

MATHEMATICS

1. The angle between the straight lines, whose
direction cosines are given by the equations
$$2l + 2m - n = 0$$
 and $mn + nl + lm = 0$, is:
(1) $\frac{\pi}{2}$ (2) $\pi - \cos^{-1}\left(\frac{4}{9}\right)$
(3) $\cos^{-1}\left(\frac{8}{9}\right)$ (4) $\frac{\pi}{3}$
Official Ans. by NTA (1)
Sol. $n = 2(\ell + m)$
 $\ell m + n(\ell + m) = 0$
 $\ell m + 2(\ell + m)^2 = 0$
 $2\ell^2 + 2m^2 + 5m\ell = 0$
 $2\ell^2 + 2m^2 + 5m\ell = 0$
 $2\ell^2 + 5t + 2 = 0$
(t + 2) (2t + 1) $= 0$
 $\Rightarrow t = -2; -\frac{1}{2}$
(i) $\frac{\ell}{m} = -2$
 $(-2m, m, -2m)$
 $(-2, 1, -2)$
 $\cos \theta = \frac{-2 - 2 + 4}{\sqrt{9} \sqrt{9}} = 0 \Rightarrow 0 = \frac{\pi}{2}$
2. Let $A = \begin{pmatrix} [x + 1] & [x + 2] & [x + 3] \\ [x] & [x + 3] & [x + 3] \\ [x] & [x + 2] & [x + 4] \end{pmatrix}$, where [t]

SECTION-A

denotes the greatest integer less than or equal to t. If det(A) = 192, then the set of values of x is the interval:

(1)[68, 69)(2)[62, 63)

(3) [65, 66) (4) [60, 61)

Official Ans. by NTA (2)

- $\begin{vmatrix} x+1 & x+2 & x+3 \\ x & x+3 & x+3 \\ x & x+2 & x+4 \end{vmatrix} = 192$ Sol. $R_1 \rightarrow R_1 - R_3 \& R_2 \rightarrow R_2 - R_3$ $\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ [x] & [x]+2 & [x]+4 \end{bmatrix} = 192$ $2[x] + 6 + [x] = 192 \Longrightarrow [x] = 62$ 3. Let M and m respectively be the maximum and minimum values of the function $f(x) = \tan^{-1}(\sin x + \cos x)$ in $\left|0,\frac{\pi}{2}\right|$, Then the value of tan(M - m) is equal to:
 - (2) $2 \sqrt{3}$ (4) $3 2\sqrt{2}$ (1) $2 + \sqrt{3}$ (3) $3 + 2\sqrt{2}$

Official Ans. by NTA (4)

Sol. Let
$$g(x) = \sin x + \cos x = \sqrt{2} \quad \sin \left(x + \frac{\pi}{4}\right)$$

 $g(x) \in \left[1, \sqrt{2}\right] \text{ for } x \in \left[0, \pi/2\right]$
 $f(x) = \tan^{-1} (\sin x + \cos x) \in \left[\frac{\pi}{4}, \tan^{-1} \sqrt{2}\right]$
 $\tan (\tan^{-1} \sqrt{2} - \frac{\pi}{4}) = \frac{\sqrt{2} - 1}{1 + \sqrt{2}} \times \frac{\sqrt{2} - 1}{\sqrt{2} - 1} = 3 - 2\sqrt{2}$
4. Each of the persons A and B independently tosses

three fair coins. The probability that both of them get the same number of heads is :

(1)
$$\frac{1}{8}$$
 (2) $\frac{5}{8}$ (3) $\frac{5}{16}$ (4) 1

Official Ans. by NTA (3)

4.

Collège (hO

Sol.

C-I '0' Head
T T T
$$\left(\frac{1}{2}\right)^3 \left(\frac{1}{2}\right)^3 = \frac{1}{64}$$

C-II '1' head
H T T $\left(\frac{3}{8}\right) \left(\frac{3}{8}\right) = \frac{9}{64}$
C-III '2' Head
H H T $\left(\frac{3}{8}\right) \left(\frac{3}{8}\right) = \frac{9}{64}$
C-IV '3' Heads
H H H $\left(\frac{1}{8}\right) \left(\frac{1}{8}\right) = \frac{1}{64}$
Total probability = $\frac{5}{16}$.

5. A differential equation representing the family of parabolas with axis parallel to y-axis and whose length of latus rectum is the distance of the point (2, -3) form the line 3x + 4y = 5, is given by :

(1)
$$10\frac{d^2y}{dx^2} = 11$$
 (2) $11\frac{d^2x}{dy^2} = 10$
(3) $10\frac{d^2x}{dy^2} = 11$ (4) $11\frac{d^2y}{dx^2} = 10$

Official Ans. by NTA (4)

Sol. α . R = $\frac{|3(2)+4(-3)-5|}{5} = \frac{11}{5}$

$$(x-h)^2 = \frac{11}{5}(y-k)$$

differentiate w.r.t 'x' : -

$$2(x-h) = \frac{11}{5} \frac{dy}{dx}$$

again differentiate

 $2 = \frac{11}{5} \frac{d^2 y}{dx^2}$ $\frac{11d^2y}{dx^2} = 10.$ 6. If two tangents drawn from a point P to the parabola $y^2 = 16(x - 3)$ are at right angles, then the locus of point P is :

(1)
$$x + 3 = 0$$

(2) $x + 1 = 0$
(3) $x + 2 = 0$
(4) $x + 4 = 0$
Official Ans. by NTA (2)

Sol. Locus is directrix of parabola

 $\mathbf{x} - \mathbf{3} + \mathbf{4} = \mathbf{0} \implies \mathbf{x} + \mathbf{1} = \mathbf{0}.$

7. The equation of the plane passing through the line of intersection of the planes $\vec{r}.(\hat{i}+\hat{j}+\hat{k})=1$ and $\vec{r} \cdot \left(2\hat{i}+3\hat{j}-\hat{k}\right)+4=0$ and parallel to the x-axis is: (1) $\vec{r} \cdot (\hat{j} - 3\hat{k}) + 6 = 0$ (2) $\vec{r} \cdot (\hat{i} + 3\hat{k}) + 6 = 0$ (3) $\vec{r} \cdot (\hat{i} - 3\hat{k}) + 6 = 0$ (4) $\vec{r} \cdot (\hat{j} - 3\hat{k}) - 6 = 0$

Official Ans. by NTA (1)

Sol. Equation of planes are

$$\vec{r} \cdot (\hat{i} + \hat{j} + \hat{k}) - 1 = 0 \implies x + y + z - 1 = 0$$

and $\vec{r} \cdot (2\hat{i} + 3\hat{j} - \hat{k}) + 4 = 0 \implies 2x + 3y - z + 4 = 0$

0

equation of planes through line of intersection of these planes is :-

$$(x + y + z - 1) + \lambda (2x + 3y - z + 4) = 0$$

$$\Rightarrow (1 + 2 \lambda) x + (1 + 3 \lambda) y + (1 - \lambda) z - 1 + 4 \lambda = 0$$

But this plane is parallel to x-axis whose direction
are (1, 0, 0)

:.
$$(1+2\lambda)1 + (1+3\lambda)0 + (1-\lambda)0 = 0$$

 $\lambda = -\frac{1}{2}$

.: Required plane is

$$0 \mathbf{x} + \left(1 - \frac{3}{2}\right)\mathbf{y} + \left(1 + \frac{1}{2}\right)\mathbf{z} - 1 + 4\left(\frac{-1}{2}\right) = 0$$
$$\Rightarrow \frac{-\mathbf{y}}{2} + \frac{3}{2}\mathbf{z} - 3 = 0 \qquad \Rightarrow \mathbf{y} - 3\mathbf{z} + 6 = 0$$
$$\Rightarrow \mathbf{\vec{r}} \cdot (\mathbf{\hat{j}} - 3\mathbf{\hat{k}}) + 6 = \mathbf{0} \text{ Ans.}$$

If the solution curve of the differential equation 8. $(2x - 10y^3) dy + ydx = 0$, passes through the points (0, 1) and $(2, \beta)$, then β is a root of the equation: (1) $y^5 - 2y - 2 = 0$ (2) $2y^5 - 2y - 1 = 0$ (3) $2y^5 - y^2 - 2 = 0$ (4) $y^5 - y^2 - 1 = 0$ Official Ans. by NTA (4) $(2x - 10y^3) dy + y dx = 0$ Sol. $\Rightarrow \frac{dx}{dy} + \left(\frac{2}{y}\right)x = 10y^2$ I. F. = $e^{\int \frac{2}{y} dy} = e^{2\ell n(y)} = v^2$ Solution of D.E. is \therefore x. y = $\int (10y^2) y^2 dy$ $xy^2 = \frac{10y^5}{5} + C \implies xy^2 = 2y^5 + C$ It passes through $(0, 1) \rightarrow 0 = 2 + C \Rightarrow C = -2$ \therefore Curve is $|xy^2 = 2y^5 - 2|$ Now, it passes through $(2,\beta)$ $2\beta^2 = 2\beta^5 - 2 \Longrightarrow \beta^5 - \beta^2 - 1 = 0$ \therefore β is root of an equation $y^5 - y^2 - 1 = 0$ Ans. Let A(a, 0), B(b, 2b +1) and C(0, b), $b \neq 0$, $|b| \neq 1$, 9. be points such that the area of triangle ABC is 1 sq. unit, then the sum of all possible values of a is : (1) $\frac{-2b}{b+1}$ (2) $\frac{2b}{b+1}$ (3) $\frac{2b^2}{b+1}$ (4) $\frac{-2b^2}{b+1}$ Official Ans. by NTA (4) $\begin{vmatrix} 1 & a & 0 & 1 \\ b & 2b+1 & 1 \\ 0 & b & 1 \end{vmatrix} = 1$ Sol. $\Rightarrow \begin{vmatrix} a & 0 & 1 \\ b & 2b+1 & 1 \\ 0 & b & 1 \end{vmatrix} = \pm 2$ \Rightarrow a (2b+1-b) - 0 + 1 (b² - 0) = ± 2 $\Rightarrow a = \frac{\pm 2 - b^2}{b + 1}$:. $a = \frac{2 - b^2}{b + 1}$ and $a = \frac{-2 - b^2}{b + 1}$ sum of possible values of 'a' is $=\frac{-2b^2}{2+1}$ Ans.

- 10. Let [λ] be the greatest integer less than or equal to λ. The set of all values of λ for which the system of linear equations x + y + z = 4, 3x + 2y+ 5z = 3, 9x + 4y + (28+ [λ])z = [λ] has a solution is:
 - (1) **R**
 - (2) $(-\infty, -9) \cup (-9, \infty)$
 - (3)[-9,-8)
 - (4) $(-\infty, -9) \cup [-8, \infty)$

Official Ans. by NTA (1)

Sol.
$$D = \begin{vmatrix} 1 & 1 & 1 \\ 3 & 2 & 5 \\ 9 & 4 & 28 + [\lambda] \end{vmatrix} = -24 - [\lambda] + 15 = -[\lambda] - 9$$

if $[\lambda] + 9 \neq 0$ then unique solution

if
$$[\lambda] + 9 = 0$$
 then $D_1 = D_2 = D_3 = 0$

so infinite solutions

Hence λ can be any red number.

- 11. The set of all values of k > -1, for which the equation $(3x^2 + 4x + 3)^2 (k + 1) (3x^2 + 4x + 3) (3x^2 + 4x + 2) + k(3x^2 + 4x + 2)^2 = 0$ has real roots, is :
 - (1) $\left(1, \frac{5}{2}\right]$ (2) [2, 3)

$$(3)\left[-\frac{1}{2},1\right) \qquad (4)\left(\frac{1}{2},\frac{3}{2}\right] - \{1\}$$

Official Ans. by NTA (1)

Sol. $(3x^2 + 4x + 3)^2 - (k + 1) (3x^2 + 4x + 3) (3x^2 + 4x + 2)$ + k $(3x^2 + 4x + 2)^2 = 0$ Let $3x^2 + 4x + 3 = a$ and $3x^2 + 4x + 2 = b \implies b = a - 1$ Given equation becomes $\implies a^2 - (k + 1) ab + k b^2 = 0$ $\implies a (a - kb) - b (a - kb) = 0$ $\implies (a - kb) (a - b) = 0 \implies a = kb \text{ or } a = b \text{ (reject)}$ $\therefore a = kb$ $\implies 3x^2 + 4x + 3 = k (3x^2 + 4x + 2)$

12. A box open from top is made from a rectangular sheet of dimension a × b by cutting squares each of side x from each of the four corners and folding up the flaps. If the volume of the box is maximum, then x is equal to :

(1)
$$\frac{a+b-\sqrt{a^2+b^2-ab}}{12}$$

(2)
$$\frac{a+b-\sqrt{a^2+b^2+ab}}{6}$$

(3)
$$\frac{a+b-\sqrt{a^2+b^2-ab}}{6}$$

(4)
$$\frac{a+b+\sqrt{a^2+b^2-ab}}{6}$$

Official Ans. by NTA (3)

$$V = \ell. b. h = (a - 2x) (b - 2x) x$$

$$\Rightarrow V(x) = (2x - a) (2x - b) x$$

$$\Rightarrow V(x) = 4x^{3} - 2 (a + b) x^{2} + abx$$

$$\Rightarrow \frac{d}{dx} v(x) = 12x^{2} - 4 (a + b) x + ab$$

$$\frac{d}{dx} (v(x)) = 0 \Rightarrow 12x^{2} - 4 (a + b) x + ab = 0 <_{\beta}^{\alpha}$$

$$\Rightarrow x = \frac{4(a + b) \pm \sqrt{16(a + b)^{2} - 48ab}}{2(12)}$$

$$= \frac{(a + b) \pm \sqrt{a^{2} + b^{2} - ab}}{6}$$

Let $x = \alpha = \frac{(a + b) + \sqrt{a^{2} + b^{2} - ab}}{6}$

$$\beta = \frac{(a + b) - \sqrt{a^{2} + b^{2} - ab}}{6}$$

Now, $12 (x - \alpha) (x - \beta) = 0$

$$+ \frac{a + b - \sqrt{a^{2} + b^{2} - ab}}{6}$$

Now, $12 (x - \alpha) (x - \beta) = 0$

$$+ \frac{a + b - \sqrt{a^{2} + b^{2} - ab}}{b}$$

The Boolean expression $(p \land q) \Rightarrow ((r \land q) \land p)$ is

equivalent to :

13.

(1) $(p \land q) \Rightarrow (r \land q)$ (2) $(q \land r) \Rightarrow (p \land q)$

$$(3) (p \land q) \Rightarrow (r \lor q) \qquad (4) (p \land r) \Rightarrow (p \land q)$$

Official Ans. by NTA (1)

Sol.
$$(p \land q) \Rightarrow ((r \land q) \land p)$$

 $\sim (p \land q) \lor ((r \land q) \land p)$
 $\sim (p \land q) \lor ((r \land p) \land (p \land q))$
 $\Rightarrow [\sim (p \land q) \lor (p \land q)] \land (\sim (p \land q) \lor (r \land p)))$
 $\Rightarrow t \land [\sim (p \land q) \lor (r \land p)]$
 $\Rightarrow \sim (p \land q) \lor (r \land p)$
 $\Rightarrow (p \land q) \Rightarrow (r \land p)$

Aliter : given statement says " if p and q both happen then p and q and r will happen" it Simply implies " If p and q both happen then 'r' too will happen " i.e. " if p and q both happen then r and p too will happen i.e. $(p \land q) \Rightarrow (r \land p)$ Let \mathbb{Z} be the set of all integers, 14. $A = \{ (x, y) \in \mathbb{Z} \times \mathbb{Z} : (x - 2)^2 + y^2 \le 4 \},\$ $\mathbf{B} = \{(\mathbf{x}, \mathbf{y}) \in \mathbb{Z} \times \mathbb{Z} : \mathbf{x}^2 + \mathbf{y}^2 \le 4\} \text{ and }$ $C = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} : (x-2)^2 + (y-2)^2 \le 4\}$ If the total number of relation from $A \cap B$ to $A \cap C$ is 2^p , then the value of p is : (1) 16(2) 25(3) 49(4)9Official Ans. by NTA (2) $(1,\sqrt{3})$ (1,1) Sol. (1,0)**J**(2,0)0 (1,-1) $(1, -\sqrt{3})$ $(x-2)^2 + y^2 \le 4$ $x^2 + y^2 \le 4$ No. of points common in C_1 & C_2 is 5. (0, 0), (1, 0), (2, 0), (1, 1), (1, -1)Similarly in C_2 & C_3 is 5. No. of relations = $2^{5 \times 5} = 2^{25}$.

The area of the region bounded by the parabola 15. $(y-2)^2 = (x-1)$, the tangent to it at the point whose ordinate is 3 and the x-axis is : (1) 9 (4) 6(2) 10(3)4Official Ans. by NTA (1) $y = 3 \implies x = 2$ Sol. Point is (2,3)Diff. w.r.t x 2(y-2)y' = 1 \Rightarrow y' = $\frac{1}{2(y-2)}$ \Rightarrow y'_(2,3) = $\frac{1}{2}$ $\Rightarrow \frac{y-3}{x-2} = \frac{1}{2} \Rightarrow x-2y+4 = 0$ Area = $\int_{-\infty}^{3} ((y-2)^2 + 1 - (2y-4)) dy$ = 9 sq. units (2,3)(-4,0)(5.0)16. If $y(x) = \cot^{-1}\left(\frac{\sqrt{1+\sin x} + \sqrt{1-\sin x}}{\sqrt{1+\sin x} - \sqrt{1-\sin x}}\right), x \in \left(\frac{\pi}{2}, \pi\right),$ then $\frac{dy}{dx}$ at $x = \frac{5\pi}{6}$ is: $(1) -\frac{1}{2}$ (2) -1 $(3) \frac{1}{2}$ (4) 0Official Ans. by NTA (1) Sol. $y(x) = \cot^{-1} \left| \frac{\cos \frac{x}{2} + \sin \frac{x}{2} + \sin \frac{x}{2} - \cos \frac{x}{2}}{\cos \frac{x}{2} + \sin \frac{x}{2} - \sin \frac{x}{2} + \cos \frac{x}{2}} \right|$ $y(x) = \cot^{-1}\left(\tan\frac{x}{2}\right) = \frac{\pi}{2} - \frac{x}{2}$ $y'(x) = \frac{-1}{2}$

...** CollegeDekho

> 17. Two poles, AB of length a metres and CD of length a + b ($b \neq a$) metres are erected at the same horizontal level with bases at B and D. If BD = x and tan $|ACB| = \frac{1}{2}$ then:

$$= \left(x^{2} + x^{3} + x^{4} + \dots\right) - \left(\frac{x^{2}}{2} + \frac{x^{3}}{3} + \frac{x^{4}}{4} + \dots\right)$$

$$= \frac{x^{2}}{1 - x} + x - \left(x + \frac{x^{2}}{2} + \frac{x^{2}}{3} + \dots\right)$$

$$= \frac{x}{1 - x} + \ln(1 - x)$$

$$x = \frac{1}{2} \Rightarrow y = 1 - \ln 2$$

$$e^{1 + y} = e^{1 + 1 - \ln 2}$$

$$= e^{2 - \ln 2} = \frac{e^{2}}{2}$$
19. The value of the integral $\int_{0}^{1} \frac{\sqrt{x} \, dx}{(1 + x)(1 + 3x)(3 + x)}$
is:
(1) $\frac{\pi}{8} \left(1 - \frac{\sqrt{3}}{2}\right)$
(2) $\frac{\pi}{4} \left(1 - \frac{\sqrt{3}}{6}\right)$
(3) $\frac{\pi}{8} \left(1 - \frac{\sqrt{3}}{6}\right)$
(4) $\frac{\pi}{4} \left(1 - \frac{\sqrt{3}}{2}\right)$
Official Ans. by NTA (1)
Sol. $I = \int_{0}^{1} \frac{\sqrt{x}}{(1 + x)(1 + 3x)(3 + x)} \, dx$
Let $x = t^{2} \Rightarrow dx = 2t.dt$
 $I = \int_{0}^{1} \frac{(3t^{2} + 1) - (t^{2} + 1)}{(3t^{2} + 1)(t^{2} + 1)(3 + t^{2})} \, dt$
 $I = \int_{0}^{1} \frac{(3t^{2} + 1) - (t^{2} + 1)}{(3t^{2} + 1)(t^{2} + 1)(3 + t^{2})} \, dt$
 $I = \int_{0}^{1} \frac{(3t^{2} - 1) - (t^{2} + 1)}{(t^{2} + 1)(3 + t^{2})} \, dt$
 $I = \int_{0}^{1} \frac{(3t^{2} - 1) - (t^{2} + 1)}{(t^{2} + 1)(3 + t^{2})} \, dt$
 $I = \int_{0}^{1} \frac{(3t^{2} - 1) - (t^{2} + 1)}{(t^{2} + 1)(3 + t^{2})} \, dt + \frac{1}{8} \int_{0}^{1} \frac{(1 + 3t^{2}) - 3(3 + t^{2})}{(1 + 3t^{2})(3 + t^{2})} \, dt$
 $= \frac{1}{2} \int_{0}^{1} \frac{dt}{1 + t^{2}} - \frac{1}{2} \int_{0}^{1} \frac{dt}{t^{2} + 3} + \frac{1}{8} \int_{0}^{1} \frac{dt}{t^{2} + 3} - \frac{3}{8} \int_{0}^{1} \frac{dt}{(1 + 3t^{2})} \, dt$

$$= \frac{1}{2} (\tan^{-1}(t))_{0}^{1} - \frac{3}{8\sqrt{3}} \left(\tan^{-1}\left(\frac{t}{\sqrt{3}}\right) \right)_{0}^{1}$$
$$- \frac{3}{8\sqrt{3}} \left(\tan^{-1}\left(\sqrt{3}t\right) \right)_{0}^{1}$$
$$= \frac{1}{2} \left(\frac{\pi}{4}\right) - \frac{\sqrt{3}}{8} \left(\frac{\pi}{6}\right) - \frac{\sqrt{3}}{8} \left(\frac{\pi}{3}\right)$$
$$= \frac{\pi}{8} - \frac{\sqrt{3}}{16} \pi$$
$$= \frac{\pi}{8} \left(1 - \frac{\sqrt{3}}{2}\right)$$

20. If $\lim_{x\to\infty} (\sqrt{x^2 - x + 1} - ax) = b$, then the ordered pair (a, b) is:

$$(1)\left(1,\frac{1}{2}\right)$$

$$(2)\left(1,-\frac{1}{2}\right)$$

$$(3)\left(-1,\frac{1}{2}\right)$$

$$(4)\left(-1,-\frac{1}{2}\right)$$

Official Ans. by NTA (2)]

Sol. (2)

$$\lim_{x\to\infty} \left(\sqrt{x^2 - x + 1}\right) - ax = b \qquad (\infty - \infty)$$

$$\Rightarrow a > 0$$

Now, $\lim_{x \to \infty} \frac{(x^2 - x + 1 - a^2 x^2)}{\sqrt{x^2 - x + 1} + ax} = b$

$$\Rightarrow \lim_{x \to \infty} \frac{(1-a^2)x^2 - x + 1}{\sqrt{x^2 - x + 1} + ax} = b$$
$$\Rightarrow \lim_{x \to \infty} \frac{(1-a^2)x^2 - x + 1}{x\left(\sqrt{1-\frac{1}{x} + \frac{1}{x^2}} + a\right)} = b$$
$$\Rightarrow 1 - a^2 = 0 \Rightarrow a = 1$$

Now,
$$\lim_{x \to \infty} \frac{-x+1}{x\left(\sqrt{1-\frac{1}{x}+\frac{1}{x^2}}+a\right)} = b$$
$$\Rightarrow \frac{-1}{1+a} = b \Rightarrow b = -\frac{1}{2}$$
$$(a,b) = \left(1, -\frac{1}{2}\right)$$

SECTION-B

1.	Let S be the sum of all solutions (in radians) of the
	equation $\sin^4\theta + \cos^4\theta - \sin\theta \cos\theta = 0$ in [0, 4π].
	Then $\frac{8S}{\pi}$ is equal to
	Official Ans. by NTA (56)
Sol.	Given equation
	$\sin^4\theta + \cos^4\theta - \sin\theta\cos\theta = 0$
	$\Rightarrow 1 - \sin^2 \theta \cos^2 \theta - \sin \theta \cos \theta = 0$
	$\Rightarrow 2 - (\sin 2\theta)^2 - \sin 2\theta = 0$
	$\Rightarrow (\sin 2\theta)^2 + (\sin 2\theta) - 2 = 0$
	$\Rightarrow (\sin 2\theta + 2) (\sin 2\theta - 1) = 0$
	$\Rightarrow \sin 2\theta = 1 \text{ or } \overline{\sin 2\theta = -2}_{(\text{not possible})}$
	$\Rightarrow 2\theta = \frac{\pi}{2}, \frac{5\pi}{2}, \frac{9\pi}{2}, \frac{13\pi}{2}$
	2 2 2 2 2
	$\implies \theta = \frac{\pi}{4}, \frac{5\pi}{4}, \frac{9\pi}{4}, \frac{13\pi}{4}$
	$\implies S = \frac{\pi}{4} + \frac{5\pi}{4} + \frac{9\pi}{4} + \frac{13\pi}{4} = 7\pi$
	$\Rightarrow \frac{8S}{8} = \frac{8 \times 7\pi}{100} = 56.00$
2.	Let S be the mirror image of the point $Q(1, 3, 4)$
	with respect to the plane $2x - y + 2 + 3 = 0$ and let $P_{1}(2, 5, x)$ has a point of this plane. Then the square
	$\mathbf{K}(5, 5, \mathbf{\gamma})$ be a point of this plane. Then the square
	Official Ans. by NTA (72)
Sol.	Since R $(3,5,\gamma)$ lies on the plane $2x - y + z + 3 = 0$.
	Therefore, $6 - 5 + \gamma + 3 = 0$
	$\Rightarrow \gamma = -4$
	Now,
	dr's of line QS $F = \frac{1}{2}$
	are 2, -1,1
	equation of line QS is $\bullet G$
	$\frac{x-1}{2} = \frac{y-3}{-1} = \frac{z-4}{1} = \lambda \text{ (say)}$
	$\Rightarrow F(2\lambda + 1, -\lambda + 3, \lambda + 4)$
	F lies in the plane

 $\Rightarrow 2(2\lambda+1) - (-\lambda+3) + (\lambda+4) + 3 = 0$

 $\Rightarrow 4 \lambda + 2 + \lambda - 3 + \lambda + 7 = 0$ $\Rightarrow 6\lambda + 6 = 0 \Rightarrow \lambda = -1.$ \Rightarrow F(-1,4,3) Since, F is mid-point of QS. Therefore, co-ordinated of S are (-3,5,2). So, SR = $\sqrt{36 + 0 + 36} = \sqrt{72}$ $SR^2 = 72.$ The probability distribution of random variable X 3. is given by: Х 4 2 3 5 1 P(X)Κ 2K 2K 3K Κ Let p = P(1 < X < 4 | X < 3). If $5p = \lambda K$, then λ equal to . Official Ans. by NTA (30) $\sum P(X) = 1 \Longrightarrow k + 2k + 2k + 3k + k = 1$ Sol. $\Rightarrow k = \frac{1}{0}$ Now, $p = P\left(\frac{kX < 4}{X < 3}\right) = \frac{P(X = 2)}{P(X < 3)} = \frac{\frac{2k}{9k}}{\frac{k}{9k} + \frac{2k}{9k}}$ $\Rightarrow p = \frac{2}{3}$ Now, $5p = \lambda k$ $\Rightarrow (5)\left(\frac{2}{3}\right) = \lambda(1/9)$ $\Rightarrow \lambda = 30$ 4. Let z_1 and z_2 be two complex numbers such that arg $(z_1 - z_2) = \frac{\pi}{4}$ and z_1 , z_2 satisfy the equation |z - 3| = Re(z). Then the imaginary part of $z_1 + z_2$ is equal to Official Ans. by NTA (6)

Sol. $|z-3| = \operatorname{Re}(z)$ let Z = x = iy $\Rightarrow (x-3)^2 + y^2 = x^2$ $\Rightarrow x^2 + 9 - 6x + y^2 = x^2$ $\Rightarrow y^2 = 6x - 9$ $\Rightarrow y^2 = 6\left(x - \frac{3}{2}\right)$

 \Rightarrow z₁ and z₂ lie on the parabola mentioned in eq.(1)

$$\arg(z_1-z_2)=\frac{\pi}{4}$$

 \Rightarrow Slope of PQ = 1.

Let
$$P\left(\frac{3}{2} + \frac{3}{2}t_1^2, 3t_1\right)$$
 and $Q\left(\frac{3}{2} + \frac{3}{2}t_2^2, 3t_2\right)$

Slope of PQ =

$$\Rightarrow \frac{2}{t_2 + t_2} = 1$$

$$\Rightarrow t_2 + t_1 = 2$$

Im $(z_1 + z_2) = 3t_1 + 3t_2 = 3(t_1 + t_2) = 3$ (2)
Ans. 6.00

Aliter :

Let
$$z_1 = x_1 + iy_1$$
; $z_2 = x_2 + iy_2$
 $z_1 - z_2 = (x_1 - x_2) + i(y_1 - y_2)$
 $\therefore \arg (z_1 - z_2) = \frac{\pi}{4} \Rightarrow \tan^{-1} \left(\frac{y_1 - y_2}{x_1 - x_2} \right) = \frac{\pi}{4}$
 $y_1 - y_2 = x_1 - x_2$ (1)
 $|z_1 - 3| = \operatorname{Re}(z_1) \Rightarrow (x_1 - 3)^2 + y_1^2 = x_1^2$ (2)
 $|z_2 - 3| = \operatorname{Re}(z_2) \Rightarrow (x_2 - 3)^2 + y_2^2 = x_2^2$ (2)
sub (2) & (3)
 $(x_1 - 3)^2 - (x_2 - 3)^2 + y_1^2 - y_2^2 = x_1^2 - x_2^2$
 $(x_1 - x_2) (x_1 + x_2 - 6) + (y_1 - y_2) (y_1 + y_2)$
 $= (x_1 - x_2) (x_1 + x_2)$
 $x_1 + x_2 - 6 + y_1 + y_2 = x_1 + x_2 \Rightarrow y_1 + y_2 = 6.$

5.	Let $S = \{1, 2, 3, 4, 5, 6, 9\}$. Then the number of
	elements in the set $T=\{A\subseteq S:A\neq \varphi \text{ and the sum }$
	of all the elements of A is not a multiple of 3} is

Official Ans. by NTA (80)

Sol. 3n type \rightarrow 3, 6, 9 = P

$$3n-1$$
 type $\rightarrow 2, 5 = Q$

3n-2 type $\rightarrow 1,4 = R$

number of subset of S containing one element which are not divisible by $3 = {}^{2}C_{1} + {}^{2}C_{1} = 4$ number of subset of S containing two numbers whose some is not divisible by 3

 $= {}^{3}C_{1} \times {}^{2}C_{1} + {}^{3}C_{1} \times {}^{2}C_{1} + {}^{2}C_{2} + {}^{2}C_{2} = 14$

number of subsets containing 3 elements whose sum is not divisible by 3

 $={}^{3}C_{2} \times {}^{4}C_{1} + ({}^{2}C_{2} \times {}^{2}C_{1})2 + {}^{3}C_{1} ({}^{2}C_{2} + {}^{2}C_{2}) = 22$

number of subsets containing 4 elements whose sum is not divisible by 3

$$={}^{3}C_{3} \times {}^{4}C_{1} + {}^{3}C_{2} ({}^{2}C_{2} + {}^{2}C_{2}) + ({}^{3}C_{1} {}^{2}C_{1} \times {}^{2}C_{2})2$$

= 4 + 6 + 12 = 22.

number of subsets of S containing 5 elements whose sum is not divisible by 3.

 $= {}^{3}C_{3}({}^{2}C_{2} + {}^{2}C_{2}) + ({}^{3}C_{2}{}^{2}C_{1} \times {}^{2}C_{2}) \times 2 = 2 + 12 = 14$ number of subsets of S containing 6 elements whose sum is not divisible by 3 = 4

 \Rightarrow Total subsets of Set A whose sum of digits is not divisible by 3 = 4 + 14 + 22 + 22 + 14 + 4 = 80.

6. Let A (sec θ , 2tan θ) and B (sec ϕ , 2tan ϕ), where $\theta + \phi = \pi/2$, be two points on the hyperbola $2x^2 - y^2 = 2$. If (α , β) is the point of the intersection of the normals to the hyperbola at A and B, then $(2\beta)^2$ is equal to _____.

Sol. Since, point A (sec θ , 2 tan θ) lies on the hyperbola $2x^2 - y^2 = 2$ Therefore, 2 sec² θ - 4 tan² θ = 2 \Rightarrow 2 + 2 tan² θ - 4 tan² θ = 2 \Rightarrow tan θ = 0 \Rightarrow θ = 0 Similarly, for point B, we will get ϕ = 0. but according to question $\theta + \phi = \frac{\pi}{2}$ which is not possible. Hence it must be a 'BONUS'.

Two circles each of radius 5 units touch each other at the point (1, 2). If the equation of their common tangent is 4x + 3y = 10, and C₁(α, β) and C₂ (γ, δ), C₁ ≠ C₂ are their centres, then |(α + β) (γ + δ)| is equal to _____.

Official Ans. by NTA (40)

Sol. Slope of line joining centres of circles $=\frac{4}{3} = \tan \theta$

5 5 Now using parametric form

$$\frac{x-1}{\cos\theta} = \frac{y-2}{\sin\theta} = \pm 5$$

$$\bigoplus \quad (x, y) = (1 + 5\cos\theta, 2 + 5\sin\theta)$$

$$(\alpha, \beta) = (4, 6)$$

$$\bigoplus \quad (x, y) = (\gamma, \delta) = (1 - 5\cos\theta, 2 - 5\sin\theta)$$

$$(\gamma, s) = (-2, -2)$$

$$\implies |(\alpha + \beta) (\gamma + \delta)| = |10x - 4| = 40$$

- $3 \times 7^{22} + 2 \times 10^{22} 44$ when divided by 18 leaves 8. the remainder Official Ans. by NTA (15) $3(1+6)^{22} + 2 \cdot (1+9)^{22} - 44 = (3+2-44) = 18$.I Sol. = -39 + 18.1=(54-39)+18(I-3) $= 15 + 18 I_1$ \Rightarrow Remainder = 15. An online exam is attempted by 50 candidates out 9. of which 20 are boys. The average marks obtained by boys is 12 with a variance 2. The variance of marks obtained by 30 girls is also 2. The average marks of all 50 candidates is 15. If μ is the average marks of girls and σ^2 is the variance of marks of 50 candidates, then $\mu + \sigma^2$ is equal to Official Ans. by NTA (25) $\sigma_b^2 = 2$ (variance of boys) $n_1 = no.$ of boys Sol. $n_2 = no. of girls$ $\overline{\mathbf{x}}_{\rm h} = 12$ $\sigma_a^2 = 2$ $\overline{x}_{g} = \frac{50 \times 15 - 12 \times \sigma_{b}}{30} = \frac{750 - 12 \times 20}{30} = 17 = \mu$ variance of combined series $\sigma^{2} = \frac{n_{1}\sigma_{b}^{2} + n_{2}\sigma_{g}^{2}}{n_{1} + n_{2}} + \frac{n_{1} \cdot n_{2}}{(n_{1} + n_{2})^{2}} (\overline{x}_{b} - \overline{x}_{g})^{2}$ $\sigma^{2} = \frac{20 \times 2 + 30 \times 2}{20 + 30} + \frac{20 \times 30}{(20 + 30)^{2}} (12 - 17)^{2}$ $\sigma^2 = 8.$ $\Rightarrow \mu + \sigma^2 = 17 + 8 = 25$ If $\int \frac{2e^{x} + 3e^{-x}}{4e^{x} + 7e^{-x}} dx = \frac{1}{14} (ux + v \log_{e}(4e^{x} + 7e^{-x})) + C$, 10. where C is a constant of integration, then u + v is equal to . Official Ans. by NTA (7)
 - **Sol.** $\int \frac{2e^x}{4e^x + 7e^{-x}} dx + 3 \int \frac{e^{-x}}{4e^x + 7e^{-x}} dx$ $=\int \frac{2e^{2x}}{4e^{2x}+7}dx+3\int \frac{e^{-2x}}{4+7e^{-2x}}dx$ Let $4e^{2x} + 7 = T$ Let $4 + 7e^{-2x} = t$ 8 $e^{2x} dx = dT$ $-14 e^{-2x} dx = dt$ $2e^{2x}dx = \frac{dT}{4}$ $e^{-2x}dx = -\frac{dt}{14}$ $\int \frac{dT}{dT} - \frac{3}{14} \int \frac{dt}{t}$ $=\frac{1}{4}\log T - \frac{3}{14}\log t + C$ $=\frac{1}{4}\log(4e^{2x}+7)-\frac{3}{14}\log(4+7e^{-2x})+C$ $=\frac{1}{14}\left[\frac{1}{2}\log(4e^{x}+7e^{-x})+\frac{13}{2}x\right]+C$ $u = \frac{13}{2}, v = \frac{1}{2} \Longrightarrow u + v = 7$ Aliter : $2e^{x} + 3e^{-x} = A(4e^{x} + 7e^{-x}) + B(4e^{x} - 7e^{-x}) + \lambda$ 2 = 4A + 4B; 3 = 7A - 7B; $\lambda = 0$ $A + B = \frac{1}{2}$ $A-B=\frac{3}{7}$ $A = \frac{1}{2} \left(\frac{1}{2} + \frac{3}{7} \right) = \frac{7+6}{28} = \frac{13}{28}$ $B = A - \frac{3}{7} = \frac{13}{28} - \frac{3}{7} = \frac{13 - 12}{28} = \frac{1}{28}$ $\int \frac{13}{28} dx + \frac{1}{28} \int \frac{4e^x - 7e^{-x}}{4e^x + 7e^{-x}} dx$ $\frac{13}{28}x + \frac{1}{28}\ell n | 4e^{x} + 7e^{-x} | + C$ $u = \frac{13}{2}; v = \frac{1}{2}$ \Rightarrow u + v = 7