PART: PHYSICS

- 1. If angle of prism is equals to angle of minimum deviation. Given that $n = \sqrt{3}$, then angle of prism is:
 - (1) $\frac{\pi}{3}$

- (2) $\frac{\pi}{6}$
- (3) $\frac{\pi}{12}$
- (4) $\frac{\pi}{4}$

Ans. (1) Sol.

We know that

$$n = \frac{\frac{sin(A + \delta_{min})}{2}}{sin(\frac{A}{2})}$$

$$\sqrt{3} \Rightarrow \frac{\sin(A)}{\sin(A/2)} = \frac{2\sin A/2\cos A/2}{\sin(A/2)}$$

$$\frac{\sqrt{3}}{2} = \cos(A/2)$$

$$\frac{A}{2} = \frac{\pi}{6}$$

$$A = \frac{\pi}{3}$$

2. Find total work done by gas from A to D?

- (1) -3 PoVo
- (2) 3 PoVo
- (3) 2 P₀V₀
- (4) 5 PoVo

Ans. (1)

- So. $W = (P_0 \times V_0) + 0 + 2P_0(-2V_0)$
 - $W = -3P_0V_0$

Find the charge on capacitor in steady state

- (1) 8µC
- (2) 16µC
- (3) 100µC
- (4) 16mC

Ans.

Current through $10\Omega \Rightarrow 1 = \frac{5}{25} = 0.2 \text{ A}$ Sol.

> Potential drop across $10\Omega \Rightarrow V = IR = 0.2 \times 10 = 2V$ then charge stored on capacitor

$$Q = CV = 8 \times 10^{-6} \times 2$$

$$Q = 16 \mu C$$

A satellite is nine times closer to earth compared to moon. Time period of moon is 27 days then time period of satellite is

- (1) 3 days
- (2) 9 days
- (3) 1 day
- (4) 3√3 days

Ans.

 $\frac{T_1}{T_2} = \left(\frac{r_1}{r_2}\right)^{3/2}$ Sol.

$$T_{1} = T_{2} \left(\frac{r_{1}}{r_{2}}\right)^{3/2}$$

$$= 27 \left(\frac{r_{e}/9}{r_{e}}\right)^{3/2}$$

$$= \frac{27}{9^{3/2}} = \frac{27}{27} = 1 \text{ day}$$

5. In a series LCR circuit, inductance L = 100 µH and capacitance C = 10 nF. The angular frequency of the source when current has maximum amplitude in the circuit is

- (1) $\frac{10^4}{2\pi}$ rad/s (2) $\frac{10^5}{2\pi}$ rad/s
- (3) 105 rad/s
- (4) 10⁶ rad/s

Ans.

 $\omega = \frac{1}{\sqrt{LC}} = \frac{1}{\sqrt{10^{-4} \times 10^{-8}}} = 10^{6} \text{ rad/s}$ Sol.

A concave mirror has a focal length 'f'in air. What is the focal length of this mirror when it is completely immersed in a liquid of refractive index μ?

(2) µF

(3) f

Ans.

f (mirror) is independent from μ Sol.

A particle is projected with kinetic energy K with an angle $\frac{\pi}{3}$ from horizontal, then what will be kinetic 7. energy at its maximum height?

(2) $\frac{K}{4}$

(3)0

(4) K

Ans.

(2)Sol.

 $(K)_{max \text{ height}} = \frac{1}{2} m[v(\cos\theta)]^2$ $=\frac{1}{2}$ mv²(cos60°)²

 $K_{min} = \frac{K}{4}$

Statement I: Graph of frequency f of x-ray & atomic number z of heavy nucleus is straight line, in x-ray 8. emission.

Statement II: Graph of square root of frequency √f of x-ray & atomic number z of heavy nucleus is straight line in x-ray emission.

- (1) Statement 1 is correct & statement 2 is correct.
- (2) Statement 1 is incorrect & statement 2 is correct.
- (3) Statement 1 is correct & statement 2 is incorrect.
- (4) Statement 1 is incorrect & statement 2 is incorrect.

Ans.

Sol. from Mosley's law

$$\sqrt{f} = a(z - b)$$

so option (2) is correct.

MResonance*

| JEE(Main) 2025 | DATE : 23-01-2025 (SHIFT-2) | PAPER-1 | MEMORY BASED | PHYSICS

- 9. When light of wave length λ is incident on a metal of work function w = 2.14 ev and stopping potential for electron is found to be 2 volt then find wavelength of incident light [use hc = 1242 ev-nm]
 - (1) 100 nm
- (2) 200 nm
- (3) 300 nm
- (4) 400 nm

- Ans. (3)
- Sol. $E = K_m + W$

$$\frac{hc}{\lambda} = 2ev + 2.14 ev$$

$$\lambda = \frac{1242 \,\text{ev} - \text{nm}}{4.14 \,\text{ev}} = 300 \,\text{nm}$$

- 10. The value of E₀ is 9.3 V/m and C is 3 x 10⁸ m/s. Find the value of B₀?
 - (1) 3.3 × 10-8 T
- (2) 3.1 × 10-8 T
- (3) 27.9 × 10-8 T
- (4) 27.9 × 108 T

- Ans. (2)
- **Sol.** $E_0 = 9.3 \text{ V/m}$ $C = 3 \times 10^8 \text{ m/s}$
 - $E_0 = C.B_0$

$$B_0 = \frac{E_0}{C} = \frac{9.3 \text{ v/m}}{3 \times 10^8} = 3.1 \times 10^{-8} \text{ T}$$

11.

For making ammeter of maximum current 0.3 Amp, a shunt is used in parallel with galvanometer of resistance 30 Ω . Maximum galvanometer current is 2 milli ampere. If the value of shunt resistance is

- $\frac{30}{x}$ Ω , what will be the value of x
- (1) 149
- (2)298
- (3) 300
- (4)49

- Ans. (1)
- Sol. I_aR_a
 - $I_gR_g = (I I_g)(s)$

$$(2mA)(30) = (300 mA - 2mA)(s)$$

$$s = \frac{30 \times 2}{298} = \frac{30}{149} \Omega = \frac{30}{x}$$

$$x = 149$$

12. Find current through battery. If both diodes are ideal

(1) 0.2 A

(2) 0.5 A

(3) 0.125 A

(4) 12.5 A

Ans. (2)

Sol.

$$I = \frac{V}{Req} = \frac{5}{10}$$

I = 0.5 A

13. Statement-1: Binding energy is independent of atomic number

Statement-2: Nuclear Force are long range force

- (1) Statement 1 is correct & statement 2 is correct.
- (2) Statement 1 is incorrect & statement 2 is correct.
- (3) Statement 1 is correct & statement 2 is incorrect.
- (4) Statement 1 is incorrect & statement 2 is incorrect.

Ans. (4)

14. Two charges 7μC and -4μC are placed at (-7, 0, 0) cm and (7, 0, 0) cm. Find the electrostatic potential energy of two charge system? (Given ε₀ = 8.85 × 10⁻¹² C²/Nm²)

(1) 1.6 J

(2) 0.9 J

(3) 2.5 J

(4) 1.8 J

Ans. (4)

Sol.

$$(-7, 0, 0)$$

$$r = 14 \text{ cm}$$

$$E = \frac{kq_1q_2}{r} = \frac{9 \times 10^9 \times 7 \times 10^{-6} \times 4 \times 10^{-6}}{14 \times 10^{-2}}$$

$$E = 1.8 \text{ J}$$

- If equation of wave travelling in a medium is given by y = 10sin(3t + 0.1x) then what is the velocity of 15. wave and direction?
 - (1) 30 i m/sec
- (2) 30 (-i) m/sec
- (3) 0.3 î m/s
- (4) 0.3(- i) m/s

Ans.

 $V_{\omega} = \frac{\omega}{k} = \frac{3}{0.1} = 30 \text{ m/sec}$ Sol.

direction of wave = $-\hat{i}$

- 16. A spring has tension 5N at x1 extension and 7N at x2 extension. Determine the tension in the spring when extension is 5x1 - 2x2
 - (1) 11 N
- (2) 39 N
- (3) 25 N
- (4) 12 N

Ans. (1)

- Sol. $kx_1 = 5$
 - $kx_2 = 7$

$$T = k(5x_1 - 2x_2)$$

17. Find pressure inside the bubble with respect to atmospheric pressure which is 105 N/m2 & density of water $P_{\omega} = 10^{-3} \text{ kg/cm}^3 \text{ & surface tension of bubble is } 72 \times 10^{-3} \text{ N/m (R} = 1 \text{mm)}$

- (1) 2000 pa
- (2) 2288 pa
- (3) 2144 pa
- (4) 1856 pa

Ans.

 $P_{bubble} - P_{atm} = vgh + \frac{2T}{R}$ Sol.

$$= \frac{10^{-3}}{10^{-6}} \times 10 \times 20 \times 10^{-2} + \frac{2 \times 72}{10^{-3}} \times 10^{-3}$$

$$= 2 \times 10^3 + 144$$

- 18. A disc of mass M and radius R is rotating about its axis. If the angle rotated about its axis as a function of time 't' is $\theta = 10t^2 - 8t$, then find the power delivered to the disc at $t = 2 \sec is$:
 - (1) 120 watt
- (2) 320 watt
- (3) 220 watt

Ans. (2) Sol. $\tau = I\alpha$

$$P = \tau . \omega$$

$$= I\alpha\omega$$

$$= \frac{MR^2}{2} \cdot \frac{d^2\theta}{dt^2} \cdot \frac{d\theta}{dt}$$

$$=\frac{MR^2}{2}$$
 . (20)(20t - 8)

at t = 2second

$$P = 10 MR^2 (40 - 8) = 320 MR^2 watt$$

19. In a YDSE experiment slits width are given as D and xD. If ratio of I_{max} and I_{min} is 9:4, then find value of x

$$(1) \frac{1}{25}$$

$$(2)\frac{1}{5}$$

Ans. (1)

Sol. We know that

I & width of a slit

So
$$\frac{I_2}{I_1} = \frac{xD}{D} = x$$

$$I_2 = xI_1$$

$$\frac{I_{\text{max}}}{I_{\text{min}}} = \left(\frac{\sqrt{I_1} + \sqrt{I_2}}{\sqrt{I_1} - \sqrt{I_2}}\right)^2$$

$$= \left(\frac{1 + \sqrt{\frac{I_2}{I_1}}}{1 - \sqrt{\frac{I_2}{I_1}}}\right)^2$$

$$= \left(\frac{1+\sqrt{x}}{1-\sqrt{x}}\right)^2 = \frac{9}{4}$$

$$\Rightarrow \frac{1+\sqrt{x}}{1-\sqrt{x}} = \frac{3}{2}$$

$$\Rightarrow 2 + 2\sqrt{x} = 3 - 3\sqrt{x}$$

$$\Rightarrow \sqrt{x} = \frac{1}{5}$$

$$X = \frac{1}{25}$$

20. The temperature of a body of mass m and specific heat capacity s is raised slowly from T1 to T2. The change is entropy of the system is

(P) [M1A-1T-2]

(R) [M1L2T-2] (S) [M1L1A-2T-2]

(2) $A \rightarrow S$; $B \rightarrow R$; $C \rightarrow P$; $D \rightarrow Q$

(4) $A \rightarrow S$; $B \rightarrow P$; $C \rightarrow R$; $D \rightarrow Q$

(Q) [L2A1]

- (1) $ms \ell n \left(\frac{T_2}{T_1} \right)$
- (3) $ms\ell n \left(\frac{T_1}{T_2}\right)$

Ans.

Sol.
$$d\delta = \frac{d\theta}{T}$$

$$\int ds = \int m.s. \frac{dT}{T}$$

$$\Delta s = ms\ell n \left(\frac{T_2}{T_1}\right)$$

- 21. Match the following.
 - (A) Magnetic permeability
 - (B) Torsional constant
 - (C) Magnetic field
 - (D) Magnetic moment
 - (1) $A \rightarrow R$; $B \rightarrow S$; $C \rightarrow P$; $D \rightarrow Q$

 - (3) $A \rightarrow S$; $B \rightarrow R$; $C \rightarrow Q$; $D \rightarrow P$
- Ans. (2)

Sol. M = iA

$$[B] = \frac{[F]}{[i\ell]} = \frac{M^1L^1T^{-2}}{[A^1L^1]} = M^1A^{-1}T^{-2}$$

$$\tau = c\theta$$

$$c=\frac{\tau}{\theta}=[F.d]=[M^1L^2T^{-2}]$$

22. A fluid of density ρ flows through a horizontal pipe with a variable cross-section. At two different crosssections, A and B, the fluid has velocities VA and VB, and pressures PA and PB respectively. Determine the correct relationship between velocities at these sections.

(1)
$$V_A - V_B = \frac{\rho}{2(P_B^2 - P_A^2)}$$

(3)
$$V_A^2 - V_B^2 = \frac{2(P_B - P_A)}{\rho}$$

(2)
$$V_A - V_B = \frac{2(P_A - P_B)}{0}$$

(4)
$$V_A^2 - V_B^2 = \frac{2(P_A - P_B)}{\rho}$$

Ans. (3)

$$P_A + \frac{1}{2} \rho V_A^2 = P_B + \frac{1}{2} \rho V_B^2$$

(Using Bernolli's equation)

$$\frac{1}{2}\rho V_{A}^{2} - \frac{1}{2}\rho V_{B}^{2} = P_{B} - P_{A}$$

$$\frac{1}{2}\rho(V_A^2 - V_B^2) = P_B - P_A$$

$$V_{A}^{2}-V_{B}^{2}=\frac{2(P_{B}-P_{A})}{\rho}$$

23.

Find the rate of change of Voltage $\frac{dv}{dt}$. Given I = 0.25 mA.

$$(3) 6.25 \times 10^{-11}$$

Ans. (2)

Sol. We know that

$$I = C \frac{dv}{dt}$$

$$\frac{dv}{dt} = \frac{I}{c} = \frac{0.25 \times 10^{-3}}{0.25 \times 10^{-6}}$$

$$\frac{dv}{dt} = 10^3 \, v/s$$

24. The energy in a system varies with position and time as $E(x, t) = x^3 e^{-\beta t}$ (where $\beta = 0.3 \text{ sec}^{-1}$). Given that the percentage error in x = 1.2% and that the percentage error in t = 1.6%. Find the maximum percentage error in E at t = 5 sec.

Ans. (3)

Sol.
$$E = x^3 e^{-\beta t}$$

$$\ell nE = 3\ell nx - \beta t$$

$$\frac{\Delta E}{E} = \frac{3\Delta x}{x} + \beta \Delta t$$

$$\frac{\Delta t}{t} \times 100 = 1.6$$

$$\Delta t \times 100 = 1.6 \times t = 1.6 \times 5 = 8$$

$$\frac{\Delta E}{E}$$
 × 100 = $\frac{3\Delta x}{x}$ × 100 + β (Δt × 100)

$$= 3 \times 1.2 + 0.3 \times 8 = 3.6 \times 2.4 = 6\%$$