

CHEMISTRY SECTION-A 1. Compound A contains 8.7% Hydrogen, 74% Carbon and 17.3% Nitrogen. The molecular formula of the compound is, Given : Atomic masses of C, H and N are 12, 1 and 14 amu respectively. The molar mass of the compound A is 162 g mol ⁻¹ . (A) C ₄ H ₆ N ₂ (B) C ₂ H ₃ N (C) C ₃ H ₇ N (D) C ₁₀ H ₁₄ N ₂ Official Ans. by NTA (D) Sol. Sol. $C 74\% \frac{74}{12} = 6.16 \frac{6.16}{1.23} = 5$ N 17.3% $\frac{17.3}{14} = 1.23 \frac{1.23}{1.23} = 1$ H 8.7% $\frac{8.7}{1} = 8.7 \frac{8.7}{1.23} = 7$ Sol.	TEST PAPER WITH SOLUTION (D) $\pm 1/2$ are the two possible orientations of electron spin.(E) For $l = 5$, there will be a total of 9 orbital.Which of the above statements are correct?(A) (A), (B) and (C)(B) (A), (C), (D) and (E)(C) (A), (C) and (D)(D) (A), (B), (C) and (D) Official Ans. by NTA (C) (A) Number of values of $n = 1, 2, 3 \dots \infty$ (B) Number of values of $\ell = 0$ to $(n - 1)$
1. Compound A contains 8.7% Hydrogen, 74% Carbon and 17.3% Nitrogen. The molecular formula of the compound is, Given : Atomic masses of C, H and N are 12, 1 and 14 amu respectively. The molar mass of the compound A is 162 g mol ⁻¹ . (A) C ₄ H ₆ N ₂ (B) C ₂ H ₃ N (C) C ₅ H ₇ N (D) C ₁₀ H ₁₄ N ₂ Official Ans. by NTA (D) Sol. Sol. $\frac{C 74\% \frac{74}{12} = 6.16 \frac{6.16}{1.23} = 5}{N 17.3\% \frac{17.3}{14} = 1.23 \frac{1.23}{1.23} = 1}$	electron spin. (E) For $l = 5$, there will be a total of 9 orbital. Which of the above statements are correct ? (A) (A), (B) and (C) (B) (A), (C), (D) and (E) (C) (A), (C) and (D) (D) (A), (B), (C) and (D) Official Ans. by NTA (C) Ans. (C) (A) Number of values of $n = 1, 2, 3 \dots \infty$
 Emperical formula = C₅NH₇ Emperical weight = 81 Multiplying factor = 162/81 = 2 Molecular formula = C₁₀N₂H₁₄ Consider the following statements : (A) The principal quantum number 'n' is a positive integer with values of 'n' = 1, 2, 3, (B) The azimuthal quantum number 'l' for a given 'n' (principal quantum number) can have values as 'l' = 0, 1, 2, n (C) Magnetic orbital quantum number 'm_l' for a particular 'l' (azimuthal quantum number) has (2l) 	 (C.) Number of values of m = - ℓ to + ℓ Total values = 2ℓ + 1 (D) Values of spin = ± 1/2 (E) For ℓ = 5 number of orbitals = 2ℓ + 1= 11 In the structure of SF4, the lone pair of electrons on S is in. (A) equatorial position and there are two lone pairbond pair repulsions at 90° (B) equatorial position and there are three lone pairbond pair repulsions at 90° (C) axial position and there are three lone pairbond pair repulsion at 90°. (D) axial position and there are two lone pairbond pair repulsion at 90°.

Sol.

sp³d, See-Saw

A student needs to prepare a buffer solution of 4. propanoic acid and its sodium salt with pH 4. The

ratio of $\frac{[CH_3CH_2COO^-]}{[CH_3CH_2COOH]}$ required to make buffer

6.

7.

is

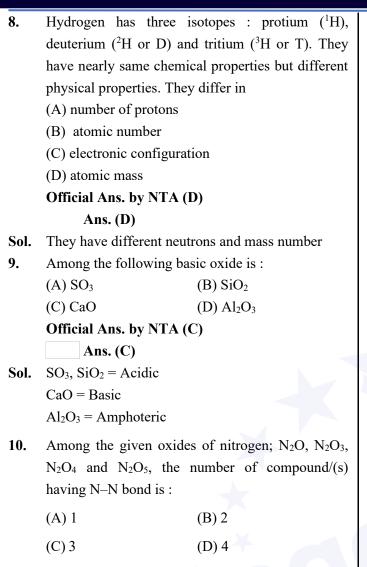
Given : $K_a(CH_3CH_2COOH) = 1.3 \times 10^{-5}$

(A) 0.03	(B) 0.13

(C) 0.23 (D) 0.33

Official Ans. by NTA (B)

Ans. (B)

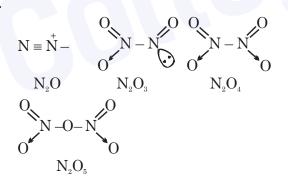

Sol.
$$pH = pK_a + log \frac{[Salt]}{[Acid]}$$

 $4 = 5 - log 1.3 + log \frac{[CH_3CH_2COO^-]}{[CH_3CH_2COOH]}$
 $log \frac{[CH_3CH_2COO^-]}{[CH_3CH_2COOH]} = log 1.3 - 1 = log \frac{1.3}{10}$
 $\frac{[CH_3CH_2COO^-]}{[CH_3CH_2COOH]} = 0.13$

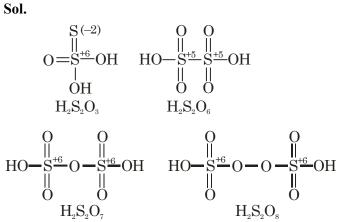
5. Match List-I with List-II.

List-I		List-II	
(A)	Negatively	(I)	Fe ₂ O ₃ ·xH ₂ O
	charged sol		
(B)	Macromolecular	(II)	CdS sol
	colloid		
(C)	Positively	(III)	Starch
	charged sol		
(D)	Cheese	(IV)	a gel

Choose the correct answer from the options given below: (A)(A) - (II), (B) - (III), (C) - (IV), (D) - (I)(B) (A) - (II), (B) - (I), (C) - (III), (D) - (IV)(C) (A) - (II), (B) - (III), (C) - (I), (D) - (IV)(D) (A) - (I), (B) - (III), (C) - (II), (D) - (IV)**Official Ans. by NTA (C)** Ans. (C) Sol. Negative charged sol = CdS (II) Macromolecular colloid = starch (III) Positively charged sol = $Fe_2O_3.xH_2O(I)$ Cheese = gel(IV)Match List-I with List-II. List-I (Oxide) List-II (Nature) (A) Cl_2O_7 (I) Amphoteric (B) Na₂O (II) Basic (C) Al_2O_3 (III) Neutral (D) N_2O (IV) Acidic Choose the correct answer from the options given below : (A)(A) - (IV), (B) - (III), (C) - (I), (D) - (II)(B) (A) - (IV), (B) - (II), (C) - (I), (D) - (III)(C) (A) - (II), (B) - (IV), (C) - (III), (D) - (I)(D) (A) - (I), (B) - (II), (C) - (IIII), (D) - (IV)Official Ans. by NTA (B) Ans. (B) Sol. Cl_2O_7 Acidic Na₂O Basic Al_2O_3 Amphoteric Neutral N_2O In the metallurgical extraction of copper, following reaction is used : $FeO + SiO_2 \rightarrow FeSiO_3$ FeO and FeSiO₃ respectively are. (B) flux and slag (A) gangue and flux (C) slag and flux (D) gangue and slag Official Ans. by NTA (D) Ans. (D) **Sol.** FeO = Gangue $FeSiO_3 = Slag$



Official Ans. by NTA (C)


Ans. (C)

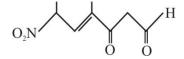
Sol.

- **11.** Which of the following oxoacids of sulphur contains "S" in two different oxidation states?
 - (A) $H_2S_2O_3$ (B) $H_2S_2O_6$
 - (C) $H_2S_2O_7$ (D) $H_2S_2O_8$

Official Ans. by NTA (A)

12. Correct statement about photo-chemical smog is :

(A) It occurs in humid climate.

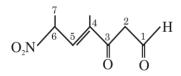

- (B) It is a mixture of smoke, fog and SO₂
- (C) It is reducing smog.

(D) It results from reaction of unsaturated hydrocarbons.

Official Ans. by NTA (D)

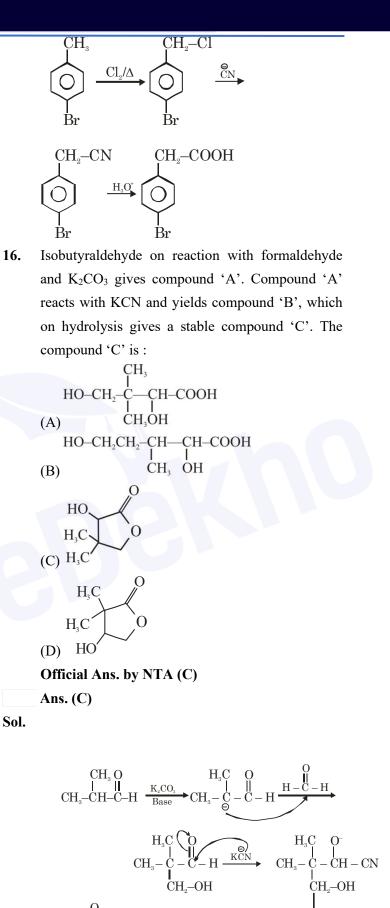
Ans. (D)

- **Sol.** Photo chemical smog results from the action of sunlight on unsaturated hydro carbons and nitrogen oxide
- **13.** The correct IUPAC name of the following compound is :



(A) 4-methyl-2-nitro-5-oxohept-3-enal

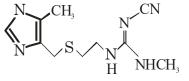
- (B) 4-methyl-5-oxo-2-nitrohept-3-enal
- (C) 4-methyl-6-nitro-3-oxohept-4-enal
- (D) 6-formyl-4-methyl-2-nitrohex-3-enal


Official Ans. by NTA (C)

Sol.

14. The major product (P) of the given reaction is (where, Me is -CH₃) Me. OH -Me $\xrightarrow{\mathrm{H}^+}$ P Major Product Мe Me Me Мe (A) Me -Me (B) Me Me Me Me (C) Me Me CH, (D) Official Ans. by NTA (C) Ans. (C) Sol. ⊕ .OH. Me .OH Me Me H⁺ Me -H,O Мe Ŵе Me Me Me Me 1,2-Methyl shif -Me Me Мe (i) Cl_2,Δ \rightarrow 4-Bromophenyl acetic acid. 15. A-(ii) CN $(iii) H_2O/H^+$ In the above reaction 'A' is Br Br ĊH₂CH₃ (A) (B) CH=CH₂ CH₃ (C) Br (D) B1 Official Ans. by NTA (C) Ans. (C) Sol.

H₃C


HO,

17. With respect to the following reaction, consider the 19. given statements : NH, HNO₃ H₂SO₄, 288k → products (A) o-Nitroaniline and p-nitroaniline are the predominant products (B) p-Nitroaniline and m-nitroaniline are the predominant products (C) HNO₃ acts as an acid (D) H₂SO₄ acts as an acid (A) (A) and (C) are correct statements. (B) (A) and (D) are correct statements. (C) (B) and (D) are correct statements. (D) (B) and (C) are correct statements. Official Ans. by NTA (C) Ans. (C) NH. NH_2 NH. NO. HNO₃ NO NO 2%47%51%Sol. 20. $\underset{\text{Base}}{\text{HNO}_3} + \underset{\text{Acid}}{\text{H}_2\text{SO}_4} \rightarrow \text{NO}_2^+$ 18. Given below are two statements, one is Assertion (A) and other is Reason (R). Assertion (A) : Natural rubber is a linear polymer of isoprene called cis-polyisoprene with elastic properties. **Reason** (**R**) : The cis-polyisoprene molecules consist of various chains held together by strong polar interactions with coiled structure. In the light of the above statements, choose the correct one from the options given below : (A) Both (A) and (R) are true and (R) is the correct explanation of (A) (B) Both (A) and (R) are true but (R) is not the correct explanation of (A). (C)(A) is true but (R) is false. (D) (A) is false but (R) is true. Official Ans. by NTA (C)

Ans. (C)

- **Sol.** Natural rubber is linear polymer of isoprene (2methyl-1,3-butadiene) and is also called cis-1,4polyisoprene. The cis-polyisoprene molecules consists of various chains held together by weak Vander Waal's interactions and has a coiled structure
- When sugar 'X' is boiled with dilute H₂SO₄ in alcoholic solution, two isomers 'A' and 'B' are formed. 'A' on oxidation with HNO₃ yields saccharic acid where as 'B' is laevorotatory. The compound 'X' is : (A) Maltose (B) Sucrose (C) Lactose (D) Strach Official Ans. by NTA (B) Ans. (B) Sol. $C_{12}H_{22}O_{11} + H_2O \xrightarrow{H^*} C_6H_{12}O_6 + C_6H_{12}O_6$ $[\alpha] = 66.6^{\circ}$ D-Glucose D-Fructose $[\alpha] = +52.7^{\circ}$ $[\alpha] = -92.2^{\circ}$ (A) **(B)** CHO COOH H--OH H--OH HO--H HO--H HNO. OH OH H-H H-OH H-OH CH, OH COOH Sachharic acid The drug tegamet is : Η NH, (A) CH(NO₂) HMe (B) CN NHCH₂ (C) H HO (D) HO Ph Official Ans. by NTA (C) Ans. (C) Tegamet is the brand name of Cimetidine Sol. CH, ,CN

SECTION-B

1. 100 g of an ideal gas is kept in a cylinder of 416 L volume at 27°C under 1.5 bar pressure. The molar mass of the gas is _____ g mol⁻¹. (Nearest integer) (Given : R = 0.083 L bar K⁻¹ mol⁻¹)

Official Ans. by NTA (4)

Ans. (4)

Sol. $1.5 \times 416 = \frac{100}{M} \times 0.083 \times 300$ M = 3.99

Ans. 4

2. For combustion of one mole of magnesium in an open container at 300 K and 1 bar pressure, $\Delta_{\rm C} {\rm H}^{\Theta}$ = -601.70 kJ mol⁻¹, the magnitude of change in internal energy for the reaction is _____ kJ. (Nearest integer)

(Given : $R = 8.3 \text{ J } \text{K}^{-1} \text{ mol}^{-1}$)

Official Ans. by NTA (600)

Ans. (600)

Sol.
$$Mg(s) + \frac{1}{2}O_2(g) \rightarrow MgO(s)$$

 $\Delta H = \Delta U + \Delta n_g RT$

$$-601.70 \times 10^{3} = \Delta U - \frac{1}{2} \times 8.3 \times 300$$

-601.70 kJ = $\Delta U - 1.245$ kJ
 $\Delta U = -600.455$ kJ

Ans. 600

3. 2.5 g of protein containing only glycine ($C_2H_5NO_2$) is dissolved in water to make 500 mL of solution. The osmotic pressure of this solution at 300 K is found to be 5.03×10^{-3} bar. The total number of glycine units present in the protein is ____

(Given : $R = 0.083 L bar K^{-1} mol^{-1}$)

Official Ans. by NTA (330)

Ans. (330)

Sol. $\pi = CRT$

 $5.03 \times 10^{-3} = C \times 0.083 \times 300$

 $C=0.202\!\times\!10^{-3}\,M$

Moles of protein = $0.202 \times 10^{-3} \times 0.5$

$$= 10^{-4} \times 1.01$$

$$1.01 \times 10^{-4} = \frac{2.5}{M}$$

M(molar mass of protein) = 24752

$$\frac{24752}{75} = 330.03$$

4. For the given reactions

 $\mathrm{Sn}^{2+} + 2\mathrm{e}^{-} \rightarrow \mathrm{Sn}$

 $\mathrm{Sn}^{4+} + 4\mathrm{e}^{-} \rightarrow \mathrm{Sn}$

Ans. (16)

The electrode potentials are; $E^{o}_{Sn^{2+}/Sn} = -0.140 \text{ V}$ and $E^{o}_{Sn^{4+}/Sn} = 0.010 \text{ V}$. The magnitude of standard electrode potential for Sn^{4+}/Sn^{2+} i.e. $E^{o}_{Sn^{4+}/Sn^{2+}}$ is _____ × 10⁻² V. (Nearest integer)

Official Ans. by NTA (16)

Sol. $\operatorname{Sn}^{2+} + 2e^{-} \rightarrow \operatorname{Sn}$ $\Delta G_{1}^{0} = +2 \times 0.140 \times \mathrm{F}$ $\operatorname{Sn}^{+4} + 4e^{-} \rightarrow \operatorname{Sn}$ $\Delta G_{2}^{0} = -4 \times 0.01 \times \mathrm{F}$

$$\begin{split} & Sn^{+4} + 2e^- \to Sn^{+2} \qquad \Delta G_3^0 = -2 \times E^0_{\ Sn^{+4}/Sn^{+2}} \times F \\ & \Delta G_3^0 = \Delta G_2^0 - \Delta G_1^0 \\ & -2 \times E^0 \times F = -(0.04 + 0.28) \times F \\ & E^0 = 0.16 \text{ volt} = 16 \times 10^{-2} \text{ V} \end{split}$$

Ans 16

 A radioactive element has a half life of 200 days. The percentage of original activity remaining after 83 days is _____. (Nearest integer)

(Given : antilog 0.125 = 1.333, antilog 0.693 = 4.93)

Official Ans. by NTA (75)

Ans. (75)
Sol.
$$t = \frac{t_{1/2}}{0.3} \log \frac{\left[A\right]_0}{\left[A\right]_t}$$

$$83 = \frac{200}{0.3} \log \frac{\left[A\right]_0}{\left[A\right]_t}$$

$$0.125 = \log \frac{\left[A\right]_0}{\left[A\right]_t}$$

$$\frac{\left[A\right]_0}{\left[A\right]_t} = 1.333 \cong \frac{4}{3}$$

$$\therefore \frac{\left[A\right]_t}{\left[A\right]_0} \times 100 = \frac{3}{4} \times 100 = 75\%$$

Ans. 75

 $[Fe(CN)_6]^{4-}$ 6. $[Fe(CN)_{6}]^{3-}$ $[Ti(CN)_{6}]^{3-}$ [Ni(CN)₄]²⁻ $[Co(CN)_{6}]^{3-}$ Among the given complexes, number of paramagnetic complexes is . Official Ans. by NTA (2) Ans. (2) **Sol.** $[Fe(CN)_6]^{4-}$ Diamagnetic $[Fe(CN)_{6}]^{3-}$ Paramagnetic (1 unpaired electron)

 $[Ti(CN)_6]^{3-}$ Paramagnetic (1 unpaired electron)

[Ni(CN)₄]²⁻ Diamagnetic

[Co(CN)₆]³⁻ Diamagnetic

Ans. 2

7. (a) $CoCl_3 \cdot 4 NH_3$

(b) $CoCl_3 \cdot 5NH_3$

(c) CoCl₃·.6NH₃ and

(d) CoCl(NO₃)₂·5NH₃

Number of complex(es) which will exist in cistrans is/are

Official Ans. by NTA (1)

Sol. (a) $CoCl_3 \cdot 4 NH_3 = [Co(NH_3)_4 Cl_2]Cl$

Can exhibit G.I.

(b) $\operatorname{CoCl}_3 \cdot 5\operatorname{NH}_3 = [\operatorname{Co}(\operatorname{NH}_3)_5 \operatorname{Cl}]\operatorname{Cl}_2$

Can't exhibit G.I.

(c) $\operatorname{CoCl}_3 \cdot .6\mathrm{NH}_3 = [\operatorname{Co}(\mathrm{NH}_3)_6]\mathrm{Cl}_3$

Can't exhibit G.I.

(d)
$$CoCl(NO_3)_2 \cdot 5NH_3 = [Co(NH_3)_5 Cl](NO_3)_2$$

OR

$$=$$
 [Co(NH₃)₅(NO₃)]Cl(NO₃)

Both can't exhibit G.I.

The complete combustion of 0.492 g of an organic compound containing 'C', 'H' and 'O' gives 0.793g of CO₂ and 0.442 g of H₂O. The percentage of oxygen composition in the organic compound is

Official Ans. by NTA (46)

Ans. (46)

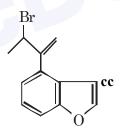
Sol. Mole of CO_2 = Moles of $C = \frac{0.793}{44}$

Weight of 'C' = $\frac{0.793}{44} \times 12 = 0.216$ gm

Moles of 'H' = $\frac{0.442}{18} \times 2$

Weight of 'H' = $\frac{0.442}{18} \times 2 \times 1 = 0.049$ gm \therefore Weight of 'O'=0.492-0.216-0.049= 0.227 gm

% of 'O' =
$$\frac{0.227}{0.492} \times 100 = 46.13\%$$


Ans. 46

9. The major product of the following reaction contains _____ bromine atom(s).

$$\frac{Br_2}{h\nu}$$
 Major Product

Official Ans. by NTA (1)
Ans. (1)

Sol.

No. of Br atoms = 1

10. 0.01 M KMnO₄ solution was added to 20.0 mL of 0.05 M Mohr's salt solution through a burette. The initial reading of 50 mL burette is zero. The volume of KMnO₄ solution left in the burette after the end point is _____ mL. (nearest integer)

Official Ans. by NTA (30)

Sol.
$$N_1 V_1 = N_2 V_2$$

 $0.01 \times 5 \times V_1 = 0.05 \times 1 \times 20$
 $V_1 = 20$ ml used

 \therefore Volume left = 50 - 20 = 30 ml