- 1. The area bounded by the curve $y = 2x x^2$ and the line y = -2 is given by
 - $(A)^{\frac{32}{3}}$
- (B) 3
- (C) $\frac{16}{3}$
- (D) none of these

- 2. The value of the integral $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 2 \sin^2 x \ dx$ is

- (D) n

- 3. $\int \frac{dx}{x^2+36}$ is equal to

 - (A) $\frac{1}{6}cot^{-1}\frac{x}{6} + c$ (B) $\frac{1}{6}tan^{-1}\frac{x}{6} + c$ (C) $\frac{1}{6}sin^{-1}\frac{x}{6} + c$
- (D) none of these

- 4. $\int \cos x \cdot \ln \tan \frac{x}{2} dx$ is equal to
 - (A) $\sin x \cdot \ln \tan \frac{x}{2} + x + c$
- (B) $\sin x \cdot \ln \tan \frac{x}{2} x + c$
- (C) $-\sin x \cdot \ln \tan \frac{x}{2} 1 + c$
- (D) none of these
- 5. The value of the integral $\frac{1}{2} \int_0^{\pi} \frac{1+2\cos x}{(2+\cos x)^2}$ is

- 6. $\int_0^1 \frac{\tan^{-1} x}{1+x^2} dx$ is equal to
- (C) 1
- (D) none of these
- 7. The solution of the differential equation $\frac{d^2y}{dx^2} = 6x 4$ satisfying y(0) = 1, y'(0) = 1 is

(A)
$$y = x^3 - 2x^2 + 1$$
 (B) $y = 1 - x^3 + 2x^2$

- (C) $y = x^3 + 2x^2 x$ (D) $y = x^3 2x^2 + x$
- 8. A differential equation which represents the family of curves $y = e^{\alpha x}$ is

(A)
$$y' = \alpha y$$

(B)
$$xy' - \ln y = 0$$
 (C) $x \ln y = yy'$ (D) $y \ln y = xy'$

(C)
$$x \ln y = y y'$$

(D)
$$y \ln y = x y'$$

- 9. The order and degree of the differential equation $\frac{d^2y}{dx^2} = \left\{ y + \left(\frac{dy}{dx} \right)^2 \right\}^{\frac{2}{3}}$ is
 - (A) 3,2
- (B) 1,2

- 10. The solution of the differential equation $\frac{dy}{dx} = \frac{y-x}{y+x}$ is

(A)
$$\ln\left(\frac{x^2+y^2}{x^2}\right) + 2\tan^{-1}\frac{y}{x} = c$$
 (B) $\frac{y^2}{2} + xy = \frac{x^3-x^2}{2} + c$

(B)
$$\frac{y^2}{2} + xy = \frac{x^3 - x^2}{2} + c$$

(C)
$$\left(1 + \frac{x}{y}\right)y = \left(1 - \frac{x}{y}\right) + c$$

$$(D) y = x - 2 \ln y + c$$

11. Solution of the differential equation $\frac{dy}{dx} + 2y = e^x$ is

$$(\Delta) 3y = e^x + c$$

$$(B) ve^{2x} = e^x + c$$

$$(C) y = e^x + ce^{-2x}$$

(A)
$$3y = e^x + c$$
 (B) $ye^{2x} = e^x + c$ (C) $y = e^x + ce^{-2x}$ (D) $3y = e^x + ce^{-2x}$

12. The variance of	first 20 natural numbe	ers is			
$(A)^{\frac{401}{12}}$	(B) $\frac{399}{12}$	(C) $\frac{287}{2}$	(D) none of these		
13. 5 boys and 5 girls sit in a row randomly. Then the probability that all 5 girls sit together is					
(A) $\frac{1}{32}$	(B) $\frac{1}{4}$	(C) $\frac{1}{42}$	(D) none of these		
14. A bag contains 8 white and 6 red balls. Then the probability of drawing two balls of the					
same colour is $(A) \frac{28}{91}$	(B) $\frac{15}{91}$	(C) $\frac{43}{91}$	(D) none of these		
15. $\lim_{x\to 0} (\sin x + \sin x)$	$(\cos x)^{\frac{1}{x}}$ is equal to				
	(B) e^2	(C) $\frac{1}{e}$	(D) 1		
16. $\lim_{x\to 1} \frac{x^{20}-1}{x-1}$ is equal to					
(A) 0	(B) 10	(C) 20	(D) none of these		
17. The value of 'a' for which the function $f(x) = \begin{cases} ax - 1, & x < 2 \\ 2x - 3, & x \ge 2 \end{cases}$ is continuous at $x = 2$					
is (A) 0	(B) 2	(C) 1	(D) 4		
(A) 0	(6) 2	(C) I	(6) 4		
18. A function f is d	$efined by f(x) = 2e^x$	$\sin x$ in $[0,\pi]$, then w	hich of the following is not		
(A) f is continuous in $[0,\pi]$					
(B) f is differentiable in $[0,\pi]$					
(C) $f(0) = f(\pi)$ (D) Rolle's theorem is not true in $[0, \pi]$					
10 If f(w) = 2ml wl	than f(a) is				
19. If $f(x) = 2x x $, then $f(x)$ is (A) continuous as well as differentiable in $[-1,1]$					
(B) continuous but not differentiable in [-1,1]					
(C) differentiable but not continuous in [-1,1]					
(D) none of thes	se				
20. If $x = y\sqrt{1 - x^2}$, then $\frac{dy}{dx}$ is equal to				
(A) y	(B) $\frac{\sqrt{1-x^2}}{1+2x^2}$	(C) $\frac{\sqrt{1-y^2}}{1-2y^2}$	(D) 0		

- 21. If $y = \ln \ln x$, then $e^y \frac{dy}{dx}$ is equal to

- $(C)\frac{1}{\ln x}$
- $(D)^{\frac{1}{n}}$
- 22. The equation of the tangent at the point (1,1) to the curve $2y = 4 x^2$ is
 - (A) x + y = 0
- (B) x + y + 1 = 0 (C) x y + 1 = 0 (D) x + y = 2
- 23. The maximum value of $2x^3 + 3x^2 12x + 4$ for $-3 \le x < 4$ occurs at x = 2x + 4

- 24. If $= \sin^{-1} \frac{x}{y} + \tan^{-1} \frac{y}{x}$, then $x \frac{\partial z}{\partial x} + y \frac{\partial z}{\partial y}$ is equal to

- (D) none of these
- 25. If $y = (2x + 3)^9$, then $y^{(5)}$ ($y^{(n)}$ denotes the n-th order derivative) is equal to
 - (A) $9.8.7.6.5 \times 2^5 (2x + 3)^5$
- (B) $9.8.7.6.5 \times 2^5(2x+3)^4$
- (C) $9.8.7.6.5 \times 2^4(2x + 3)^5$
- (D) $9.8.7.6.5 \times 2^4(2x + 3)^4$
- 26. The sum of the series $1 + 3x + 6x^2 + 10x^2 + \cdots \infty$ is (here |x| < 1)
 - (A) $\frac{1}{(1-x)^2}$
- (B) $\frac{1}{1-x}$
- (C) $\frac{1}{(1+x)^2}$ (D) $\frac{1}{(1-x)^3}$
- 27. If \vec{a} and \vec{b} are unit vectors and θ is the angle between them, the $\frac{1}{2}|\vec{a}-\vec{b}|$ is equal to
- $(A) \frac{1}{2} \left| \sin \frac{\theta}{2} \right|$
- (B) $\left|\sin\frac{\theta}{2}\right|$
- (C) $2 \left| \sin \frac{\theta}{2} \right|$
- (D) none of these
- 28. If \vec{a} , \vec{b} and \vec{c} are any three vectors, then $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \times \vec{c}$ only if
- (A) \vec{b} and \vec{c} are collinear
- (B) \vec{a} and \vec{c} are collinear
- (C) \vec{a} and \vec{b} are collinear
- (D) none of these
- 29. If $2x^2 + 3x 2 \le 0$, then

 - (A) $x \le -2$ (B) $-2 \le x \le \frac{1}{2}$ (C) $x \ge -2$
- (D) $x \leq \frac{1}{2}$
- 30. The smallest value of $x^2 3x + 3$ in (-3,3) is
 - (A) 18
- (C) $\frac{3}{4}$
- (D) none of these
- 31. The direction cosines of any normal to the xy -plane are
- (A) 1,0,0
- (B) 0,1,0
- (C) 1,1,0
- (D) 0,0,1
- 32. The distance of the point (1,3,-2) from the plane x+y-z=5 measured parallel to the line $\frac{x}{2} = \frac{y}{2} = \frac{z-1}{-6}$ is

(A) $\frac{5}{11}$ (B) $\frac{3}{11}$

(C) $\frac{7}{11}$

(D) none of these

33. The shortest distance from the plane 12x + 4y + 3z = 327 to the sphere

$$x^2 + y^2 + z^2 + 4x - 2y - 6z = 155$$
 is

(A) 26

(B) 23

(C) 13

(D) none of these

34. If the line $\frac{x-x_1}{l}=\frac{y-y_1}{m}=\frac{z-z_1}{n}$ is parallel to the plane ax+by+cz+d=0, then

 $(A)\frac{a}{l} = \frac{b}{m} = \frac{c}{n}$

(B) al + bm + cn = 0

(C) $\frac{a}{l} + \frac{b}{m} + \frac{c}{n} = 0$

(D) none of these

35. The equation of the straight line passing through the point of intersection of the lines x-y=2 and 2x-3y+1=0 and parallel to the line 3x+4y=16 is

(A) 3x + 4y + 41 = 0

(B) 3x + 4y - 41 = 0

(C) 4x + 3y + 41 = 0

(D) 4x + 3y - 41 = 0

36. If the slope of one of the lines given by $ax^2 + 2hxy + by^2 = 0$ be the square of the other, then

(A) $ab(a+b) + 6abh + 8h^3 = 0$ (B) $ab(a+b) - 6abh + 8h^3 = 0$ (C) $ab(a+b) + 3abh + 4h^3 = 0$ (D) none of these

37. If (1,-1) lies on the circle $x^2 + y^2 + 2gx + 2fy + c = 0$ which is concentric with the circle $x^2 + y^2 + 4x - 6y + 3 = 0$, then the value of c is

(A) 12

(B) - 12

(D) - 14

38. If (6,0) is the vertex and y- axis is the directrix of a parabola, then its focus is

(0,8)

(B)(4,0)

(C)(12,0)

(D) none of these

39. The eccentricity of the ellipse $9x^2 + 5y^2 - 30y = 0$ is

 $(A)^{\frac{1}{2}}$

 $(B)^{\frac{2}{3}}$

(C) $\frac{3}{4}$

(D) none of these

40. An equation of the tangent to the hyperbola $3x^2 + 4y^2 = 3$, which is perpendicular to the line x + 3y - 7 = 0 is

(A) $y = 3x + \sqrt{6}$ (B) $y = -3x + \sqrt{6}$ (C) y = 3x - 6

(D) none of these

41. If $\alpha + \beta = 45^{\circ}$, then $(1 + \tan \alpha)(1 + \tan \beta)$ is equal to

(B) - 1

(D) none of these

42. The most general solution of $\tan \theta = -1$ and $\cos \theta = \frac{1}{\sqrt{2}}$ is

(A) $n\pi + \frac{7\pi}{4}$ (B) $n\pi + (-1)^n \frac{7\pi}{4}$ (C) $2n\pi + \frac{7\pi}{4}$

(D) none of these

(here n is an integer)

43. The value of $\sin\left(\frac{\pi}{2} - \sin^{-1}\left(-\frac{1}{2}\right)\right)$ is equal to					
$(A)\frac{\sqrt{3}}{2}$	$(B) - \frac{\sqrt{3}}{2}$	(C) $\frac{1}{2}$	(D) none of these		
44. In a triangle ABC if $b+c=3a$, then $\tan\frac{B}{2}\tan\frac{C}{2}$ is equal to					
(A) $\frac{1}{3}$	(B) 1	(C) $\frac{1}{4}$	(D) $\frac{1}{2}$		
45. If $\alpha+\beta+\gamma=\frac{\pi}{2}$, then the value of $\tan\alpha\tan\beta+\tan\beta\tan\gamma+\tan\gamma\tan\alpha$ will be					
(A) 1	(B) $\frac{1}{2}$	(C) $\frac{3}{2}$	(D) none of these		
46. The minor of '2' i	n the determinant 3	-1 4 is			
(A) 0	(B) 17	(C) -17	(D) -15		
47. If the value of a third order determinant is 8, then the value of the determinant					
formed by its cofactor is					
(A) 8	(B) 24	(C) 32	(D) 64		
		5			
48 . The value of the	determinant 2 3 4 6 8 11	9 is			
		15	THE PART OF		
(A) -2	(B) 2	(C) 4	(D) -4		
49. The system of line has a unique solution (A) $k \neq 0$			3, $3x + 2y + kz = 4$ (D) $k = 0$		
50. Let z be a complex number with modules 4 and argument $\frac{2\pi}{3}$, then z is equal to					
$(A)-2+i2\sqrt{3}$			(D) none of these		
51. If $\left(\frac{1+\cos\theta+i\sin\theta}{\sin\theta+i+i\cos\theta}\right)^n = \cos(n\theta)+i\sin(n\theta)$, then n is equal to					
(A)2	(B) 3	(C) 4	(D) none of these		
52. If the geometric mean between two non-negative numbers a and b be same as the harmonic mean, then $2\frac{a}{b}$ is equal to					
(A) 2	(B) 1	(C) $\frac{1}{2}$	(D) none of these		
53. The number of ways in which 5 letters can be posted in 6 letter boxes in a town is					
(A) 6 ⁵	(B) 5 ⁶	(C) $^{6}P_{5}$	(D) 6C_5		
TA The second of the second distance (see both second seco					
54. The number of proper divisors (excluding 1, and itself) of 252 is					
(A) 46	(B) 47	(C) 56	(D) none of these		
		5			

- 55. If $(1+x)^n=C_0+C_1x+C_2x^2+\cdots+C_nx^n$, then $C_0+\frac{c_1}{2}+\frac{c_2}{3}+\cdots\frac{c_{10}}{11}$ is equal to
 - (A) 2^{11}
- (B) $\frac{2^{11}-1}{11}$
 - (C) $\frac{2^{11}}{11}$
- (D) none of these
- 56. If the set A has 4 elements, B has 5 elements, then the number of elements in $A \times B$ is
- (A) 10
- (B) 20
- (C) 16
- (D) 9
- 57. Let R be a relation on the set of natural numbers \mathbb{N} such that mRn if m is a factor of n, (here , n are elements of \mathbb{N}) then the relation is
 - (A) reflexive and symmetric
 - (B) reflexive and transitive
 - (C) equivalence relation
 - (D) transitive but not reflexive
- 58. Let $f:(0,\infty)\to(0,\infty)$ be defined by $(x)=10x^2$, $x\in(0,\infty)$, then f is
 - (A) one to one but not onto
 - (B) onto but not one-to-one
 - (C) bijective
 - (D) neither one-to-one nor onto
- 59. Which of the following is a statement
 - (A) shut the door
 - (B) listen to me
- (C) is $9 \times 3 = 27$?
- (D) 15 is less than 3
- 60. The binary representation of 13 is
 - (A) 1001
- (B) 1101
- (C) 1011
- (D) 1110

