

1.

FINAL JEE-MAIN EXAMINATION - JULY, 2022

(Held On Thursday 28th July, 2022)

TIME: 3:00 PM to 6:00 PM

Let
$$S = \left\{ x \in [-6,3] - \{-2,2\} : \frac{|x+3|-1|}{|x|-2} \ge 0 \right\}$$

and $T = \left\{ x \in \mathbb{Z} : x^2 - 7|x| + 9 \le 0 \right\}$. Then the

and $T = \{x \in Z : x^2 - 7 | x | + 9 \le 0\}$. Then the number of elements in $S \cap T$ is

- (A) 7 (B) 5
- (C) 4 (D) 3

Official Ans. by NTA (D)

Sol. $S \cap T = \{-5, -4, 3\}$

2. Let α , β be the roots of the equation

$$x^{2} - \sqrt{2}x + \sqrt{6} = 0$$
 and $\frac{1}{\alpha^{2}} + 1, \frac{1}{\beta^{2}} + 1$ be the

roots of the equation $x^2 + ax + b = 0$. Then the roots of the equation $x^2 - (a + b - 2)x + (a + b + 2)$ = 0 are :

- (A) non-real complex numbers
- (B) real and both negative
- (C) real and both positive

(D) real and exactly one of them is positive

Official Ans. by NTA (B)

Ans. (B)

Sol.
$$a = \frac{-1}{\alpha^2} - \frac{1}{\beta^2} - 2$$

$$b = -\frac{1}{2} + 1 + \frac{1}{\alpha^2 \beta^2}$$

$$a + b = \frac{1}{(\alpha \beta)^2} - 1 = \frac{1}{6} - 1 = -\frac{5}{6}$$

$$x^2 - \left(-\frac{5}{6} - 2\right)x + \left(2 - \frac{5}{6}\right) = 0$$

$$6x^2 + 17x + 7 = 0$$

$$x = -\frac{7}{3}, x = -\frac{1}{2} \text{ are the roots}$$

Both roots are real and negative.

Let A and B be any two 3×3 symmetric and skew 3. symmetric matrices respectively. Then which of the following is **NOT** true? (A) $A^4 - B^4$ is a symmetric matrix (B) AB – BA is a symmetric matrix (C) $B^5 - A^5$ is a skew-symmetric matrix (D) AB + BA is a skew-symmetric matrix Official Ans. by NTA (C) Ans. (C) Given that $A^T = A$, $B^T = -B$ Sol. $C = A^4 - B^4$ (A) $C^{T} = (A^{4} - B^{4}) = (A^{4})^{T} - (B^{4})^{T} = A^{4} - B^{4} = C$ C = AB - BA(B) $C^{T} = (AB - BA)^{T} = (AB)^{T} - (BA)^{T}$ $= B^{T}A^{T} - A^{T}B^{T} = -BA + AB = C$ $C = B^5 - A^5$ (C) $C^{T} = (B^{5} - A^{5})^{T} = (B^{5})^{T} - (A^{5})^{T} = -B^{5} - A^{5}$ C = AB + BA(D) $C^{T} = (AB + BA)^{T} = (AB)^{T} + (BA)^{T}$ = -BA - AB = -C: Option C is not true. Let $f(x) = ax^2 + bx + c$ be such that f(1) = 3, f(-2)4. $= \lambda$ and f(3) = 4. If f(0) + f(1) + f(-2) + f(3) = 14, then λ is equal to (B) $\frac{13}{2}$ (A) - 4(C) $\frac{23}{2}$ (D) 4 Official Ans. by NTA (D) Ans. (D) **Sol.** $f(0) + 3 + \lambda + 4 = 14$ \therefore f(0) = 7 - λ = c f(1) = a + b + c = 3...(i) f(3) = 9a + 3b + c = 4...(ii) $f(-2) = 4a - 2b + c = \lambda$...(iii) (ii) - (iii) $a + b = \frac{4 - \lambda}{5}$ put in equation (i) $\frac{4-\lambda}{5}+7-\lambda=3$

$$6 \lambda = 24; \quad \lambda = 1$$

The function $f : R \rightarrow R$ defined by 5.

$$f(x) = \lim_{n \to \infty} \frac{\cos(2\pi x) - x^{2n} \sin(x-1)}{1 + x^{2n+1} - x^{2n}}$$
 is

continuous for all x in

Official Ans. by NTA (B)

Ans. (B)

Note : n should be given as a natural number.

Sol.
$$f(x = \begin{cases} \frac{-\sin(x-1)}{x-1} & x < -1 \\ -(\sin 2+1) & x = -1 \\ \cos 2\pi x & -1 < x < 1 \\ 1 & x = 1 \\ \frac{-\sin(x-1)}{-1} & x > 1 \end{cases}$$

$$f(x)$$
 is discontinuous at $x = -1$ and $x = 1$

6. The function
$$f(x) = xe^{x(1-x)}, x \in \mathbb{R}$$
, is
(A) increasing in $\left(-\frac{1}{2}, 1\right)$
(B) decreasing in $\left(\frac{1}{2}, 2\right)$
(C) increasing in $\left(-1, -\frac{1}{2}\right)$
(D) decreasing in $\left(-\frac{1}{2}, \frac{1}{2}\right)$

Official Ans. by NTA (A)

Ans. (A)

Sol. $f(x) = x e^{x(1-x)}$ $f'(x) = -e^{x(1-x)} (2x+1) (x-1)$ f(x) is increasing in $\left(-\frac{1}{2},1\right)$

7. The sum of the absolute maximum and absolute minimum values of the function $f(x) = \tan^{-1}(\sin x - \cos x)$ in the interval $[0, \pi]$ is

Official Ans. by NTA (C) Ans. (C)

1

9.	Let $I_n(x) = \int_0^x \frac{1}{(t^2 + 5)^n} dt$, $n = 1, 2, 3,$ Then
	(A) $50I_6 - 9I_5 = xI'_5$ (B) $50I_6 - 11I_5 = xI'_5$
	(C) $50I_6 - 9I_5 = I'_5$ (D) $50I_6 - 11I_5 = I'_5$
	Official Ans. by NTA (A)
	Ans. (A)
Sol.	$I_{n}(x) = \int_{0}^{x} \frac{dt}{(t^{2} + 5)^{n}}$
	Applying integral by parts
	$I_{n}(x) = \left[\frac{t}{(t^{2}+5)^{n}}\right]_{0}^{x} - \int_{0}^{x} n(t^{2}+5)^{-n-1} \cdot 2t^{2}$
	$I_{n}(x) = \frac{x}{(x^{2}+5)^{n}} + 2n \int_{0}^{x} \frac{t^{2}}{(t^{2}+5)^{n+1}} dt$
	$I_{n}(x) = \frac{x}{(x^{2}+5)^{n}} + 2n \int_{0}^{x} \frac{(t^{2}+5)-5}{(t^{2}+5)^{n+1}} dt$
	$I_{n}(x) = \frac{x}{(x^{2}+5)^{n}} + 2n I_{n}(x) - 10n I_{n+1}(x)$
	10n I _{n+1} (x) + (1-2n)I _n (x) = $\frac{x}{(x^2+5)^n}$
	Put $n = 5$
10.	The area enclosed by the curves $y = \log_e (x + e^2)$,

$$x = \log_e\left(\frac{2}{y}\right)$$
 and $x = \log_e 2$, above the line $y = 1$ is

(A)
$$2 + e - \log_e 2$$
 (B) $1 + e - \log_e 2$
(C) $e - \log_e 2$ (D) $1 + \log_e 2$

Official Ans. by NTA (B)

Ans. (B)

Required area is

Sol.

$$= \int_{e-e^{2}}^{0} \ell n \left(x + e^{2} \right) - 1 dx + \int_{0}^{\ell n^{2}} 2e^{-x} - 1 dx = 1 + e - \ell n^{2}$$

Let y = y(x) be the solution curve of the differential equation $\frac{dy}{dx} + \frac{1}{x^2 - 1}y = \left(\frac{x - 1}{x + 1}\right)^{\frac{1}{2}}$, x > 1 passing through the point $\left(2, \sqrt{\frac{1}{3}}\right)$. Then $\sqrt{7}$ y(8) is equal to (A) $11 + 6\log_e 3$ (B) 19 (C) $12 - 2\log_e 3$ (D) $19 - 6 \log_e 3$ Official Ans. by NTA (D) Ans. (D) **Sol.** $\frac{dy}{dx} + \frac{1}{x^2 - 1}y = \left(\frac{x - 1}{x + 1}\right)^{\frac{1}{2}}$, $\frac{\mathrm{d}y}{\mathrm{d}x} + \mathrm{P}y = \mathrm{Q}$ $Pdx \qquad x-1 \quad \frac{1}{2}$ $y\left(\frac{x-1}{x+1}\right)^{\frac{1}{2}} = \int \left(\frac{x-1}{x+1}\right)^{1} dx$ $= x - 2\log_{e}|x+1| + C$ Curve passes through $\left(2, \frac{1}{\sqrt{3}}\right)$ \Rightarrow C = 2 log_e 3 - $\frac{5}{3}$ at x = 8, $\sqrt{7}y(8) = 19 - 6\log_e 3$ The differential equation of the family of circles passing through the points (0, 2) and (0, -2) is (A) $2xy\frac{dy}{dx} + (x^2 - y^2 + 4) = 0$ (B) $2xy\frac{dy}{dx} + (x^2 + y^2 - 4) = 0$ (C) $2xy\frac{dy}{dt} + (y^2 - x^2 + 4) = 0$

(D)
$$2xy\frac{dy}{dx} - (x^2 - y^2 + 4) = 0$$

Official Ans. by NTA (A)

Ans. (A)

3

12.

11.

Sol. Equation of circle passing through (0, -2) and

(0, 2) is

$$x^2 + \left(y^2 - 4\right) + \lambda x = 0, \ (\lambda \in R)$$

Divided by x we get

$$\frac{x^2 + \left(y^2 - 4\right)}{x} + \lambda = 0$$

Differentiating with respect to x

$$\frac{x\left[2x+2y\cdot\frac{dy}{dx}\right]-\left[x^2+y^2-4\right]\cdot 1}{x^2} = 0$$
$$\Rightarrow 2xy\cdot\frac{dy}{dx}+\left(x^2-y^2+4\right)=0$$

13. Let the tangents at two points A and B on the circle $x^{2} + y^{2} - 4x + 3 = 0$ meet at origin O (0, 0). Then the area of the triangle of OAB is

(A)
$$\frac{3\sqrt{3}}{2}$$
 (B) $\frac{3\sqrt{3}}{4}$
(C) $\frac{3}{2\sqrt{3}}$ (D) $\frac{3}{4\sqrt{3}}$

Official Ans. by NTA (B) Ans. (B)

Equation of chord AB : 2x = 3

 $OA = OB = \sqrt{3}$

$$AM = \frac{\sqrt{3}}{2}$$

Area of triangle OAB = $\frac{1}{2}(2AM)(OM)$

$$=\frac{3\sqrt{3}}{4}$$
 sq. units

Let the hyperbola H : $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ pass through 14.

the point $(2\sqrt{2}, -2\sqrt{2})$. A parabola is drawn whose focus is same as the focus of H with positive abscissa and the directrix of the parabola passes through the other focus of H. If the length of the latus rectum of the parabola is e times the length of the latus rectum of H, where e is the eccentricity of H, then which of the following points lies on the parabola?

(A)
$$(2\sqrt{3}, 3\sqrt{2})$$
 (B) $(3\sqrt{3}, -6\sqrt{2})$
(C) $(\sqrt{3}, -\sqrt{6})$ (D) $(3\sqrt{6}, 6\sqrt{2})$

Official Ans. by NTA (B)

Ans. (B)
Sol. H :
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

Foci : S (ae, 0), S' (-ae, 0) Foot of directrix of parabola is (-ae, 0) Focus of parabola is (ae, 0)

Now, semi latus rectum of parabola = |SS'| = 2ae

Given,
$$4ae = e\left(\frac{2b^2}{a}\right)$$

 $\Rightarrow b^2 = 2a^2 \qquad \dots \qquad (1)$
Given, $\left(2\sqrt{2}, -2\sqrt{2}\right)$ lies on H
 $\Rightarrow \frac{1}{a^2} - \frac{1}{b^2} = \frac{1}{8} \qquad \dots \qquad (2)$
From (1) and (2)
 $a^2 = 4, b^2 = 8$
 $\therefore b^2 = a^2(e^2 - 1)$
 $\therefore e = \sqrt{3}$

 \Rightarrow Equation of parabola is $y^2 = 8\sqrt{3}x$

2

the lines $\frac{x-1}{\lambda} = \frac{y-2}{1} = \frac{z-3}{2}$ 15. Let and $\frac{x+26}{-2} = \frac{y+18}{3} = \frac{z+28}{\lambda}$ be coplanar and P be the plane containing these two lines. Then which of the following points does NOT lies on P? (A)(0, -2, -2)(B)(-5, 0, -1)(C)(3, -1, 0)(D)(0, 4, 5)Official Ans. by NTA (D) Ans. (D) **Sol.** Given, $L_1: \frac{x-1}{\lambda} = \frac{y-2}{1} = \frac{z-3}{2}$ and $L_2: \frac{x+26}{-2} = \frac{y+18}{3} = \frac{z+28}{\lambda}$ are coplanar 27 20 31 2 = 01 $\Rightarrow \lambda$ 3 $\Rightarrow \lambda = 3$ Now, normal of plane P, which contains L₁ and L₂ î k i = 3 1 2 -2 3 3 $=-3\hat{i}-13\hat{i}+11\hat{k}$ \Rightarrow Equation of required plane P : 3x + 13y - 11z + 4 = 0(0, 4, 5) does not lie on plane P. 16. A plane P is parallel to two lines whose direction ratios are -2, 1, -3, and -1, 2, -2 and it contains the point (2, 2, -2). Let P intersect the co-ordinate

axes at the points A, B, C making the intercepts α , β , γ . If V is the volume of the tetrahedron OABC, where O is the origin and $p = \alpha + \beta + \gamma$, then the ordered pair (V, p) is equal to

$$(A) (48, -13) (B) (24, -13)$$

$$(C) (48, 11) (D) (24, -5)$$

Official Ans. by NTA (B)

Ans. (B)

Sol. Normal of plane P :

$$\begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ -2 & 1 & -3 \\ -1 & 2 & -2 \end{vmatrix} = 4\hat{i} - \hat{j} - 3\hat{k}$$

Equation of plane P which passes through (2, 2,-2) is 4x - y - 3z - 12 = 0Now, A (3, 0, 0), B (0, -12, 0), C (0, 0, -4) $\Rightarrow \alpha = 3, \beta = -12, \gamma = -4$ $\Rightarrow p = \alpha + \beta + \gamma = -13$ Now, volume of tetrahedron OABC

 $V = \left| \frac{1}{6} \overrightarrow{OA} \cdot (\overrightarrow{OB} \times \overrightarrow{OC}) \right| = 24$ (V, p) = (24, -13)

17. Let S be the set of all $a \in R$ for which the angle between the vectors $\vec{u} = a(\log_e b)\hat{i} - 6\hat{j} + 3\hat{k}$ and $\vec{v} = (\log_e b)\hat{i} + 2\hat{j} + 2a(\log_e b)\hat{k}, (b > 1)$ is acute.

Then S is equal to

(A)
$$\left(-\infty, -\frac{4}{3}\right)$$
 (B) Φ
(C) $\left(-\frac{4}{3}, 0\right)$ (D) $\left(\frac{12}{7}, \infty\right)$

Official Ans. by NTA (B) Ans. (B) Sol. For angle to be acute $\vec{u} \cdot \vec{v} > 0$ $\Rightarrow a (\log_e b)^2 - 12 + 6a (\log_e b) > 0$ $\forall b > 1$ let $\log_e b = t \Rightarrow t > 0$ as b > 1 $y = at^2 + 6at - 12 \& y > 0, \forall t > 0$ $\Rightarrow a \in \phi$

18. A horizontal park is in the shape of a triangle OAB with AB = 16. A vertical lamp post OP is erected at the point O such that $\angle PAO = \angle PBO = 15^{\circ}$ and $\angle PCO = 45^{\circ}$, where C is the midpoint of AB. Then $(OP)^2$ is equal to

(A)
$$\frac{32}{\sqrt{3}}(\sqrt{3}-1)$$
 (B) $\frac{32}{\sqrt{3}}(2-\sqrt{3})$
(C) $\frac{16}{\sqrt{3}}(\sqrt{3}-1)$ (D) $\frac{16}{\sqrt{3}}(2-\sqrt{3})$

Official Ans. by NTA (B) Ans. (B)

19. Let A and B be two events such that $P(B|A) = \frac{2}{5}$,

$$P(A|B) = \frac{1}{7} \text{ and } P(A \cap B) = \frac{1}{9}. \text{ Consider}$$

(S1)
$$P(A' \cup B) = \frac{5}{6},$$

(S2)
$$P(A' \cap B') = \frac{1}{18}. \text{ Then}$$

(A) Both (S1) and (S2) are true

(B) Both (S1) and (S2) are false

- (C) Only (S1) is true
- (D) Only (S2) is true

Official Ans. by NTA (A)

Ans. (A)

Sol.
$$P(A|B) = \frac{1}{7} \Rightarrow \frac{P(A \cap B)}{P(B)} = \frac{1}{7}$$

 $\Rightarrow P(B) = \frac{7}{9}$
 $P(B|A) = \frac{2}{5} \Rightarrow \frac{P(A \cap B)}{P(A)} = \frac{2}{5}$

$$\Rightarrow P(A) = \frac{5}{18}$$
Now, $P(A' \cup B) = 1 - P(A \cup B) + P(B)$

$$= 1 - P(A) + P(A \cap B) = \frac{5}{6}$$
 $P(A' \cap B') = 1 - P(A \cup B)$

$$= 1 - P(A) - P(B) + P(A \cap B) = \frac{1}{18}$$

$$\Rightarrow Both (S1) and (S2) are true.$$

20. Let

p : Ramesh listens to music.

q : Ramesh is out of his village

r : It is Sunday

s: It is Saturday

Then the statement "Ramesh listens to music only if he is in his village and it is Sunday or Saturday" can be expressed as

(A)
$$((\sim q) \land (r \lor s)) \Rightarrow p$$

(B) $(q \land (r \lor s)) \Rightarrow p$
(C) $p \Rightarrow (q \land (r \lor s))$
(D) $p \Rightarrow ((\sim q) \land (r \lor s))$
Official Ans. by NTA (D)
Ans. (D)

Sol. $p \equiv$ Ramesh listens to music

 $\sim q \equiv$ He is in village.

 $r \lor s \equiv$ Saturday or sunday

$$p \Longrightarrow ((\sim q) \land (r \lor s))$$

SECTION-B

1. Let the coefficients of the middle terms in the

expansion of $\left(\frac{1}{\sqrt{6}}+\beta x\right)^4$, $\left(1-3\beta x\right)^2$ and

 $\left(1-\frac{\beta}{2}x\right), \beta > 0$, respectively form the first three terms of an A.P. If d is the common difference of this A.P., then $50-\frac{2d}{\beta^2}$ is equal to _____

Official Ans. by NTA (57)

Sol.
$${}^{4}C_{2} \times \frac{\beta^{2}}{6}, -6\beta, -{}^{6}C_{3} \times \frac{\beta^{3}}{8}$$
 are in A.P
 $\beta^{2} - \frac{5}{2}\beta^{3} = -12\beta$
 $\beta = \frac{12}{5}$ or $\beta = -2$ $\therefore \beta = \frac{12}{5}$
 $d = -\frac{72}{5} - \frac{144}{25} = -\frac{504}{25}$
 $\therefore 50 - \frac{2d}{\beta^{2}} = 57$

A class contains b boys and g girls. If the number of ways of selecting 3 boys and 2 girls from the class is 168, then b + 3 g is equal to

Official Ans. by NTA (17)

Ans. (17)
Sol.
$${}^{b}C_{3} \times {}^{g}C_{2} = 168$$

 $b(b-1)(b-2) (g)(g-1) = 8 \times 7 \times 6 \times 3 \times 2$
 $b+3 g = 17$

3. Let the tangents at the points P and Q on the ellipse

 $\frac{1}{4} \quad \text{meet at the point } \mathbb{R}(\sqrt{2}, 2\sqrt{2}-2).$

If S is the focus of the ellipse on its negative major axis, then $SP^2 + SQ^2$ is equal to

Official Ans. by NTA (13)

Ans. (13)

Sol. Ellipse is

2

$$\frac{x^2}{2} + \frac{y^2}{4} = 1; \ e = \frac{1}{\sqrt{2}}; \ S = (0, -\sqrt{2})$$

Chord of contact is

$$\frac{x}{\sqrt{2}} + \frac{(2\sqrt{2} - 2)y}{4} = 1$$

$$\Rightarrow \frac{x}{\sqrt{2}} = 1 - \frac{(\sqrt{2} - 1)y}{2} \text{ solving with ellipse}$$

$$\Rightarrow y = 0, \sqrt{2} \quad \therefore x = \sqrt{2}, 1$$

$$P = (1, \sqrt{2}) \quad Q = (\sqrt{2}, 0)$$

 $\therefore (SP)^2 + (SQ)^2 = 13$

4. If $1 + (2 + {}^{49}C_1 + {}^{49}C_2 + \dots + {}^{49}C_{49}) ({}^{50}C_2 + {}^{50}C_4 + \dots + {}^{50}C_{50})$ is equal to 2^n .m, where m is odd, then n + m is equal to

Official Ans. by NTA (99)

Ans. (99) Sol. $1+(1+2^{49})(2^{49}-1)=2^{98}$ m=1, n=98m+n=99

5. Two tangent lines l_1 and l_2 are drawn from the point (2, 0) to the parabola $2y^2 = -x$. If the lines l_1 and l_2 are also tangent to the circle $(x - 5)^2 + y^2 = r$, then 17r is equal to

Official Ans. by NTA (9)

Ans. (9)
Sol.
$$y^2 = -\frac{x}{2}$$

 $y = mx - \frac{1}{8m}$

this tangent pass through (2, 0)

$$m = \pm \frac{1}{4}$$
 i.e., one tangent is $x - 4y - 2 = 0$
 $17r = 9$

6. If $\frac{6}{3^{12}} + \frac{10}{3^{11}} + \frac{20}{3^{10}} + \frac{40}{3^9} + \dots + \frac{10240}{3} = 2^n \cdot m$,

where m is odd, then m.n is equal to _____

Official Ans. by NTA (12)

Ans. (12)
Sol.
$$\frac{6}{3^{12}} + 10\left(\frac{1}{3^{11}} + \frac{2}{3^{10}} + \frac{2^2}{3^9} + \frac{2^3}{3^8} + \dots + \frac{2^{10}}{3}\right)$$

 $\frac{6}{3^{12}} + \frac{10}{3^{11}}\left(\frac{6^{11} - 1}{6 - 1}\right)$
 $= 2^{12} \cdot 1; \text{ m.n} = 12$

7. Let
$$S = \left[-\pi, \frac{\pi}{2}\right] - \left\{-\frac{\pi}{2}, -\frac{\pi}{4}, -\frac{3\pi}{4}, \frac{\pi}{4}\right\}$$
. Then the

number of elements in the set

$$A = \left\{ \theta \in S : \tan \theta \left(1 + \sqrt{5} \tan \left(2\theta \right) \right) = \sqrt{5} - \tan \left(2\theta \right) \right\}$$

Official Ans. by NTA (5)

Ans. (5) Sol. $\tan \theta + \sqrt{5} \tan 2\theta \tan \theta = \sqrt{5} - \tan 2\theta$ $\tan 3\theta = \sqrt{5}$

$$\theta = \frac{n\pi}{3} + \frac{\alpha}{3}; \quad \tan \alpha = \sqrt{5}$$

Five solution

8. Let z = a + ib, $b \neq 0$ be complex numbers satisfying $z^2 = \overline{z} \cdot 2^{1-|z|}$. Then the least value of n \in N, such that $z^n = (z+1)^n$, is equal to _____

Official Ans. by NTA (6)

Ans. (6) Sol. $|z^2| = |\overline{z}| \cdot 2^{1-|z|} \Rightarrow |z| = 1$ $z^2 = \overline{z} \Rightarrow z^3 = 1 \therefore z = \omega \text{ or } \omega^2$ $\omega^n = (1 + \omega)^n = (-\omega^2)^n$

Least natural value of n is 6.

9. A bag contains 4 white and 6 black balls. Three balls are drawn at random from the bag. Let X be the number of white balls, among the drawn balls. If σ^2 is the variance of X, then 100 σ^2 is equal to

Official Ans. by NTA (56)

Ans. (56)
Sol.
$$\frac{X}{P(X)} \frac{0}{1} \frac{1}{2} \frac{2}{3} \frac{3}{10} \frac{1}{30}$$

 $\sigma^{2} = \sum X^{2}P(X) - \left(\sum XP(X)\right)^{2} = \frac{56}{100}$
100 $\sigma^{2} = 56$

10. The value of the integral $\int_{0}^{\frac{\pi}{2}} 60 \frac{\sin(6x)}{\sin x} dx$ is equal

to

Official Ans. by NTA (104)

Sol.

$$= 60 \int_{0}^{\pi/2} \left(\frac{\sin 6x - \sin 4x}{\sin x} + \frac{\sin 4x - \sin 2x}{\sin x} + \frac{\sin 2x}{\sin x} \right) dx$$

$$I = 60 \int_{0}^{\pi/2} (2\cos 5x + 2\cos 3x + 2\cos x) dx$$

$$I = 60 \left(\frac{2}{3} \sin 5x + \frac{2}{3} \sin 3x + 2\sin x \right) \Big|_{0}^{\pi/2} = 104$$

$$I = 60 \left(\frac{2}{5} \sin 5x + \frac{2}{3} \sin 3x + 2 \sin x \right) \Big|_{0}^{3/2} = 10$$