

NARAYANA'S UNSTOPPABLE DOMINANCE

IN JEE MAIN 2024

JEE MAIN (JAN) 2025 22-01-2025 (9 AM-12 PM)

Memory - Based Duestion Paper
PHYSICS

JEE-Main-22-01-2025 (Memory Based) [SESSION-1]

PHYSICS

В

Question: Find the dimensions of- μ_0

Options:

- (a) [AL]
- (b) $[AL^{-1}]$
- (c) [MAL]
- (d) [MALT⁻¹]

Answer: (b)

Question: Solid sphere of mass M, radius R exerts force F on a point mass. Now a concentric spherical mass M/7 is removed. What is new force?

Options:

- (a) F/7
- (b) 6/7 F
- (c) 5F/7
- (d) 3F/7

Answer: (b)

Question: Two drops of radii 2 cm and 8 cm are in contact. The radius of common surface is

Options:

- (a) 8/3 cm
- (b) 2 cm
- (c) 8 cm
- (d) 5/3 cm

Answer: (b)

Solution:

$$\frac{1}{r} = \frac{1}{2} - \frac{1}{8}$$

$$\frac{1}{r} = \frac{3}{8}$$

$$r = \frac{8}{7}$$

Question: The 7th harmonic of a closed organ pipe has same frequency as that of 4th harmonic of an open pipe. If two different gases with same bulk modulus with ratio of density $\frac{1}{3}$ and length of closed pipe is 10 cm. Find the length of open pipe Options:

(a)
$$\frac{80}{7\sqrt{3}}$$
 cm

(b)
$$\frac{20}{7\sqrt{3}}$$
 cm

(c)
$$\frac{40}{7\sqrt{3}}$$
 cm

(d)
$$\frac{10}{7\sqrt{3}}$$
 cm

Answer: (b)

Solution:

$$\frac{3.5}{2l_c}\sqrt{\frac{B}{p_c}} = \frac{4}{2l_0} = \sqrt{\frac{B}{p_0}} \qquad \frac{p_c}{p_0} = \frac{1}{3}$$

$$l_0 = \frac{40}{3.5} \sqrt{\frac{p_c}{p_0}}$$

$$=\frac{80}{7}\times\sqrt{\frac{1}{3}}$$

$$l_0 = \frac{80}{7\sqrt{2}}$$

Question: A solid sphere of uniform density and radius R exerts a gravitational force of attraction F_1 on the particle P, distant 2R from the centre of the sphere. A spherical

cavity of radius R/3 is now formed in the sphere as shown in figure. The sphere with cavity now applies a gravitational force F_2 on the same particle P. Find the ratio F_2/F_1 .

Options:

- (a) 7/9
- (b) 9/7
- (c) 11/12
- (d) 12/11

Answer: (c)

Question: A wire of length a/2 and charge density λ is kept along one of a cube of side length a. The wires mid point is at the midpoint of the edge. Find the flux through the whole cube

Options:

$$(a) \frac{\lambda a}{4 \in_0}$$

$$\lambda a$$

$$\frac{\lambda a}{16 \in \Omega}$$

(c)
$$\overline{16 \in_0}$$

$$\frac{\lambda a}{326}$$

(d)
$$\overline{32 \in_0}$$

Answer: (b)

Question: If a ball is thrown at 60 m/s at an angle of 30. The ratio of height travelled in 1st second to the height travelled in the last second before reaching the maximum height is?

Options:

- (a) 1:5
- (b) 5:1
- (c) 2:7
- (d) 7:2

Answer: (b)

Solution:

Height travelled in first 2 seconds = $ut + \frac{1}{2}at^2$

$$=30(2) - \frac{1}{2} \times 10 \times (2)^{2}$$
$$=60 = 20.40$$

Height travelled in last second before reaching more height

$$=45 m - 40 m$$

$$=5 m$$

$$\frac{\text{Height in 1 second}}{\text{Height in last second}} = \frac{25}{5} = \frac{5}{1}$$

Height in 1seconds =
$$ut + \frac{1}{2}at^2$$

= $60 \sin 30(1) + \frac{1}{2} \times (-10) \times (1)^2$
= $60 \times \frac{1}{2} - \frac{1}{2} \times 10$
= $30 - 5 = 25 m$

Time taken for reaching max height

$$=\frac{4\sin\theta}{g}$$
$$=\frac{60\times\frac{1}{2}}{10}=3$$

Max Height =
$$ut + \frac{1}{2}at^2$$

= $30(3) + \frac{1}{2} \times (-10) \times (-9)$
= $90 - 45 : 45 m$

Question: When a YDSE set up is immersed in a denser medium, then

- (A) Assertion: Fringe width will decrease
- (R) Reason: Speed of the wave will decrease but frequency remains constant Options:
- (a) Both (A) and (R) are correct and (R) explains (A)
- (b)Both (A) and (R) are correct but (R) does not explains (A)
- (c) (A) Is correct but (R) is wrong
- (d) (A) is wrong but (R) is correct

Answer: (a)

Question: If B represents magnetic field and μ represents permeability, then dimension

of μ is same as that of

Options:

- (a) Length per unit current
- (b)Current per unit length
- (c) Length per unit charge
- (d) Charge per unit length

Answer: (b)

Question: Moment of inertia if uniform disc of radius R and mass M about an axis passing through its centre and perpendicular to plane is l_1 If a circular hole of diameter R whose rim passes through the centre is cut. The moment of inertia of the remaining part of the disc about a perpendicular axis, passing through the centre is I_2 Find ratio of I_1 and I_2

Options:

(a)16/13

(b) 32/13

(c)13/31

(d) 13/32

Answer: (a)

Question: Two metals A and B having work function as 2.2 eV and 1.9 eV respectively are illuminated by monochromatic light of wavelength 550 nm. Which metal will show Photoelectric effect?

Options:

- (a) Only Metal A
- (b) Only Metal B
- (c) Both
- (d) None

Answer: (c)

Question: The correct graph of resistance vs temperature of a standard conducting wire will look like:

Question: Ice at -10°C is to be converted into steam at 110°C. Mass of ice is 10⁻¹ kg. What amount of heat is required?

Options:

- (a) $\Delta Q = 730$ cal
- (b) $\Delta Q = 900$ cal
- (c) $\Delta Q = 1210$ cal
- (d) $\Delta Q = 870$ cal

Answer: (a)

Question: An electron is projected at $V_0 = 10^6$ m/s parallel to the plates of capacitor as shown. Find the y-compartment of velocity of electron as it comes out of plates.

Options:

- (a) 1.6×10^4 m/s
- (b) 1.6×10^6 m/s
- (c) 1.6×10^5 m/s
- (d) 1.6×10^3 m/s

Answer: (c)

Question: If two spherical black bodies of radii 0.2m and 0.8m which are at maintained at 400K and 800K respectively. Find ratio of power radiated by bodies.

Options:

- (a) 1/16
- (b) 1/256
- (c) 1/128
- (d) 1/144

Answer: (b)

Question: A capacitor is charged by battery to charge Q_1 . Now the battery is disconnected and dielectric slab of dielectric constant K is inserted between the gaps of the plates. Now charge on capacitor is Q_2 . Find Q_1/Q_2

Options:

- (a) 1
- (b) 1/2
- (c) 2
- (d) 2/3

Answer: (a)

Question: Find out equivalent capacitance for the situation show in figure. Options:

(a)
$$C_{eq} = \frac{A\varepsilon_0}{d} \left(\frac{K_1 K_2 + K_2 K_3 + K_3 K_1}{K_1 + K_2} \right)$$

$$C_{eq} = \frac{A\varepsilon_0}{d} \left(\frac{2K_1K_2 + K_2K_3 + K_3K_1}{2(K_1 + K_2)} \right)$$

$$C_{eq} = \frac{A\varepsilon_0}{d} \left(\frac{K_1 K_2 + K_2 K_3 + K_3 K_1}{2(K_1 + K_2)} \right)$$

$$C_{eq} = \frac{A\varepsilon_0}{2d} \left(\frac{K_1 K_2 + K_2 K_3 + K_3 K_1}{(K_1 + K_2)} \right)$$

Answer: (b)

Question: From the given option, identify the diode connected in forward bias. Options:

Question: Radius of electron in ground state for hydrogen is a_0 , then radius of electron in He⁺ ion in 3rd excited state is a. Then a_0/a is

Options:

- (a) 1/2
- (b) 1/4
- (c) 1/16
- (d) 1/8

Answer: (d)

Question: The particle shown in figure is just able to complete the vertical circular motion. Find the ratio of kinetic energy at A to the kinetic energy at B.

Options:

- (a)
- **(b)**
- (c)
- (d)

Answer: ()

Question: Which of the following graphs correctly represents the variation of resistivity (ρ) with temperature (T)? Options:

