

## JEE Main 23 January 2025 Shift 2

## PHYSICS QUESTION PAPER WITH ANSWER KEY

| Q.No.  | Questions                                                                                                                                                                                                                                                  | Answers                                           |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| 1      | Find the total work done from A to E. $ \begin{array}{cccccccccccccccccccccccccccccccccc$                                                                                                                                                                  | -3P <sub>0</sub> V <sub>0</sub>                   |
| 2      | Statement 1: Graph of frequency f of X ray and atomic number Z of heavy nucleus is straight line, in X ray emission.  Statement 2: Graph of square root of frequency √f of X ray and atomic number Z of heavy nucleus is straight line, in X ray emission. | Statement 1 incorrect and Statement 2 is correct. |
| 3<br>D | In a series LCR circuit, inductance L = 100 mH and capacitance C = 10 nF. The angular frequency of the source when current has maximum amplitude in the circuit is                                                                                         | 10 <sup>5</sup> rad/s                             |
| 4      | A satellite is nine times closer to earth compared to moon. Time period of moon is 27 days then period of satellite is                                                                                                                                     | 1 Day                                             |
| 5      | Two charges +7 C and -4 C are located at (-7, 0, 0) and (7, 0, 0), find the electrostatic potential energy of the system. (K = $1/4\pi\epsilon_0$ = $9 \times 10^9$ Sl units)                                                                              | -18 * 10° J                                       |



| 6  | Two ideal diodes are connected in circuit as shown. Find current through battery.                                                                                                                                                                       | 0.5 A                                                                                          |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
|    | 20 Ω<br>20 Ω<br>20 Ω<br>WWW                                                                                                                                                                                                                             |                                                                                                |
| 7  | In an electromagnetic wave of frequency 20 MHz, value of electric field is 9.3 V/m, then magnitude of magnetic field at that instant is                                                                                                                 | 3.1 * 10-8                                                                                     |
| 8  | A particle of mass m is projected at angle 60° with horizontal. If initial kinetic energy is $K\epsilon_0$ , and kinetic energy at maximum height is $K\epsilon_0/x$ find value of x.                                                                   | x = 4                                                                                          |
| 9  | The energy in a system varies with position and time as $E(x,t) = x^3e^{-\beta t}$ , where $\beta = 0.3$ sec <sup>-1</sup> . Given that the P% error in $x = 1.2\%$ and that the % error in $t = 1.6\%$ , find the maximum % error in E at $t = 5$ sec. | 6%                                                                                             |
| 10 | A concave mirror of focal length f dipped into a flued of refractive index $\mu$ . The new focal-length mirror is                                                                                                                                       | f                                                                                              |
| 11 | Match the correct dimensions-  (a) Magnetic Field - (i) ML <sup>2</sup> (b) Permittivity of free space - (ii) M <sup>-1</sup> L <sup>-3</sup> T <sup>4</sup> A <sup>2</sup>                                                                             | $(a) \rightarrow (iii),$ $(b) \rightarrow (ii),$ $(c) \rightarrow (i),$ $(d) \rightarrow (iv)$ |
|    | (c) Moment of Inertia - (iii) MT <sup>-2</sup> A <sup>-1</sup> (d) Velocity - (iv) LT <sup>-1</sup>                                                                                                                                                     |                                                                                                |
| 12 | The temperature of a body of mass m and specific heat capacity s is raised slowly from $T_1$ to $T_2$ . The change is entropy of the system is                                                                                                          | ms $ln(T_2/T_1)$                                                                               |
| 13 | A moving coil galvanometer with coil resistance $G = 30 \Omega$ , shows full-scale deflection when the current through it is 20 mA. The galvanometer is converted to an ammeter of range 3 A by using a shunt, then resistance S is                     | 0.2 Ω                                                                                          |



| 14   | Torque on a uniform disk of mass 2 kg, radius 1 m is given as $????(t) = 5t^2 - 8t$ . If the disk was initially at rest, find power by torque at $t = 1$ s.                    | 7 W     |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 15   | During charging of capacitor of 2.5 mF in DC circuit, the displacement current is found to be 0.25 mA then find rate of change of voltage V w.r.t. time dV/dt.                 | 100 V/s |
| 16   | In a photoelectric experiment, the stopping potential of 2 V, the work function of metal is 2.14 eV. Find the wavelength of incident light (given hc = 1242 eV-nm)             | 300 nm  |
| 17   | The equation of wave travelling in a medium is given by $y(x, t) = 4.0 \sin(20 \times 10^{-3}x + 600t)$ mm. The velocity of wave is n x $10^4$ m/s. Find n.                    | 3       |
| 18 D | Find the charge on the capacitor (in $\mu F$ ) at steady state. A ch                                                                                                           | 16 mC   |
| 19   | For a prism, the minimum deviation is equal to the angle of prism. If the refractive index is $\sqrt{3}$ , find the minimum deviation (in degrees)                             | 60°     |
| 20   | A satellite of mass m is moving in circular orbit at a height R from surface of Earth (mass M, radius R). If the angular momentum of the satellite is $m\sqrt{NGMR}$ , find N. | N = 2   |