5}\right)^{\sqrt{\log_5 3}} = 5^{\sqrt{\log_5 3}}$$

$$3^{\sqrt[3]{\log_3 5}} = 3^{\log_3 5, \sqrt[3]{(\log_5 3)^2}} = \left(3^{\log_3 5}\right)^{(\log_5 3)^{2/3}}$$

$$=5^{(\log_5 3)^{2/3}}$$

So, equation is $x^2 - 5x - 3 = 0$ and roots are $\alpha \& \beta$

$$\{\alpha + \beta = 5; \alpha\beta = -3\}$$

New roots are $\alpha + \frac{1}{\beta} \& \beta + \frac{1}{\alpha}$

i.e.,
$$\frac{\alpha\beta+1}{\beta}$$
 & $\frac{\alpha\beta+1}{\alpha}$ i.e., $\frac{-2}{\beta}$ & $\frac{-2}{\alpha}$

Let
$$\frac{-2}{\alpha} = t \implies \alpha = \frac{-2}{t}$$

As
$$\alpha^2 - 5\alpha - 3 = 0$$

$$\Rightarrow \left(\frac{-2}{t}\right)^2 - 5\left(\frac{-2}{t}\right) - 3 = 0$$

$$\Rightarrow \frac{4}{t^2} + \frac{10}{t} - 3 = 0$$

$$\Rightarrow$$
 4 + 10t - 3t² = 0

$$\Rightarrow 3t^2 - 10t - 4 = 0$$

i.e.,
$$3x^2 - 10x - 4 = 0$$

Let $A = \begin{pmatrix} 4 & -2 \\ \alpha & \beta \end{pmatrix}$

If $A^2 + \gamma A + 18I = O$, then det (A) is equal to

$$\overline{(A)-18}$$
 (B) 18

$$(C) -50$$

(D) 50

Official Ans. by NTA (B)

Ans. (B)

The characteristic equation for A is $|A - \lambda I| = 0$

$$\Rightarrow \begin{vmatrix} 4 - \lambda & -2 \\ \alpha & \beta - \lambda \end{vmatrix} = 0$$

$$\Rightarrow (4-\lambda)(\beta-\lambda)+2\alpha=0$$

$$\Rightarrow \lambda^2 - (\beta + 4)\lambda + 4\beta + 2\alpha = 0$$

Put
$$\lambda = A$$

$$A^2 - (\beta + 4) A + (4\beta + 2\alpha) I = 0$$

On comparison

$$-9(\beta+4)=\gamma \& 4\beta+2\alpha=18$$

and
$$|A| = 4\beta + 2\alpha = 18$$

5. If for $p \neq q \neq 0$, then function

$$f(x) = \frac{\sqrt[7]{p(729 + x)} - 3}{\sqrt[3]{729 + qx} - 9}$$
 is continuous at x = 0, then:

(A)
$$7pq f(0) - 1 = 0$$
 (B) $63q f(0) - p^2 = 0$

(B)
$$63a f(0) - p^2 = 0$$

(C)
$$21q f(0) - p^2 = 0$$
 (D) $7pq f(0) - 9 = 0$

(D)
$$7pq f(0) - 9 = 0$$

Official Ans. by NTA (B)

Ans. (B)

 $f(0) = \lim_{x \to 0} f(x)$ Sol.

Limit should be $\frac{0}{0}$ form

So,
$$\sqrt[7]{p.729} - 3 = 0 \implies p.3^6 = 3^7 \implies p = 3$$

Now,
$$f(0) = \lim_{x \to 0} \frac{\sqrt[7]{3(3^6 + x)} - 3}{\sqrt[3]{3^6 + qx} - 9}$$

$$= \lim_{x \to 0} \frac{3\left[\left(1 + \frac{x}{3^6}\right)^{1/7} - 1\right]}{9\left[\left(1 + \frac{qx}{3^6}\right)^{1/3} - 1\right]} = \frac{3}{9} \times \frac{\frac{1}{7.3^6}}{\frac{q}{3.3^6}}$$

$$\Rightarrow$$
 f(0) = $\frac{1}{3} \times \frac{3}{7q} = \frac{1}{7q}$

$$\Rightarrow$$
 7qf(0) – 1 = 0

$$\Rightarrow$$
 7.p².qf(0) - p² = 0 (for option)

$$\Rightarrow$$
 63qf(0) - p² = 0

CollegeDékho

Let $f(x) = 2 + |x| - |x - 1| + |x + 1|, x \in \mathbb{R}$. 6. Consider

(S1):
$$f'\left(-\frac{3}{2}\right) + f'\left(-\frac{1}{2}\right) + f'\left(\frac{1}{2}\right) + f'\left(\frac{3}{2}\right) = 2$$

(S2):
$$\int_{-2}^{2} f(x) dx = 12$$

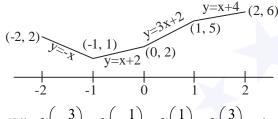
Then,

- (A) both (S1) and (S2) are correct
- (B) both (S1) and (S2) are wrong
- (C) only (S1) is correct
- (D) only (S2) is correct

Official Ans. by NTA (D)

Ans. (D)

Sol.



(S1):
$$f'\left(-\frac{3}{2}\right) + f'\left(-\frac{1}{2}\right) + f'\left(\frac{1}{2}\right) + f'\left(\frac{3}{2}\right) = 4$$

(S2):
$$f(x) dx = 12$$

: (D)

7. Let the sum of an infinite G.P., whose first term is a and the common ratio is r, be 5. Let the sum of its first five terms be $\frac{98}{25}$. Then the sum of the first 21 terms of an AP, whose first term is 10ar, nth

term is a_n and the common difference is 10ar², is

- equal to: (A) $21 a_{11}$
- (B) $22 a_{11}$
- (C) 15 a₁₆
- (D) 14 a₁₆

Official Ans. by NTA (A)

Ans. (A)

Sol.
$$S_{21} = \frac{21}{2} [20 \text{ ar} + 20.10 \text{ ar}^2]$$

- $= 21 [10 ar + 100 ar^2]$
- 21. a₁₁

8. The area of the region enclosed by

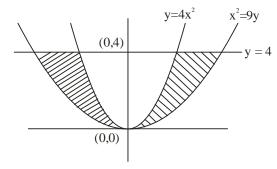
 $y \le 4x^2, x^2 \le 9y$ and $y \le 4$, is equal to:

- (A) $\frac{40}{3}$ (B) $\frac{56}{3}$ (C) $\frac{112}{3}$ (D) $\frac{80}{3}$

Official Ans. by NTA (D)

Ans. (D)

Sol.



$$\Delta = 2 \cdot \int_{0}^{4} \left(3\sqrt{y} - \frac{\sqrt{y}}{2} \right) dy$$

$$= 2 \cdot \int_{0}^{4} \frac{5}{2} \sqrt{y} \, dy = \frac{80}{3}$$

 $\int_{0}^{2} \left(\left| 2x^{2} - 3x \right| + \left| x - \frac{1}{2} \right| \right) dx,$

where [t] is the greatest integer function, is equal to:

- (A) $\frac{7}{6}$ (B) $\frac{19}{12}$ (C) $\frac{31}{12}$ (D) $\frac{3}{2}$

Official Ans. by NTA (B)

Ans. (B)

 $\int_{0}^{2} \left| 2x^{2} - 3x \right| dx$

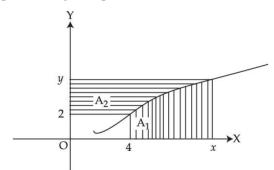
$$= \int_{0}^{\frac{3}{2}} (3x - 2x^{2}) dx + \int_{\frac{3}{2}}^{2} (2x^{2} - 3x) dx = \frac{19}{12}.$$

$$\int_{0}^{2} \left[x - \frac{1}{2} \right] dx = \int_{\frac{-1}{2}}^{\frac{3}{2}} [t] dt$$

$$= \int_{-\frac{1}{2}}^{0} (-1) dt + \int_{0}^{1} 0 \cdot dt + \int_{1}^{\frac{3}{2}} 1 \cdot dt = 0.$$

CollegeDekho

10. Consider a curve y = y(x) in the first quadrant as shown in the figure. Let the area A₁ is twice the area A₂. Then the normal to the curve perpendicular to the line 2x - 12y = 15 does NOT pass through the point.



- (1)(6,21)
- (2)(8,9)
- (3)(10,-4)
- (4)(12,-15)

Official Ans. by NTA (C)

Ans. (C)

Sol. Given that $A_1 = 2A_2$

from the graph $A_1 + A_2 = xy - 8$

$$\Rightarrow \frac{3}{2}A_1 = xy - 8$$

$$\Rightarrow A_1 = \frac{2}{3}xy - \frac{16}{3}$$

$$\Rightarrow \int_{1}^{x} f(x) dx = \frac{2}{3}xy - \frac{16}{3}$$

$$\Rightarrow$$
 f(x) = $\frac{2}{3}$ (x $\frac{dy}{dx}$ + y)

$$\Rightarrow \frac{2}{3} \times \frac{dy}{dx} = \frac{y}{3}$$

$$\Rightarrow 2\int \frac{dy}{y} = \int \frac{dx}{x}$$

$$\Rightarrow 2\ell ny = \ell nx + \ell nc$$

$$\Rightarrow y^2 = cx$$

As
$$f(4) = 2 \Rightarrow c = 1$$

so
$$y^2 = x$$

slope of normal = -6

$$y = -6(x) - \frac{1}{2}(-6) - \frac{1}{4}(-6)^3$$

$$\Rightarrow$$
 y = $-6x + 3 + 54$

$$\Rightarrow$$
 y + 6x = 57

Now check options and (C) will not satisfy.

11. The equations of the sides AB, BC and CA of a triangle ABC are 2x + y = 0, x + py = 39 and x - y = 3 respectively and P(2, 3) is its circumcentre. Then which of the following is NOT true:

$$(A) (AC)^2 = 9p$$

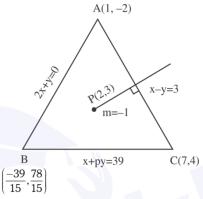
(B)
$$(AC)^2 + p^2 = 136$$

(C)
$$32 < \text{area } (\Delta ABC) < 36$$

(D)
$$34 < \text{area } (\Delta ABC) < 38$$

Official Ans. by NTA (D) Ans. (D)

Sol.



Perpendicular bisector of AB

$$x + y = 5$$

Take image of A

$$\frac{x-1}{1} = \frac{y+2}{1} = \frac{-2(-6)}{2} = 6$$

$$7 + 4p = 39$$

$$p = 8$$

solving
$$x + 8y = 39$$
 and $y = -2x$

$$x = \frac{-39}{15}$$
 $y = \frac{78}{15}$

$$AC^2 = 72 = 9p$$

$$AC^2 + p^2 = 72 + 64 = 136$$

$$\Delta ABC = \frac{1}{2} \begin{vmatrix} 1 & -2 & 1 \\ 7 & 4 & 1 \\ \frac{-39}{15} & \frac{78}{15} & 1 \end{vmatrix}$$

$$= \frac{1}{2} \left[4 - \frac{78}{15} + 2 \left(7 + \frac{39}{15} \right) + 7 \left(\frac{78}{15} \right) + \frac{4 \times 39}{15} \right]$$

$$= \frac{1}{2} \left[18 + 18 \times \frac{13}{5} \right]$$

$$= 9 \left[\frac{18}{5} \right] = \frac{162}{5} = 32.4$$

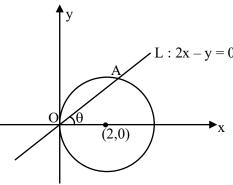
Ans. (D)

CollègeDékho

- **12.** A circle C_1 passes through the origin O and has diameter 4 on the positive x-axis. The line y = 2xgives a chord OA of a circle C₁. Let C₂ be the circle with OA as a diameter. If the tangent to C₂ at the point A meets the x-axis at P and y-axis at Q, then QA : AP is equal to :
 - (A) 1 : 4
- (B) 1:5
- (C) 2:5
- (D) 1:3

Official Ans. by NTA (A)

Sol. $C_1: x^2 + y^2 - 4x = 0$

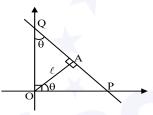


 C_2 is a circle with OA as diameter.

So, tangent at A on C₂ is perpendicular to OR

Let
$$OA = \ell$$

$$\therefore \frac{QA}{AP} = \frac{\ell \cot \theta}{\ell \tan \theta}$$
$$= \frac{1}{\tan^2 \theta} = \frac{1}{4}$$



13. If the length of the latus rectum of a

parabola, whose focus is (a, a) and the tangent at its vertex is x + y = a, is 16, then |a| is equal to :

- (A) $2\sqrt{2}$
- (B) $2\sqrt{3}$
- (C) $4\sqrt{2}$
- (D) 4

Official Ans. by NTA (C)

Ans. (C)

Sol.

$$|P| = \left| \frac{a}{\sqrt{2}} \right| = \frac{16}{4} = 4$$

$$|a| = 4\sqrt{2}$$

Ans. (C)

If the length of the perpendicular drawn from the point P(a, 4, 2), a > 0 on the $\frac{x+1}{2} = \frac{y-3}{3} = \frac{z-1}{-1}$ is $2\sqrt{6}$ units and

 $Q(\alpha_1, \alpha_2, \alpha_3)$ is the image of the point P in this

line, then $a + \sum_{i=1}^{3} \alpha_{i}$ is equal to:

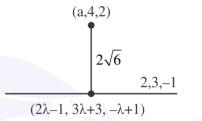
(A)7

- (B) 8
- (C) 12
- (D) 14

Official Ans. by NTA (B)

Ans. (B)

Sol.



$$(2\lambda - 1 - a)2 + (3\lambda - 1)3 + (-\lambda - 1)(-1) = 0$$

$$\Rightarrow 4\lambda - 2 - 2a + 9\lambda - 3 + \lambda + 1 = 0$$

$$\Rightarrow 14\lambda - 4 - 2a = 0$$

$$\Rightarrow 7\lambda - 2 - a = 0$$

$$(2\lambda - 1 - a)^2 + (3\lambda - 1)^2 + (\lambda + 1)^2 = 24$$

$$\Rightarrow (5\lambda - 1)^2 + (3\lambda - 1)^2 + (\lambda + 1)^2 = 24$$

$$\Rightarrow 35\lambda^2 - 14\lambda - 21 = 0$$

$$\Rightarrow$$
 $(\lambda - 1)(35\lambda + 21) = 0$

For,
$$\lambda = 1 \implies a = 5$$

Let $(\alpha_1, \alpha_2, \alpha_3)$ be reflection of point P

$$\alpha_1 + 5 = 2$$

$$\alpha_2 + 4 - 1$$

$$\alpha_1 + 5 = 2$$
 $\alpha_2 + 4 = 12$ $\alpha_3 + 2 = 0$

$$\alpha_1 = -3$$

$$\alpha_2 = 8$$

$$\alpha_1 = -3$$
 $\alpha_2 = 8$ $\alpha_3 = -2$

$$a + \alpha_1 + \alpha_2 + \alpha_3 = 8$$

15. If the line of intersection of the planes ax + by = 3and ax + by + cz = 0, a > 0 makes an angle 30° with the plane -z+2=0, then the direction cosines of the line are:

(A)
$$\frac{1}{\sqrt{2}}$$
, $\frac{1}{\sqrt{2}}$, 0

(A)
$$\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0$$
 (B) $\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}, 0$

(C)
$$\frac{1}{\sqrt{5}}$$
, $-\frac{2}{\sqrt{5}}$, 0 (D) $\frac{1}{2}$, $-\frac{\sqrt{3}}{2}$, 0

(D)
$$\frac{1}{2}$$
, $-\frac{\sqrt{3}}{2}$, 0

Official Ans. by NTA (A or B)

Ans. (A or B or both)

CollegeDekho

Sol.
$$\vec{n} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a & b & 0 \\ a & b & c \end{vmatrix}$$

$$= bc\hat{i} - ac\hat{j}$$

Direction ratios of line are b, -a, 0

Direction ratios of normal of the plane are 0, 1, -1

$$\cos 60^{\circ} = \left| \frac{-a}{\left| \sqrt{2} \right| \sqrt{b^2 + a^2}} \right| = \frac{1}{2}$$

$$\Rightarrow \left| \frac{a}{\sqrt{a^2 + b^2}} \right| = \frac{1}{\sqrt{2}}$$

$$\Rightarrow$$
 b = \pm a

So, D.R.'s can be $(\pm a, -a, 0)$

$$\therefore$$
 D.C.'s can be $\pm \left(\frac{\pm 1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0\right)$

Let X have a binomial distribution B(n, p) such 16. that the sum and the product of the mean and variance of X are 24 and 128 respectively. If

$$P(X > n-3) = \frac{k}{2^n}$$
, then k is equal to

- (A) 528
- (B) 529
- (C)629
- (D) 630

Official Ans. by NTA (B)

Ans. (B)

Sol. Let
$$\alpha = \text{Mean}$$
 & $\beta = \text{Variance } (\alpha > \beta)$

So,
$$\alpha + \beta = 24$$
, $\alpha\beta = 128$

$$\Rightarrow \alpha = 16$$
 & $\beta = 8$

$$\beta = 8$$

$$\Rightarrow$$
 np = 16

$$\therefore p = \frac{1}{2}, n = 32$$

$$p(x > n - 3) = \frac{1}{2^{n}} ({}^{n}C_{n-2} + {}^{n}C_{n-1} + {}^{n}C_{n})$$

$$\therefore k = {}^{32}C_{30} + {}^{32}C_{31} + {}^{32}C_{32} = \frac{32 \times 31}{2} + 32 + 1$$

$$=496+33=529$$

- 17. A six faced die is biased such that $3 \times P(a \text{ prime})$ number) = $6 \times P(a \text{ composite number}) = 2 \times P(1)$. Let X be a random variable that counts the number of times one gets a perfect square on some throws of this die. If the die is thrown twice, then the mean of X is:
 - (A) $\frac{3}{11}$
- (B) $\frac{5}{11}$
- (C) $\frac{7}{11}$
- (D) $\frac{8}{11}$

Official Ans. by NTA (D)

Ans. (D)

Sol. Let
$$\frac{P(a \text{ prime number})}{2} = \frac{P(a \text{ composite})}{1} = \frac{P(1)}{3} = k$$

So, P(a prime number) = 2k,

P(a composite number) = k,

&
$$P(1) = 3k$$

&
$$3 \times 2k + 2 \times k + 3k = 1$$

$$\Rightarrow k = \frac{1}{11}$$

$$P(success) = P(1 \text{ or } 4) = 3k + k = \frac{4}{11}$$

Number of trials, n = 2

$$\therefore$$
 mean = np = $2 \times \frac{4}{11} = \frac{8}{11}$

18. The angle of elevation of the top P of a vertical tower PQ of height 10 from a point A on the horizontal ground is 45°. Let R be a point on AQ and from a point B, vertically above R, the angle of elevation of P is 60° . If $\angle BAQ = 30^{\circ}$, AB = d and the area of the trapezium PQRB is α , then the ordered pair (d, α) is:

(A)
$$(10(\sqrt{3}-1),25)$$

(A)
$$\left(10\left(\sqrt{3}-1\right),25\right)$$
 (B) $\left(10\left(\sqrt{3}-1\right),\frac{25}{2}\right)$

(C)
$$\left(10\left(\sqrt{3}+1\right),25\right)$$

(C)
$$\left(10\left(\sqrt{3}+1\right),25\right)$$
 (D) $\left(10\left(\sqrt{3}+1\right),\frac{25}{2}\right)$

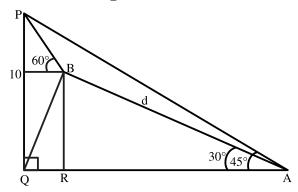
Official Ans. by NTA (A)

Ans. (A)

Sol. QA = 10 RA =
$$d\cos 30^{\circ} = \frac{\sqrt{3}d}{2}$$

$$QR = 10 - \frac{\sqrt{3}d}{2}$$

$$BR = d\sin 30^{\circ} = \frac{d}{2}$$



$$\tan 60^\circ = \frac{PQ - BR}{QR} = \frac{10 - \frac{d}{2}}{10 - \frac{\sqrt{3}d}{2}}$$

$$\Rightarrow \sqrt{3} = \frac{20 - d}{20 - \sqrt{3}d}$$

$$\Rightarrow 20\sqrt{3} - 3d = 20 - d$$

$$\Rightarrow 2d = 20(\sqrt{3} - 1)$$

$$\Rightarrow$$
 d = $10(\sqrt{3}-1)$

$$ar(PQRB) = \alpha = \frac{1}{2}(PQ + BR) \cdot QR$$

$$= \frac{1}{2} \left(10 + \frac{d}{2} \right) \cdot \left(10 - \frac{\sqrt{3}d}{2} \right)$$

$$= \frac{1}{2} \left(10 + 5\sqrt{3} - 5 \right) \left(10 - 15 + 5\sqrt{3} \right)$$

$$= \frac{1}{2} \left(5\sqrt{3} + 5 \right) \left(5\sqrt{3} - 5 \right) = \frac{1}{2} (75 - 25) = 25$$

19. Let
$$S = \left\{\theta \in \left(0, \frac{\pi}{2}\right) : \sum_{m=1}^{9} \sec\left(\theta + \left(m-1\right)\frac{\pi}{6}\right) \sec\left(\theta + \frac{m\pi}{6}\right) = -\frac{8}{\sqrt{3}}\right\}$$

(A)
$$S = \left\{ \frac{\pi}{12} \right\}$$

(A)
$$S = \left\{ \frac{\pi}{12} \right\}$$
 (B) $S = \left\{ \frac{2\pi}{3} \right\}$

(C)
$$\sum_{\theta \in S} \theta = \frac{\pi}{2}$$

(D)
$$\sum_{\Omega \to S} \theta = \frac{3\pi}{4}$$

Official Ans. by NTA (C)

Ans. (C)

Sol. Let
$$\alpha = \theta + (m-1)\frac{\pi}{6}$$

&
$$\beta = \theta + m \frac{\pi}{6}$$

So,
$$\beta - \alpha = \frac{\pi}{6}$$

Here,
$$\sum_{m=1}^{9} \sec \alpha \cdot \sec \beta = \sum_{m=1}^{9} \frac{1}{\cos \alpha \cdot \cos \beta}$$
$$= 2\sum_{m=1}^{9} \frac{\sin(\beta - \alpha)}{\cos \alpha \cdot \cos \beta} = 2\sum_{m=1}^{9} (\tan \beta - \tan \alpha)$$
$$= 2\sum_{m=1}^{9} \left(\tan \left(\theta + m \frac{\pi}{6} \right) - \tan \left(\theta + (m-1) \frac{\pi}{6} \right) \right)$$
$$= 2\left(\tan \left(\theta + \frac{9\pi}{6} \right) - \tan \theta \right) = 2\left(-\cot \theta - \tan \theta \right) = -\frac{8}{\sqrt{3}}$$
(Given)

$$\therefore \tan \theta + \cot \theta = \frac{4}{\sqrt{3}}$$

$$\Rightarrow \tan \theta = \frac{1}{\sqrt{3}} \text{ or } \sqrt{3}$$

So,
$$S = \left\{ \frac{\pi}{6}, \frac{\pi}{3} \right\}$$

$$\sum_{0 = S} \theta = \frac{\pi}{6} + \frac{\pi}{3} = \frac{\pi}{2}$$

20. If the truth value of the statement

 $(P \land (\sim R)) \rightarrow ((\sim R) \land Q)$ is F, then the truth value

of which of the following is F?

(A)
$$P \lor Q \rightarrow \sim R$$

(B)
$$R \vee Q \rightarrow \sim P$$

$$(C) \sim (P \vee Q) \longrightarrow R$$
 $(D) \sim (R \vee Q) \longrightarrow P$

(D)
$$\sim$$
 (R \vee Q) $\rightarrow \sim$ P

Official Ans. by NTA (D)

Ans. (D)

 $X \Rightarrow Y$ is a false Sol.

when X is true and Y is false

So,
$$P \rightarrow T$$
, $Q \rightarrow F$, $R \rightarrow F$

(A)
$$P \lor Q \rightarrow \sim R$$
 is T

(B)
$$R \lor Q \rightarrow \sim P$$
 is T

(C)
$$\sim (P \vee Q) \rightarrow \sim R$$
 is T

(D)
$$\sim (R \vee Q) \rightarrow \sim P$$
 is F

SECTION-B

1. Consider a matrix
$$A = \begin{bmatrix} \alpha & \beta & \gamma \\ \alpha^2 & \beta^2 & \gamma^2 \\ \beta + \gamma & \gamma + \alpha & \alpha + \beta \end{bmatrix}$$

where α , β , γ are three distinct natural numbers.

If
$$\frac{\det\left(\mathrm{adj}\left(\mathrm{adj}\left(\mathrm{adj}\left(\mathrm{adj}\left(\mathrm{adj}A\right)\right)\right)\right)}{\left(\alpha-\beta\right)^{16}\left(\beta-\gamma\right)^{16}\left(\gamma-\alpha\right)^{16}}=2^{32}\times3^{16},\text{ then the}$$

number of such 3 – tuples (α, β, γ) is _____.

Official Ans. by NTA (42)

Ans. (42)

Sol.
$$A = \begin{bmatrix} \alpha & \beta & \gamma \\ \alpha^2 & \beta^2 & \gamma^2 \\ \beta + \gamma & \gamma + \alpha & \alpha + \beta \end{bmatrix}$$

$$R_3 \rightarrow R_3 + R_1$$

$$\Rightarrow |A| \qquad \beta + \gamma \begin{vmatrix} \alpha & \beta & \gamma \\ \alpha^2 & \beta^2 & \gamma^2 \\ 1 & 1 & 1 \end{vmatrix}$$

$$\Rightarrow |A| = (\alpha + \beta + \gamma)(\alpha - \beta)(\beta - \gamma)(\gamma - \alpha)$$

$$\therefore |adj A| = |A|^{n-1}$$

$$|adj (adj A)| = |A|^{(n-1)^2}$$

$$|| (A)^{(n-1)^4} = |A|^{2^4} = |A|^{16}$$

$$(\alpha + \beta + \gamma)^{16} = 2^{32} \cdot 3^{16}$$

$$\Rightarrow (\alpha + \beta + \gamma)^{16} = (2^2 \cdot 3)^{16} = (12)^{16}$$

$$\Rightarrow \alpha + \beta + \gamma = 12$$

$$\alpha, \beta, \gamma \in \mathbb{N}$$

$$(\alpha - 1) + (\beta - 1) + (\gamma - 1) = 9$$

number all tuples $(\alpha, \beta, \gamma) = {}^{11}C_2 = 55$

1 case for $\alpha = \beta = \gamma$

& 12 case when any two of these are equal

So, No. of distinct tuples (α, β, γ)

$$= 55 - 13 = 42$$

2. The number of functions f, from the set

$$A = \{x \in N : x^2 - 10x + 9 \le 0\}$$
 to the set

$$B = \left\{ n^2 : n \in N \right\} \text{ such that } f(x) \le (x-3)^2 + 1, \text{ for }$$

every $x \in A$, is _____.

Official Ans. by NTA (1440)

Ans. (1440)

Sol.
$$(x^2 - 10x + 9) \le 0 \Rightarrow (x - 1)(x - 9) \le 0$$

$$\Rightarrow x \in [1, 9] \Rightarrow A = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

$$f(x) \le (x-3)^2 + 1$$

$$x = 1 : f(1) \le 5 \implies 1^2, 2^2$$

$$x = 2 : f(2) \le 2 \Rightarrow 1^2$$

$$x = 3 : f(3) \le 1 \Rightarrow 1^2$$

$$x = 4 : f(4) \le 2 \Rightarrow 1^2$$

$$x = 5 : f(5) \le 5 \implies 1^2, 2^2$$

$$x = 6 : f(6) \le 10 \Rightarrow 1^2, 2^2, 3^2$$

$$x = 7 : f(7) \le 17 \Rightarrow 1^2, 2^2, 3^2, 4^2$$

$$x = 8 : f(8) \le 26 \Rightarrow 1^2, 2^2, 3^2, 4^2, 5^2$$

$$x = 9 : f(9) \le 37 \Rightarrow 1^2, 2^2, 3^2, 4^2, 5^2, 6^2$$

Total number of such function

$$= 2(6!) = 2(720) = 1440$$

3. Let for the 9^{th} term in the binomial expansion of $(3 + 6x)^n$, in the increasing powers of 6x, to be the

greatest for $x = \frac{3}{2}$, the least value of n is n_0 . If k is

the ratio of the coefficient of x^6 to the coefficient

of x^3 , then $k + n_0$ is equal to:

Official Ans. by NTA (24)

Ans. (24)

Sol.
$$(3+6x)^n = {}^nC_03^n + {}^nC_13^{n-1}(6x)^1 + \dots$$

$$T_{r+1} {}^{n}C_{r}3^{n-r}.(6x)r = {}^{n}C_{r}3^{n-r}.6^{r}.x^{r}$$

$$= {}^{n}C_{r}3^{n-r}.3^{r}.2^{r}.\left(\frac{3}{2}\right)^{r} = {}^{n}C_{r}3^{n}.3^{r} \qquad [for x = \frac{3}{2}]$$

T₉ is greatest of
$$x = \frac{3}{2}$$

So,
$$T_9 > T_{10}$$
 and $T_9 > T_8$

(concept of numerically greatest term)

Here,
$$\frac{T_9}{T_{10}} > 1$$
 and $\frac{T_9}{T_8} > 1$

$$\Rightarrow \frac{{}^{n}C_{8}3^{n}.3^{8}}{{}^{n}C_{9}3^{n}.3^{9}} > 1 \text{ and } \frac{{}^{n}C_{8}3^{n}.3^{8}}{{}^{n}C_{7}3^{n}.3^{7}} > 1$$

and
$$\frac{{}^{n}C_{8}}{{}^{n}C_{7}} > \frac{1}{3}$$

and
$$\frac{n-7}{8} > \frac{1}{3}$$

$$\Rightarrow \frac{29}{3} < n < 11 \Rightarrow n = 10 = n_0$$

So, in
$$(3 + 6x)^n$$
 for $n = n_0 = 10$

i.e., in
$$(3 + 6x)^{10}$$
, here $T_{r+1} = {}^{10}C_r 3^{10-r} 6^r x^r$

$$T_7 = {}^{10}C_63^4.6^6.x^6 = 210.3^{10}.2^6x^6$$

$$T_4 = {}^{10}C_3 3^7 6^3 x^3 = 120.3^{10}.2^3 x^3$$

Ratio of coefficient of x^6 and coefficient of $x^3 = k$

$$\therefore k = \frac{120 \, 3^{10} \, 2^3}{4}$$

So,
$$k + n_0 = 14 + 10 = 24$$

4. $\frac{2^3-1^3}{1\times7} + \frac{4^3-3^3+2^3-1^3}{2\times11} +$

$$\frac{6^3 - 5^3 + 4^3 - 3^3 + 2^3 - 1^3}{3 \times 15} + \dots +$$

$$\frac{30^3 - 29^3 + 28^3 - 27^3 + \dots + 2^3 - 1^3}{15 \times 63}$$

is equal to _____.

Official Ans. by NTA (120)

Ans. (120)

Sol.
$$T_n = \frac{2\sum_{r=1}^{n} (2r)^3 - (\sum_{r=1}^{2n} r^3)}{n(4n+3)}$$

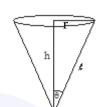
$$\Rightarrow T_n = n$$

So,
$$\sum_{n=1}^{15} T_n = 120$$

5. A water tank has the shape of a right circular cone with axis vertical and vertex downwards. Its semi-vertical angle is $\tan^{-1} \frac{3}{4}$. Water is poured in it at a constant rate of 6 cubic meter per hour. The rate (in square meter per hour), at which the wet curved surface area of the tank is increasing, when the

Official Ans. by NTA (5)

Ans. (5)



$$\tan\theta = \frac{3}{4} = \frac{r}{h}$$

depth of water in the tank is 4 meters, is . .

$$\frac{\mathrm{dV}}{\mathrm{dt}} = 6$$

$$V = \frac{1}{3}\pi r^2 h = \frac{1}{3}\pi h^3 \tan^2 \theta = \frac{9\pi}{48} h^3 = \frac{3\pi}{16} h^3$$

$$\Rightarrow \frac{dV}{dt} = \frac{3\pi}{16} \cdot 3h^2 \cdot \frac{dh}{dt} = 6 \Rightarrow \left(\frac{dh}{dt}\right)_{h=4} = \frac{2}{3\pi} m / hr$$

Now,
$$S = \pi r \ell = \frac{15}{16} \pi h^2$$

$$\Rightarrow \frac{dS}{dt} = \frac{15\pi}{16} \cdot 2h \frac{dh}{dt}$$

6. For the curve $C : (x^2 + y^2 - 3) + (x^2 - y^2 - 1)^5 = 0$, the value of $3y' - y^3y''$, at the point (α, α) , $\alpha > 0$, on C, is equal to _____.

Official Ans. by NTA (16)

Ans. (16)

Sol. (α, α) lies on

C:
$$x^2 + y^2 - 3 + x^2 - y^2 - 1^5 = 0$$

Put
$$(\alpha, \alpha)$$
, $2\alpha^2 - 3 + -1^5 = 0$

$$\Rightarrow \alpha = \sqrt{2}$$

Now, differentiate C

$$2x + 2y \cdot y' + 5(x^2 - y^2 - 1)^4 (2x - 2yy') = 0 \dots (1)$$

At
$$(\sqrt{2},\sqrt{2})$$

CollegeDekho

$$\sqrt{2} + \sqrt{2}y' + 5(-1)^4(\sqrt{2} - \sqrt{2}y') = 0$$

$$\Rightarrow y' = \frac{3}{2} \qquad \dots (2)$$

Diff. (1) w.r.t. x

Again, Diff. (1) w.r.t. x

$$1 + (y')^{2} + yy'' + 20(x^{2} - y^{2} - 1)^{3}(x - yy')^{2}.2$$

$$+ 5(x^{2} - y^{2} - 1)^{4}(1 - (y')^{2} - yy'') = 0$$
At $(\sqrt{2}, \sqrt{2})$ and $y' = \frac{3}{2}$

We have,

$$\left(1 + \frac{9}{4}\right) + \sqrt{2}y'' - 40\left(\sqrt{2} - \sqrt{2} \cdot \frac{3}{2}\right)^2 + 5\left(1\right)\left(1 - \frac{9}{4} - \sqrt{2}y''\right) = 0$$

$$\Rightarrow 4\sqrt{2}y'' = -23$$

$$3y' - y^3y'' = \frac{9}{2} + \frac{23}{2} = 16$$

7. Let $f(x) = min\{[x-1], [x-2], ..., [x-10]\}$ where [t] denotes the greatest integer \leq t. Then

$$\int_{0}^{10} f(x) dx + \int_{0}^{10} (f(x))^{2} dx + \int_{0}^{10} |f(x)| dx \text{ is equal to } \underline{\hspace{1cm}}.$$

Official Ans. by NTA (385)

Ans. (385)

Sol.
$$f(x) = [x] - 10$$

$$\int_{0}^{10} f(x) \cdot dx = -10 - 9 - 8 - \dots - 1$$
$$= -\frac{10 \cdot 11}{2} = -55$$

$$\int_{0}^{10} (f(x))^{2} dx = 10^{2} + 9^{2} + 8^{2} + \dots + 1^{2}$$
$$= \frac{10 \cdot 11 \cdot 21}{6} = 385$$

$$\int_{0}^{10} |f(x)| = 10 + 9 + 8 + \dots + 1$$
$$= \frac{10 \cdot 11}{2} = 55$$
$$= -55 + 385 + 55 = 385$$

8. Let f be a differentiable function satisfying

$$f(x) = \frac{2}{\sqrt{3}} \int_{0}^{\sqrt{3}} f\left(\frac{\lambda^2 x}{3}\right) d\lambda, x > 0$$
 and $f(1) = \sqrt{3}$. If

y=f(x) passes through the point $(\alpha, 6)$, then α is equal to

Official Ans. by NTA (12)

Ans. (12)

Sol. Let,
$$\frac{\lambda^2 x}{3} = t$$

$$\Rightarrow \frac{2\lambda x}{3} d\lambda = dt$$

$$\Rightarrow d\lambda = \frac{3}{2} \cdot \frac{1\sqrt{x}}{x \cdot \sqrt{3}\sqrt{t}} dt$$

$$\Rightarrow d\lambda = \frac{\sqrt{3}}{2} \cdot \frac{1}{\sqrt{x}} \cdot \frac{dt}{\sqrt{t}}$$

So,
$$f(x) = \frac{1}{\sqrt{x}} \int_{0}^{x} \frac{f(t)}{\sqrt{t}} dt$$

$$\Rightarrow \sqrt{x} \cdot f'(x) + \frac{f(x)}{2\sqrt{x}} = \frac{f(x)}{\sqrt{x}}$$

$$\sqrt{}$$

$$\Rightarrow \frac{dy}{y} = \frac{dx}{2x}$$

$$\Rightarrow \ln y = \frac{1}{2} \ln x + c \Rightarrow f(x) = \sqrt{x}$$

$$\Rightarrow$$
 y = $\sqrt{3x}$ {as f(1) = $\sqrt{3}$ }

So,
$$f(x) = \sqrt{3x}$$

Now,
$$f(\alpha) = 6 \Rightarrow 36 = 3\alpha$$

$$\Rightarrow \alpha = 12$$

9. A common tangent T to the curves

$$C_1: \frac{x^2}{4} + \frac{y^2}{9} = 1$$
 and $C_2: \frac{x^2}{42} - \frac{y^2}{143} = 1$ does not

pass through the fourth quadrant. If T touches C_1 at (x_1, y_1) and C_2 at (x_2, y_2) , then $|2x_1 + x_2|$ is equal to

Official Ans. by NTA (20)

Ans. (20)

Sol. Let common tangents are

$$T_1: y = mx \pm \sqrt{4m^2 + 9}$$

&
$$T_2$$
: $y = mx \pm \sqrt{42m^2 - 13}$

So,
$$4m^2 + 9 = 42m^2 - 143$$

$$\Rightarrow 38m^2 = 152$$

$$\Rightarrow$$
 m = ± 2

&
$$c = \pm 5$$

For given tangent not pass through 4th quadrant

$$T: y = 2x + 5$$

Now, comparing with
$$\frac{xx_1}{4} + \frac{yy_1}{9} = 1$$

We get,
$$\frac{x_1}{8} = -\frac{1}{5} \implies x_1 = -\frac{8}{5}$$

$$\frac{xx_2}{42} - \frac{yy_2}{143} = 1$$

$$2x - y = -5$$
 we have

So,
$$|2x_1 + x_2| = \left| \frac{-100}{5} \right| = 20$$

10. Let \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} be three non-coplanar vectors such that

$$\overrightarrow{a} \times \overrightarrow{b} = 4 \vec{c}, \vec{b} \times \vec{c} = 9 \vec{a} \text{ and } \vec{c} \times \vec{a} = \alpha \vec{b}, \alpha > 0.$$

If
$$\begin{vmatrix} \overrightarrow{a} \\ a \end{vmatrix} + \begin{vmatrix} \overrightarrow{b} \\ b \end{vmatrix} + \begin{vmatrix} \overrightarrow{c} \\ c \end{vmatrix} = \frac{1}{36}$$
, then α is equal to _____.

Official Ans. by NTA (Drop)

Ans. (Bonus)

Sol.
$$\overrightarrow{a} \times \overrightarrow{b} = 4\overrightarrow{c} \Rightarrow \overrightarrow{a} \cdot \overrightarrow{c} = 0 = \overrightarrow{b} \cdot \overrightarrow{c}$$

$$\overrightarrow{b} \times \overrightarrow{c} = \overrightarrow{9} \overrightarrow{a} \implies \overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{0} = \overrightarrow{a} \cdot \overrightarrow{c}$$

$$\therefore \stackrel{\rightarrow}{a}, \stackrel{\rightarrow}{b}, \stackrel{\rightarrow}{c}$$
 are mutually \perp set of vectors.

$$\Rightarrow$$
 $|\vec{a}||\vec{b}| = 4|\vec{c}|, |\vec{b}||\vec{c}| = 9|\vec{a}| & |\vec{c}||\vec{a}| = \alpha |\vec{b}|$

$$\Rightarrow \frac{|\vec{a}|}{|\vec{c}|} = \frac{4}{9} \frac{|\vec{c}|}{|\vec{a}|}$$

$$\Rightarrow \frac{|\vec{c}|}{|\vec{a}|} = \frac{3}{2}$$

$$\therefore \text{ If } |a| = \lambda, |c| = \frac{3\lambda}{2} \& |b| = 6$$

Now
$$|a| + |b| + |c| = \frac{1}{36}$$

$$\Rightarrow \frac{5}{2}\lambda + 6 = \frac{1}{36}, \ \lambda = \frac{-43}{18} = |a|$$

which gives negative value of λ or |a| which is NOT possible & hence data seems to be wrong.

But if
$$|\vec{a}| + |\vec{b}| + |\vec{c}| = 36$$

$$\frac{5}{2}\lambda + 6 = 36$$

$$\lambda = 12$$

$$\alpha = \frac{|\vec{c}||\vec{a}|}{|\vec{b}|} = \frac{3 \times 12}{2} \times \frac{12}{6}$$

$$\alpha = 36$$