

JEE-Main-22-01-2025 (Memory Based) [EVENING SHIFT] Physics

Question: A ball is thrown at 20 m/s at 60° horizontally. The difference in kinetic energy at highest point of trajectory and at the point of release is; (m = mass)

Options:

- (a) 200 m
- (b) 50 m
- (c) 150 m
- (d) 100 m

Answer: (c)

$$K_1 = \stackrel{\cdot}{\frac{1}{2}} imes m imes 20 imes 20$$

$$= 200 \, m$$

$$K_2=rac{1}{2} imes m imes 10 imes 10$$

$$=50 \, m$$

Question: An equiconvex lens of focal length f, is cut into four parts as shown in the diagram. The focal length of each part is

Options:

- (a) 4f
- (b) f/2
- (c) 2f
- (d) f/4

Answer: (c)

Question: The radius of a tube decreases from 2R to R in which ideal liquid is flowing at the same level. Speed at one end is 2 m/s as shown, find speed v at other end

Options:

- (a) 4 m/s
- (b) 1 m/s
- (c) 2 m/s
- (d) 8 m/s

Answer: (c)

Question: Statement 1: Time period of pendulum changes on a planet whose mass is 4 times and radius is 2 times that of earth

Statement 2: Mass of pendulum is same on both planets Options:

- (a) Both the assertion and reason are true, and the reason is the correct explanation of the assertion
- (b) Both the assertion and reason are true, but the reason is not the correct explanation of the assertion
- (c) The assertion is true, but the reason is false

(d) The assertion is false, but the reason is true Answer: (d)

Question: The dimensional formula of capacitance is

Options:

- (a) $[M^{-1}L^2T^2A^{-3}]$
- (b) $[M^{-1}L^{-2}T^4A^3]$
- (c) $[M^{-1}L^{-2}T^4A^2]$
- (d) $[M^{-1}L^{-2}T^2A^2]$

Answer: (c)

Question: A proton is moving with uniform velocity of 2 x 10^8 m/s in uniform magnetic and electric fields which are perpendicular to each other. If the electric field is switched off then the proton moves in a circular path of radius 1.6×10^{-5} m. Then magnetic field is:

Options:

- (a) $5 \times 10^{-5} \text{ T}$
- (b) $1.2 \times 10^5 \text{ T}$
- (c) $2.5 \times 10^4 \text{ T}$
- (d) $2.5 \times 10^2 \text{ T}$

Answer: (b)

Question: The displacement of a particle moving under the action of a force

 $\overrightarrow{F} = 2\hat{i} + b\hat{j} + \widehat{k}$ is $\overrightarrow{d} = \hat{t} + \hat{j} + \widehat{k}$. Find the value of b if the work done by the force is zero.

Options:

- (a) 0
- (b) +3
- (c) -3
- (d) -1

Answer: (c)

Question: Find the Magnetic field at point P due to System of conducting wires as shown(Answer in micro Tesla)

Options:

- (a) 1
- (b) 2

(c) 3

(d) 4

Answer: (b)

Question: A pendulum having a small bob of mass m and length of thread 1m is performing vertical circular as showing in the figure. If it linear velocity of bob at point C is 10 m/s. Find difference between speed of bob at point A and B

Options:

(a)
$$V_A - V_B = \sqrt{10} \left[\sqrt{8 + \sqrt{3}} + \sqrt{7} \right]$$

(b) $V_A - V_B = \sqrt{10} \left[\sqrt{8 - \sqrt{3}} - \sqrt{7} \right]$
(c) $V_A - V_B = \sqrt{10} \left[\sqrt{8 + \sqrt{3}} - \sqrt{7} \right]$
(d) $V_A - V_B = \sqrt{10} \left[\sqrt{7} - \sqrt{8 + \sqrt{3}} \right]$

Answer: (c)

Question: A force is acting along the x axis whose magnitude is changing as per the given equation $F = 8x^2 - 3$ If at an incident work done is O then find the variable x.

Options:

(a)
$$\frac{1}{2\sqrt{2}}$$

(b)
$$\frac{3}{2\sqrt{2}}$$

(c)
$$\sqrt{2}$$

Answer: (b)

Question: The point A is situated on the axis of dipole at a distance 'r' from the dipole with $\in_0 \& V_0$ the electric field & electric potential at A Find electric field & potential at a point B at distance "2r" from dipole on its perpendicular bisector in terms of $\in_0 \& V_0$

Options:

(a)
$$\frac{\epsilon_0}{16}$$
, $0\,V_0$

(b)
$$\frac{\in_0}{16}$$
, $8\,V_0$
(c) $\frac{\in_0}{16}$, $3\,V_0$
(d) $\frac{\in_0}{8}$, $16\,V_0$
Answer: (a)

Question: The maximum percentage error in the measurement of density of a wire is m=(0.60 ± 0.003) g

 $r=(0.50 \pm 0.01)$ cm

 $l = (10.00 \pm 0.05)$ cm

Options:

- (a) 5 %
- (b) 2 %
- (c) 10 %
- (d) 12 %

Answer: (a)

Question: Statement-I: Fringe width of red light is more than fringe width of violet light.

Statement-II: Fringe width is directly proportional to the wavelength of light used. Choose the correct option.

Options:

- (a) Statement-I is correct and statement-II is incorrect
- (b) Both statement-I and statement-II are correct
- (c) Statement-I is incorrect and statement-II is correct
- (d) Both statement-I and statement-II are incorrect

Answer: (b)

Question: In a photoelectric emission, Radiation of wavelength " λ " strikes a plate whose work function is 1 e V and K.E of emitted electron is 4 eV. If the wavelength of electricity radiation becomes half then find the K.E of outcoming electrons.

Options:

- (a) 9 eV
- (b) 10 eV
- (c) 3 eV
- (d) 2 eV

Answer: (a)

Question: A force $\overrightarrow{F}=2\hat{i}+\hat{j}+2\hat{k}$ acting at a point (1, 1, 1). Find the torque of this force about the origin.

Options:

(a)
$$\hat{i} + \hat{j} + \hat{k}$$

(b)
$$\hat{i}+\hat{j}$$

(c)
$$\hat{i} - \hat{k}$$

(d)
$$\hat{j} - \hat{k}$$

Answer: (c)

Question: For non-vibrating diatomic gas has adiabatic constant of γ_1 & for vibrating diatomic gas has diabatic constant of γ_2 then

Options:

- (a) $\gamma_1 > \gamma_2$
- (b) $\gamma_1 < \gamma_2$
- (c) $\gamma_1 = \gamma_2$
- (d) None of these

Answer: (a)

Question: The truth table for above is:

Options:

A	B	14
O	0	1
0		0
	0	0
	1	

(a)

A	B	4
0	,	1
0	υ	0
1	1	0
1	0	\Box

(b)

,		_	
	А	B	4_
	0	0	1
	0	1	
	1	0	0
	-	1	0

(c)

(6)			
	A	1 13	14
	0	1	1
	-0	0	1
	1	1	1
(d)	1	0	0
()			

Answer: (a)

Question: Name the logic gate

Options:

- (a) OR
- (b) AND
- (c) NOT
- (d) NAND

Answer: (b)

Question: The figure shows an electron entering the space between the plates of a parallel plate capacitor with an initial velocity, $V_x = 10^6$ m/s parallel to the plates. If the length of plates is l = 10 cm and the electric field in the region E = 9.1 N/C, then the value of v_y when the electron comes out of the plates is (Electronic mass = 9.1×10^{-31} kg)

Options:

- (a) 1.6×10^4 m/s
- (b) 1.6×10^5 m/s
- (c) 1.6×10^7 m/s
- (d) 1.6×10^3 m/s

Answer: (b)

Question: Find the equivalent power of the thin lens combination shown in the figure. Options:

(a)
$$\left(\frac{R_1 + R_2}{R_1 + R_2}\right)$$

$$\mathbf{(b)} \ - \left(\frac{R_1 + R_2}{R_1 R_2}\right)$$

$$-\left(rac{R_{1}+R_{2}}{6R_{1}R_{2}}
ight)$$

$$+\left(\frac{R_1+R_2}{6R_1R_2}\right)$$

Answer: (c)

Question: In the RC circuit shown, find 1.

Vedantu

Options:

(a)
$$\overline{5R}$$
 $5V$

(b)
$$\overline{\frac{3R}{8V}}$$

(c)
$$\overline{13R}$$
 $3V$

(d)
$$\overline{R}$$

Answer: (c)

Question: Solid sphere of mass M, radius R exerts force F on a point mass. Now a concentric spherical mass M/7 is removed. What is new force? Options:

(a)
$$\frac{F}{7}$$

(b)
$$\frac{6}{7}F$$
 $5F$

(c)
$$\overline{\begin{array}{c} 7 \\ 3F \end{array}}$$

(d)
$$\overline{7}$$

Answer: (b)