

NARAYANA'S UNSTOPPABLE DOMINANCE

IN JEE MAIN 2024

JEE MAIN (JAN) 2025 22-01-2025 (9 AM-12 PM)

Memory - Based Duestion Paper
CHEMISTRY

JEE-Main-22-01-2025 (Memory Based) [SESSION-1]

CHEMISTRY

Question: What is the charge on metal and shape of complex of $[NiCl_4]^{2-}$ respectively? Options:

- (a) +2, Tetrahedral
- (b) +2, Square planar
- (c) +4, Tetrahedral
- (d) +4, Square Planar

Answer: (a)

Question: Compare boiling point of given solutions

- (i) 10⁻⁴ NaCl
- (ii) 10⁻³ NaCl
- (iii) 10⁻² NaCl
- (iv) 10⁻⁴ urea

Options:

- (a) I > II > III > IV
- (b) III > II > IV
- (c) II > I > III > IV
- (d) III > I > II > IV

Answer: (b)

Question: The correct decreasing order of electronegativity is Options:

- (a) F > Cl > I > Br
- (b) Cl > F > Br > 1
- (c) F > Cl > Br > I
- (d) Br > F > I > Cl

Answer: (c)

Question: Which of the following has maximum size out of Al³, Mg²⁺, F⁻, Na⁺ Options:

- (a) Al^{3+}
- (b) Mg^2
- (c) F
- (d) Na⁺

Answer: (c)

Question: If the radius of the first orbit of the H atom is a_0 , then what is the radius of the first excited state of He^+ ion?

- **Options:**
- (a) $\frac{a_0}{2}$
- (b) $2a_0$
- (c) a_0
- (d) $5a_0$

Answer: (b)

$$r_{He^{+}} = \frac{a_{0}n^{2}}{Z} = \frac{a_{0} \times 2^{2}}{2} = 2a_{0}$$

Question: Which has 7 electrons in the f subshell?

Options:

- (a) Eu³⁺
- (b) Gd^{2+}
- (c) Eu²⁺
- (d) Ce³⁺

Answer: (c)

Question: The electrolysis product of which is H₂S₂O₈?

Options:

- (a) Dil H₂SO₄
- (b) Cu SO₄(ag)
- (c) Conc. H₂SO₄
- (d) None of these

Answer: (c)

Question: Calculate Number of stereoisomers of

$$CH_3 - CH = CH - CH_3$$

OH

Options:

- (a) 4
- (b) 2
- (c) 6
- (d) 8

Answer: (a)

Question: If $AlCl_3$ is electrolysed for 30 minutes using a current of 2A . How much of Al will be deposited at the cathode?

(F = 96500c, molar mass Al = 279/Mol)

Options:

- (a) 0.1679
- (b) 0.2239
- (c) 0.3359
- (d) 0.4519

Answer: (c)

Q = I × t = 2 × 30 × 60 = 3600 C.

$$ne^- = \frac{Q}{F} = \frac{3600}{96500} \equiv 0.0373 \, mol \, n_{Al} = \frac{0.0373}{3} = 0.0126 \, mol$$

wt of Al = $0.0124 \times 27 = 0.335$ g

Question: $CO_2(g) + C(s) \rightleftharpoons 2CO(g)$

If initial pressure of CO_2 is 0.6 atm and after equilibrium is established, total pressure is 0.8 atm. Then, find K_p .

Options:

(a) 0.8 atm

(b) 0.4 atm

(c) 0.5 atm

(d) 0.2 atm

Answer: (b)

 $CO_2 + C \rightleftharpoons 2CO$

t = 0

0.6

t =

$$0.6 - x - 2x$$

Given

$$0.6 - x = 2x = 0.8$$

0.6 + x = 0.8

$$x = 0.2$$

$$x = 0.2$$

$$\therefore K_p = \frac{P_{co^2}}{P_{co_2}} = \frac{(0.4)^2}{(0.4)} = 0.4 atm$$

Question: In the Carius method of estimation of chlorine a compound of 180g produces 144g of AgCl. Find percentage composition of chlorine?

Options:

- (a) 20%
- (b) 36%
- (c) 23%
- (d) 25%

Answer: (a)

Question: Statement-1: CH₃ — O — CH₂ — Cl will show nucleophilic substitution by S_N1 mechanism in protic medium

$$\begin{array}{c} \operatorname{CH_3} \\ \operatorname{I} \\ \operatorname{CH_3} - \operatorname{C} - \operatorname{CH_2} - \operatorname{CI} \\ \operatorname{I} \\ \operatorname{CH_3} \end{array}$$

Statement-2:

will not undergo

nucleophilic substitution via $S_N 2$ mechanism easily.

Options:

- (a) Statement-I and Statement-II both are correct
- (b) Statement-I and statement-II both are incorrect
- (c) Statement-I is correct but statement-II is incorrect
- (d) Statement-I is incorrect but statement-II is correct

Answer: (a)

Question: In CFSE (crystal field splitting energy), Δ_0 is zero for **Options:**

- (a) K_4 [FeC(N)₈]
- (b) $K_3[FeC(N)_6]$
- (c) $K_3[FeF_6]$
- (d) $K_2[MnF_6]$

Answer: (c)

 $n K_3[FeF_6]$ the e⁻ canfigⁿ = + tg³ eg² $CFSE = 0.4 \times t_2ge^- + 0.6ege^-$

$$= -0.4 \times 3 + 0.6 \times 2 = 0.$$

Question: Which of the following acids is present in a vitamin C?

Options:

- (a) Ascorbic acid
- (b) Saccharic acid
- (c) Aspartic acid
- (d) Adipic acid

Answer: (a)

Question: Which of the following Electronegativity order is incorrect?

Options:

- (a) Mg < Be < B < N
- (b) Al < Si < C < N
- (c) S < Cl < O < F
- (d) Al < Mg < B < N

Answer: (d)

Question: An electron of He⁺ is present in the 3rd excited state. Find its de-Broglie wavelength.

Options:

- (a) 6.28Å
- (b) 1.66 Å
- (c) 3.32Å
- (d) 13.28Å
- Answer: (a)

Question: Which will show a positive Fehling test?

Options:

 $H_3C - C = 0$

(b)

(d)

Answer: (c)

Question: What is the IUPAC Name of the given compound?

Options:

- (a) 4-methoxy 2-methyl Pent-3-enoic acid carbonyl
- (b) 4-methoxy 3-methyl Pent-3-enoic acid carbonyl
- (c) 2-methoxy 4-methyl Pent-3-enoic acid carbonyl
- (d) 4-methoxy 2-methyl Pent-2-enoic acid carbonyl

Answer: (a)

Question: When ethanol is treated with benzene diazonium chloride is forms:

Options:

- (a) Arenes
- (b) Methane
- (c) Amines
- (d) Ethyl alcohol

Question: If the work function of Cs and Fr is 1.9 & 2.7 eV. If light of $\lambda = 500$ nm. Which element will show photoelectric effect?

Options:

- (a) Caesium
- (b) Fransium
- (c) Both have same
- (d) None of the above

$$=E = \frac{12400}{\lambda(4^{\circ})} = \frac{12400}{5000} = 2.48eV$$

$$KE = hv - hv_0$$

 $hv > hv_0 \Rightarrow Cs$ will show

Question: Which of the following Statements is Incorrect? Options:

- (a) Melting Point of cis-2-butene is greater than trans 2-butene
- (b) 2-methyl 2-butene has 2 Geometrical isomerism
- (c) Dipole moment of cis 2-butene is greater than trans 2-butene
- (d) In trans Isomer identical groups are opposite to each other

Answer: (b)

Question: 4f' configuration is possible for (a) Eu³⁺, (b) Eu²⁺, (c) Gd³⁺, (d) Tb³⁺, (e) Sm²⁺ Options:

(a) (a) and (c)

(b) (b) and (c)

(c) (d) and (e)

(d) Only (c)

Answer: (b)

			Electronic configurations*		
Atomic	Name	Symbol	Ln	Ln ²⁺	Ln ³⁺
Number					
57	Lanthanum	La	$5d^16s^2$	$5d^1$	$4f^{0}$
58	Cerium	Ce	$4f^{1}5d^{1}6s^{2}$	$4f^2$	$4f^{1}$
59	Praseodymium	Pr	$4f^{3}6s^{2}$	$4f^3$	$4f^2$
60	Neodymium	Nd	$4f^46s^2$	$4f^4$	$4f^3$
61	Promethium	Pm	$4f^{5}6s^{2}$	$4f^{5}$	$4f^4$
62	Samarium	Sm	$4f^{6}6s^{2}$	$4f^6$	$4f^{5}$
63	Europium	Eu	$4f^76s^2$	$4f^7$	$4f^6$
64	Gadolinium	Gd	$4f^75d^16s^2$	$4f^75d^1$	$4f^7$
65	Terbium	Tb	$4f^{9}6s^{2}$	$4f^9$	$4f^{8}$
66	Dysprosium	Dy	$4f^{10}6s^2$	$4f^{10}$	$4f^9$
67	Holmium	Но	$4f^{11}6s^2$	$4f^{11}$	4f 10
68	Erbium	Er	$4f^{12}6s^2$	$4f^{12}$	4f 11
69	Thulium	Tm	$4f^{13}6s^2$	4f 13	$4f^{12}$
70	Ytterbium	Yb	$4f^{14}6s^2$	4f 14	$4f^{13}$
71	Lutetium	Lu	$4f^{14}5d^16s^2$	$4f^{14}5d^{1}$	4f 14

Question: CO₂ gas is taken at 1 atm, 273K. Now it is allowed to pass through 01 M Ca/(OH)₂ aq. Solution. Excess amount of Ca(OH)₂ is neutralized with 40 mL of 0.1 M HCl. Then find volume of Ca(OH)₂ initial taken if half of the amount of Ca(OHO₂ is reacted with CO₂

Options:

- (a) 40 mL
- (b) 20 mL
- (c) 80 mL
- (d) 50 mL

Answer: (a)

 n_{HCl} : 4 millimoles

$$n_{Ca(OH)_2} = 2$$
 millimoles

$$n_{Ca(OH)_2}^2$$
 = Reacting with 2 millimoles with CO₂

$$V = \frac{4}{0.1} = 40 \, ml$$

Question: Match the column and choose the correct option

	Column-I(Properties)		Column-II (Order)
A	Electronegativity	1	$\mathbf{B} < \mathbf{C} < \mathbf{N} < \mathbf{O}$
В	Cationic size	2	Li > Mg > Be
С	Metallic Character	3	K > Mg > Al

D	Electron affinity	4	C1 < F < Br < I
---	-------------------	---	-----------------

Options:

- (a) A-1, B-2, C-3, D-4
- (b) A-4, B-3, C-2, D-1
- (c) A-2, B-3, C-4, D-1
- (d) A-3, B-2, C-4, D-1

Answer: (a)

Question: How many compounds have the linear shape OF_2 , SO_2 , $BeCl_2$, N^-_3 , I^-_3 , NO^+_2 ,

NO₂? Options: Answer: (4)

THE NARAYANA GROUP