GS2025 **Mathematics Final Answer Key**

NOTATION AND CONVENTIONS

- \bullet N denotes the set of natural numbers $\{0, 1, \ldots\}$, Z the set of integers, $\mathbb Q$ the set of rational numbers, $\mathbb R$ the set of real numbers, and $\mathbb C$ the set of complex numbers. These sets are assumed to carry the usual algebraic and metric structures.
- \mathbb{R}^n denotes the Euclidean space of dimension n. Subsets of \mathbb{R}^n are viewed as metric spaces using the standard Euclidean distance on \mathbb{R}^n . For $x \in \mathbb{R}^n$, $||x||$ denotes the standard Euclidean norm of x, i.e., the distance from x to 0.
- ' All rings are associative, with a multiplicative identity. Ring homomorphisms are assumed to respect multiplicative identities.
- For any ring R, $M_n(R)$ denotes the ring of $n \times n$ matrices with entries in R. The identity matrix in $M_n(R)$ will be denoted by Id or by Id_n. For a matrix $A \in M_n(R)$, A^t will stand for its tranpose, trace(A) for its trace, and $\det(A)$ for its determinant.
- \bullet M_n(\mathbb{R}) will also be viewed as a real vector space, and M_n(\mathbb{C}) as a complex vector space. $M_n(\mathbb{R})$ is given the topology such that any R-linear isomorphism $M_n(\mathbb{R}) \to \mathbb{R}^{n^2}$ is a homeomorphism. Subsets of $M_n(\mathbb{R})$ are given the subspace topology.
- For a ring $R, R[x_1, \ldots, x_n]$ denotes the polynomial ring in n variables x_1, \ldots, x_n over R.
- If A is a set, $#A$ stands for the cardinality of A, and equals ∞ if A is infinite.
- If B is a subset of a set A, we write $A \ B$ for the set $\{a \in A \mid a \notin B\}.$
- Let G be a group, and let $S \subset G$. The subgroup of G generated by S is defined to be the smallest subgroup of G that contains S .

(1) For a positive integer m, let $d(m)$ denote the number of divisors of m, including 1 and m. Define a sequence $\{a_n\}_{n=1}^{\infty}$ by

$$
a_n = \#\{1 \leq m \leq n \mid d(m) \text{ is odd}\}.
$$

Find

$$
\lim_{n \to \infty} \frac{a_n}{n}.
$$

 \sqrt{a} (a) 0 (b) 1

(c) $1/2$

- (d) None of the remaining three options
- (2) Let S_3 be the symmetric group on 3 letters. Consider the real vector space

$$
V = \{ f : S_3 \to \mathbb{R} \mid f(g) = f(g^3), \forall g \in S_3 \}.
$$

What is the dimension of this space?

- (a) 1
- (b) 2

$$
_{\Box}({\rm c})\,\,3
$$

 $\sqrt{|d|}$ Greater than 3

 $\overline{(3)}$ Consider the set

$$
S = \{(x, y) \in \mathbb{R}^2 \mid (x^3 + 1)^3 = (y^5 + 1)^5\}.
$$

How many connected components does S have?

 \checkmark (a) 1

(b) 3

- (c) Greater than 3, but finite
- (d) Infinite

(4) Define a set S of real polynomials as follows:

 $S = \{p \in \mathbb{R}[x] \mid p \text{ is not constant}, |p(0)| < 1\}.$

For p in S , define

$$
U_p = \{ x \in \mathbb{R} \mid |p(x)| < 1 \}.
$$

Which of the following statements is correct?

- (a) There exists $p \in S$ such that U_p is a union of infinitely many disjoint open intervals.
- (b) For each $p \in S$, U_p is a union of infinitely many disjoint open intervals.
- \checkmark (c) For each $p \in S$, U_p is a union of finitely many open intervals. (d) There exists $p \in S$ such that U_p is an unbounded set.
- (5) What is the number of functions $f : \mathbb{R} \setminus \{0, 1\} \to \mathbb{R} \setminus \{0, 1\}$ such that $|f(x) - f(y)| = |x - y|$ for all $x, y \in \mathbb{R} \setminus \{0, 1\}$?
	- (a) 1
	- $\sqrt{}$ (b) 2
		- (c) Greater than 2, but finite
		- (d) Infinite ´
- (6) Let $x_n = \left(1 \frac{1}{\sqrt{2}}\right)$ \overline{n} \sqrt{n} $\exp(n^{\frac{1}{4}})$. Which of the following statements is correct?

correct?
\n(a)
$$
\lim_{n\to\infty} x_n = 0
$$
 and $\sum_{n=1}^{\infty} x_n$ converges.

2

- (b) $\lim_{n \to \infty} x_n = 0$ but $\sum_{n=1}^{\infty} x_n$ diverges.
- (c) $\lim_{n \to \infty} x_n$ exists but is non-zero.
- (d) $\lim_{n\to\infty}x_n$ does not exist.
- (7) Let $f : [0, 1] \rightarrow \mathbb{R}$ be such that

$$
f(x) = \begin{cases} \frac{1}{2^n}, & \text{if } x = \frac{p}{2^n}, \text{ where } p \text{ is an odd integer, and} \\ 0, & \text{otherwise.} \end{cases}
$$

Which of the following statements is correct?

- (a) f is continuous at $x \in [0, 1]$ if and only if x is rational.
- (b) f is continuous at $x \in [0, 1]$ if and only if x is irrational.
- (c) f is not continuous at x, for any $x \in [0, 1]$.

 $\sqrt{|d|}$ None of the remaining three statements is true.

- (8) Let $\{q_n\}_{n=1}^{\infty}$ be an enumeration of the rationals. In other words,
	- $\mathbb{Q} = \{q_n \mid n \in \mathbb{N} \setminus \{0\}\},\$ and $q_m \neq q_n$ if $m \neq n$. Set

$$
X = \bigcup_{n=1}^{\infty} \left(q_n - \frac{1}{n^2}, q_n + \frac{1}{n^2} \right).
$$

Which of the following statements is correct?

- \checkmark (a) X is dense in R, but not equal to R.
	- (b) $X = \mathbb{R}$.
	- (c) X contains an open interval of length 10.
	- (d) None of the remaining three statements is correct.
- (9) Consider the linear map $T : \mathbb{R}[x] \to \mathbb{R}[x]$ defined by $T(p(x)) =$ $\frac{d}{dx}(xp(x))$. Which of the following statements is correct?
	- (a) T is injective but not surjective.
	- (b) T is surjective but not injective.
	- \checkmark (c) T is bijective.
	- (d) T is neither injective nor surjective.
- (10) Let

$$
A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 2 \\ 1 & 2 & 1 \end{pmatrix}
$$

Consider the following statements:

- (i) A has a positive eigenvalue.
- (ii) A has a negative eigenvalue.

Which of the following statements is correct?

- $\sqrt{(a)}$ (i) and (ii) are true.
	- (b) (i) and (ii) are false.
	- (c) (i) is true and (ii) is false.
	- (d) (ii) is true and (i) is false.
- (11) Let A be a nonzero $n \times n$ matrix with real entries, where $n > 1$. Consider the following statements.
	- (i) If $A^2 = 0$ then rank $(A) \leq \lfloor \frac{n}{2} \rfloor$ $\frac{n}{2}$.
	- (ii) If rank $(A) \leq \lfloor \frac{n}{2} \rfloor$ $\frac{n}{2}$ then $A^2 = 0$.

Which of the following statements is correct?

- (a) (i) and (ii) are true.
- (b) (i) and (ii) are false.
- \checkmark (c) (i) is true and (ii) is false.
- (d) (ii) is true and (i) is false.
- (12) Consider the following subset of \mathbb{R}^2 : $\frac{1}{2}$

$$
S = \left\{ \left(x, \sin \frac{1}{x} \right) \middle| x > 0 \right\} \cup \left\{ \left(0, \pm \frac{1}{n} \right) \middle| n \geq 1 \right\}.
$$

Which of the following statements is correct?

(a) S is path connected.

- $\sqrt{\left(b\right) }$ S is connected, but not path connected.
	- (c) S is not connected, but has finitely many connected components.
	- (d) S has infinitely many connected components.
- (13) Consider the following statements:
	- (i) Any linear map $\mathbb{R}^3 \to \mathbb{R}^3$ has a one-dimensional invariant subspace.

(ii) Any linear map $\mathbb{R}^3 \to \mathbb{R}^3$ has a two-dimensional invariant subspace.

Which of the following statements is correct?

- $\sqrt{(a)}$ (i) and (ii) are both true.
	- (b) (i) and (ii) are both false.
	- (c) (i) is true and (ii) is false.
	- (d) (i) is false and (ii) is true.
- (14) Consider the following statements:
	- (i) For any linear map $T : \mathbb{R}^3 \to \mathbb{R}^3$ with a two-dimensional kernel, the trace of T is an eigenvalue of T .
	- (ii) For any linear map $T : \mathbb{R}^3 \to \mathbb{R}^3$ with a two-dimensional kernel, $X²$ divides the characteristic polynomial of T.

Which of the following statements is correct?

- $\sqrt{(a)}$ (i) and (ii) are both true.
	- (b) (i) and (ii) are both false.
	- (c) (i) is true and (ii) is false.
	- (d) (i) is false and (ii) is true.
- (15) For a positive integer n, define the function $f_n : \mathbb{R} \to \mathbb{R}$ by $f_n(x) =$ For a positive integer *n*, define the function $f_n : \mathbb{R} \to \mathbb{R}$ by $f_n(x) = \sin\left(\frac{x}{n}\right)$. Consider the sequences $\{f_n\}_{n=1}^{\infty}$ and $\{f'_n\}_{n=1}^{\infty}$ of functions from $\mathbb R$ to $\mathbb R$. Which of the following statements is correct?
	- (a) The sequences $\{f_n\}_{n=1}^{\infty}$ and $\{f'_n\}_{n=1}^{\infty}$ both converge uniformly on R.
	- (b) Neither of the sequences $\{f_n\}_{n=1}^{\infty}$ and $\{f'_n\}_{n=1}^{\infty}$ converges uniformly on R.
	- (c) The sequence $\{f_n\}_{n=1}^{\infty}$ converges uniformly on \mathbb{R} , but the sequence $\{f'_n\}_{n=1}^{\infty}$ does not.
	- (d) The sequence $\{f'_n\}_{n=1}^{\infty}$ converges uniformly on R, but the sequence $\{f_n\}_{n=1}^{\infty}$ does not.
- (16) Let $n > 1$ be a positive integer. Let $A = [a_{ij}]_{1 \leq i,j \leq n}$ be an $n \times n$ matrix, such that $a_{i,i+1} = c_i$ for $i = 1, \ldots, (n-1)$, and $a_{n,1} = c_n$, where c_1, \ldots, c_n are real numbers and all the other entries are 0. Which of the following sentences is correct regardless of n ?
	- Which of the following sentences is c
 $\sqrt{(a)} \det(\text{Id} A^n) = 0$ if $\prod_{i=1}^n c_i = 1$.

4

- (b) det $(\text{Id} A^n) > 0$ if $\prod_{i=1}^n c_i > 0$.
- (b) det(Id Aⁿ) > 0 if $\prod_{i=1}^{n} c_i$ > 0.
(c) det(Id Aⁿ) < 0 if $\prod_{i=1}^{n} c_i$ > 1.
- (c) det $(\text{Id} A^n) < 0$ if $\prod_{i=1}^n c_i > 1$.

(d) det $(\text{Id} A^n) > 0$ if $\prod_{i=1}^n c_i > 1$.
- (17) Let $n \geq 1$. Consider non-zero $n \times n$ real matrices A such that $trace(AX) = 0$, for every real matrix X with trace $(X) = 0$. Consider the following assertions.
	- (i) For every such matrix A, $trace(A)^n = n^n \cdot det(A)$.
	- (ii) For every such matrix A , the rank of A is n .

Which of the following sentences is correct?

- (a) (i) is correct and (ii) is incorrect.
- (b) (ii) is correct and (i) is incorrect.
- \checkmark (c) (i) and (ii) are correct.
- (d) (i) and (ii) are incorrect.
- (18) Let S be the set of functions $f : (0, 1) \to \mathbb{R}$ with the property that there is a sequence $\{f_n\}_{n=1}^{\infty}$ of functions that converges uniformly to f, where each $f_n : (0, 1) \to \mathbb{R}$ is a twice continuously differentiable function (i.e., f''_n exists and is continuous). Which of the following statements is correct?
	- $\sqrt{(a)}$ Any $f \in S$ is continuous, but there exists $f \in S$ such that f is not differentiable.
		- (b) Any $f \in S$ is differentiable, but there exists $f \in S$ such that f' is not continuous.
		- (c) Any $f \in S$ is continuously differentiable, but there exists $f \in S$ such that f'' does not exist.
		- (d) Any $f \in S$ is twice continuously differentiable.
- (19) For a real valued function $f : [0, 1] \rightarrow \mathbb{R}$, let $\omega_f : [0, 1] \rightarrow \mathbb{R}$ be the oscillation of f defined by

$$
\omega_f(t) := \sup_{|x-y| \leq t} |f(x) - f(y)|.
$$

Which one of the following statements is correct for every $f : [0, 1] \rightarrow$ R?

- $\sqrt{}$ (a) f is continuous if and only if $\lim_{t\to 0+} \omega_f(t) = 0$.
	- (b) If f is continuous then $\lim_{t\to 0+} \omega_f(t) = 0$, but not conversely.
	- (c) If $\lim_{t\to 0+} \omega_f(t) = 0$ then f is continuous, but not conversely.
	- (d) None of the remaining three statements is correct.
- (20) The number of real cubic polynomials of the form $x^3 + ax + b$, each of whose complex roots lies on the unit circle $S^1 = \{z \in \mathbb{C} \mid z\overline{z} = 1\},\$ equals
	- (a) 0
	- \checkmark (b) 2
		- $(c) \infty$
			- (d) None of the remaining three options
- \mathbb{F} (1) There exists a linear polynomial $p(x) \in \mathbb{R}[x]$, for which there exist exactly two subsets $S \subset \mathbb{R}$ such that $p(S) = S$ and such that $\#S = 2$.
- $T(2)$ There are exactly 10 abelian groups of order 2025, up to isomorphism.
- T (3) If $A \subset \mathbb{R}$ is an uncountable subset, then there exist uncountably many elements $x \in A$ such that x is a limit point of $A \setminus \{x\}.$
- \mathbb{F} (4) There exists an open subset of \mathbb{R} with uncountably many connected components.
- T (5) Let (X, d) be a nonempty complete metric space, and let $T : X \to X$ be a continuous map such that T^2 is a contraction, i.e., there exists $a < 1$ such that for all distinct $x, y \in X$, we have $d(T^2(x), T^2(y))$ $ad(x, y)$. Then there exists a unique element $x \in X$ such that $T(x) =$ x.
- $T | (6)$ Let

$$
S^{2} = \{(x, y, z) \in \mathbb{R}^{3} \mid x^{2} + y^{2} + z^{2} = 1\},\
$$

and let $d: S^2 \times S^2 \to \mathbb{R}$ be the restriction of the Euclidean metric on \mathbb{R}^3 . If $f: S^2 \to S^2$ is a map such that $d(f(x), f(y)) = d(x, y)$ for all $x, y \in S^2$, then f is surjective.

 \mathbb{F} (7) Let $C([0, 1], \mathbb{R})$ be the set of continuous functions from $[0, 1]$ to R, equipped with the metric d given by

$$
d(f_1, f_2) = \sup_{x \in [0,1]} |f_1(x) - f_2(x)|.
$$

Let $X \subset C([0, 1], \mathbb{R})$ be defined by "

$$
X := \left\{ f \in C([0,1], \mathbb{R}) \mid \int_0^1 f(t) \, dt \neq 0 \right\}.
$$

Then, with the induced metric, X is connected.

- $\begin{bmatrix} F & (8) \end{bmatrix}$ Let $SO_4 = \{A \in M_4(\mathbb{R}) \mid AA^t = \text{Id}, \text{ and } \det(A) > 0\}.$ Then every matrix in SO_4 has 1 or -1 as an eigenvalue.
- $T(9)$ Let T be an endomorphism of a finite dimensional real vector space V , and let W denote the image of T . Let T' denote the restriction of T to W . Then T and T' have the same trace.
- F (10) Every subgroup of $S^1 = \{z \in \mathbb{C} \mid z\overline{z} = 1\}$, viewed as a group under multiplication, is finite.
- F (11) If $f : F \to F$ is a homomorphism of fields, then f is surjective.
- $\overline{T}(12)$ Given any linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$, there exist linear transformations $T_1, T_2 : \mathbb{R}^2 \to \mathbb{R}^2$ such that $(1, 0)$ belongs to the kernel of T_1 , $(0, 1)$ belongs to the image of T_2 , and $T = T_1 + T_2$.
- $\vert T \vert (13)$ For any positive integer d, the set

 $\{10^a - 10^b \mid a, b \text{ are distinct positive integers}\}\$

contains a multiple of d.

 $\mathbb{F} \setminus (14)$ There exists $\theta \in (0, \pi/2)$ such that

$$
\sin \theta + \sec \theta + \cot \theta = 3.
$$

 $\left| \frac{\text{F}}{\text{F}} \right|$ (15) Let m be a positive integer, and S_m the symmetric group on m letters. Let n be a positive integer such that for every group G of order n, there exists an injective group homomorphism $G \hookrightarrow S_m$. Then $m \geq n$.

6

- T (16) Let ℓ_1 be the line in \mathbb{R}^2 joining (0,0) and $\left(\frac{1}{2}\right)$ $\frac{1}{2}$, $\sqrt{3}$ $\frac{\sqrt{3}}{2}$, and ℓ_2 the line in \mathbb{R}^2 joining $(0, 0)$ and ($\sqrt{3}$ $\frac{\sqrt{3}}{2},\frac{1}{2}$ $\frac{1}{2}$). Consider the group of bijections $\mathbb{R}^2 \to \mathbb{R}^2$ under composition, and its subgroup G generated by the reflections about ℓ_1 and ℓ_2 . Then G has exactly 12 elements.
- \boxed{F} (17) There are only finitely many subsets $I \subset \mathbb{N}$ with the property that

$$
\left\{f(x) = \sum_{i=0}^{n} a_i x^i \in \mathbb{R}[x] \middle| n \in \mathbb{N}, a_i \in \mathbb{Q} \text{ for all } i \in I \right\}
$$

is a subring of $\mathbb{R}[x]$.

- $T | (18)$ There are uncountably many continuous functions $\mathbb{Q} \rightarrow \{0, 1\}.$
- $\overline{F}(19)$ Let $f : \mathbb{R} \to \mathbb{R}$ be a continuously differentiable function. Suppose there exists $C \in \mathbb{R}$ such that f is injective on (C, ∞) . Then there exists $D \in \mathbb{R}$ such that f' is injective on (D, ∞) .
- $T | T | (20)$ If $f, g : [0, 1] \to \mathbb{R}$ are continuous and $f \cdot g = 0$, then one of f or g is zero on an open subset of $[0, 1]$.