JEE (Main)-2025 : Phase-1 (22-01-2025)-Evening

PHYSICS

SECTION - A

Multiple Choice Questions: This section contains 20 multiple choice questions. Each question has 4 choices (1), (2), (3) and (4), out of which **ONLY ONE** is correct.

Choose the correct answer:

1. An equiconvex lens of focal length *f*, is cut into four parts as shown in the diagram. The focal length of each part is

- (1) f(3) f/2
- (4) 4f
- Answer (2)

Sol.
$$f = \frac{R}{2(\mu - 1)}$$
 (equiconvex lens)
 $f' = \frac{R}{(\mu - 1)}$ (plans convex lens)
 $f = 2f$
2.

>2 m/s

Radius of a tube decreases from 2R to R in which ideal liquid is flowing at same level.

Speed at one end is 2 m/s as shown, find speed v at other end

(1)	4 m/s	(2)	1 m/s
(3)	2 m/s	(4)	8 m/s

Answer (4)

Sol.
$$A_1 v_1 = A_2 = v_2$$

v = 8 m/s

 $\pi(2R)^2 \cdot 2 = \pi R^2 v$

equation of continuity

3. The dimensional formula of capacitance is

(1) [M ⁻¹ L ² T ² A ⁻³]	(2) [M ⁻¹ L ⁻² T ⁴ A ³]
(3) [M ⁻¹ L ⁻² T ⁴ A ²]	(4) [M ⁻¹ L ⁻² T ² A ²]

Answer (3)

Sol. The energy stored in capacitor in term of charge

$$E = \frac{Q^2}{2C}$$

$$C = \frac{Q^2}{2E}$$

$$[C] = \frac{[A^2 T^2]}{[ML^2 T^{-2}]}$$

$$= [M^{-1}L^{-2}T^4A^2]$$

4. A proton is moving with uniform velocity of 2×10^8 m/s in uniform magnetic and electric fields which are perpendicular to each other. If electric field is switched off then proton moves in circular path of radius 1.6×10^{-5} m. Then magnetic field is *B*

(1)
$$5 \times 10^{-5}$$
 T(2) 1.2×10^{5} T(3) 2.5×10^{4} T(4) 2.5×10^{2} T

Answer (2)

Sol.
$$r = \frac{mv}{qB} \Rightarrow 1.6 \times 10^{-5} = \frac{1.6 \times 10^{-27} \times 2 \times 10^8}{1.6 \times 10^{-19} \times B}$$

 $B = \frac{5}{4} \times 10^5 = 1.25 \times 10^5 \text{ T}$

5. A conducting circular ring is moving with a constant velocity in a uniform magnetic field as shown. Identify the correct graph between induced emf vs time

JEE (Main)-2025 : Phase-1 (22-01-2025)-Evening

Answer (1)

δ

x = R - vt

The displacement of a particle moving under the 6. action of a force $\vec{F} = 2\hat{i} + b\hat{j} + \hat{k}$ is $\vec{d} = \hat{i} + \hat{j} + \hat{k}$. Find the value of *b* if the work done by the force is zero.

Answer (3)

Sol. Work =
$$\vec{F} \cdot \vec{s} = (2\hat{i} + b\hat{j} + \hat{k}) \cdot (\hat{i} + \hat{j} + \hat{k})$$

$$= 2 + 1 + 1 = 3 + b = 0$$

 $\Rightarrow b = -3$

7. In a series LCR circuit the maximum amplitude of current is I_0 when the resistance is R. What is the maximum amplitude of current if the resistor is replaced by a resistor of resistance $\frac{R}{2}$.

(2) 2*I*₀ (1) *I* (4) $\frac{2I_0}{3}$ (3) $\frac{I_0}{2}$

Answer (2)

Sol. Current has maximum amplitude at resonance.

$$\Rightarrow l_0' = \frac{\xi_0}{R/2} = \frac{2\xi_0}{R} = 2l_0$$

Statement-I : Fringe width of red light is more than 8. fringe width of violet light.

Statement-II : Fringe width is directly proportional to the wavelength of light used.

Choose the correct option.

- (1) Statement-I is correct and statement-II is incorrect
- (2) Both statement-I and statement-II are correct
- (3) Statement-I is incorrect and statement-II is correct
- (4) Both statement-I and statement-II are incorrect

Answer (2)

Sol. Fringe width (β) = $\frac{\lambda D}{d}$

Nedic

- 9. For non-vibrating diatomic gas has adiabatic constant of γ_1 & for vibrating diatomic gas has adiabatic constant of γ_2 then
 - (1) $\gamma_1 > \gamma_2$ (2) $\gamma_1 < \gamma_2$
 - (3) $\gamma_1 = \gamma_2$ (4) None of these

Answer (1)

Sol. $\gamma_1 = 1 + \frac{2}{5} = \frac{7}{5} = 1.4$ $\gamma_2 = 1 + \frac{2}{7} = \frac{9}{7} = 1.28$

Therefore $\gamma_1 > \gamma_2$

- 10. A force $\vec{F} = (\hat{i} + 2\hat{j} 3\hat{k})N$ acts on point whose position vector is given as $\vec{r} = (2\hat{i} - 3\hat{j} + 7\hat{k})m$. Find torque about origin.
 - (1) $(+5\hat{i}-12\hat{j}+7\hat{k})N.m$
 - (2) $(-5\hat{i}-12\hat{j}+8\hat{k})N.m$
 - (3) $(-5\hat{i}+13\hat{j}+7\hat{k})N.m$
 - (4) $(-5\hat{i}+13\hat{j}-7\hat{k})N.m$

Answer (3)

Sol. $\vec{T} = \vec{r} \times \vec{F} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -3 & 7 \\ 1 & 2 & -3 \end{vmatrix}$ = $\hat{i}(9-14) - \hat{j}(-6-7) + \hat{k}(4+3)$ = $(-5\hat{i}+13\hat{i}+7\hat{k})$ N.m

- JEE (Main)-2025 : Phase-1 (22-01-2025)-Evening
- 11. The net magnetic field at point O due to the two infinite current carrying wires shown in the figure is

Sol.
$$B_{\text{net}} = \left| \frac{\mu_0 (5 \text{ A})}{2\pi (10 \text{ cm})} - \frac{\mu_0 (4 \text{ A})}{2\pi (4 \text{ cm})} \right|$$
$$= \frac{25\mu_0}{\pi} = 10^{-5} \text{ T}$$

12. Read the statements and select the correct option. Statement I : A pendulum is taken from Earth to another planet having mass four times and radius double than earth, then time period of pendulum remain same as on earth.

Statement II : The time period of pendulum only depends on the gravity of the planet.

- (1) Statement I is true but statement II is false.
- (2) Statement II is true but statement I is false.
- (3) Both statements are false.
- (4) Both statements are true.

Answer (1)

Sol. On earth
$$T = 2\pi \sqrt{\frac{I}{g}}$$

On other planet, $g' = \frac{G(4M)}{(2R)^2} = g$

So, time period will remain same and her T depends on g as well as *l*.

Medica

JEE (Main)-2025 : Phase-1 (22-01-2025)-Evening

For a given logic circuit truth table is given identify the gate *G*.

		Α	В	y	
		0	0	1	
		1	0	0	
		0	1	0	
		1	1	1	
(1)	AND			(2)	NOR
(3)	NAND			(4)	OR

Answer (2)

Sol. From truth table

we know its XNOR gate

i.e.
$$y = \overline{\overline{A}B + A\overline{\overline{B}}}$$

therefore gate G must be NOR gate.

14. Name the logic gate

Answer (2)

(1) OR

Sol. If both *A* and *B* are high only then *Y* is high, otherwise *Y* is low.

.:. AND Gate.

 Displacement current in capacitor of area 16 cm² is 6 A at an instant. Find displacement current across area 3.2 cm²

Answer (1)

Sol.
$$id = \epsilon_0 \frac{d\phi_E}{dt} = \epsilon_0 A \frac{dE}{dt} \implies id \propto A$$

 $\implies i' = \left(\frac{3.2}{16}\right) id$
 $= 1.2 A$

16. In the RC circuit shown, find I.

Answer (3)

Sol. At stead state, C behaves as open-circuit

9

$$R_{eq} = \frac{13}{8}R$$
$$I = \frac{V}{R_{eq}} = \frac{8V}{13R}$$

17. A glass slab of refractive index $\mu_g = 1.44$ is coated with a thin film of refractive index $\mu_f = 2$. The minimum thickness of the film so that maximum transmission of

green light of wavelength $\lambda=5000~{\mbox{\AA}}$ (incident normally) takes place is

- (1) 0.500 μm (2) 0.250 μm
- (3) 0.125 μm (4) 1.00 μm

Answer (3)

 $2\mu_t t = n\lambda$

Sol. For maximum transmission of light incident normally

$$t_{\min} = \frac{\lambda}{2\mu_f} = \frac{5000 \times 10^{-10}}{2(2)} \text{ m} = 0.125 \ \mu\text{m}$$

18. For the electric dipole shown in the figure, the electric field and the electric potential are E_0 , V_0 at a distance *r* on the axis. Then what is the electric field and the electric potential at a point on the equatorial plane at a distance 2r.

Answer (1)

Sol. $E_{\text{axis}} = \frac{2kP}{r^3} = E_0$

$$E_{\text{equatorial}} = \frac{kP}{(2r)^3} = \frac{kP}{8r^3} = \frac{E_0}{16}$$

$$V = \frac{kP\cos\theta}{r^2}$$

$$V_{\text{axis}} = \frac{kP\cos 0^{\circ}}{r^2} = \frac{kP}{r^2}$$
$$V_{\text{equatorial}} = \frac{kP\cos 90^{\circ}}{(2r)^3} = 0$$

19.

20.

JEE (Main)-2025 : Phase-1 (22-01-2025)-Evening

SECTION - B

Numerical Value Type Questions: This section contains 5 Numerical based questions. The answer to each question should be rounded-off to the nearest integer.

Choose the correct answer:

21. A projectile is fired with speed of 20 m/s at angle of 60° with horizontal. The speed at highest point of trajectory is *x* m/s then *x* is

Answer (10)

Sol. $V_H = 4 \cos\theta$

= 20 cos 60° = 10 m/s

22. If equivalent resistance across AB is $\frac{NR}{2}$, find N

Answer (3)

Sol. Line of symmetry problem

$$R_{\rm eq} = \frac{3R}{4} \times 2 = \frac{3R}{2}$$

23.

Nedic

24.

25.

