

JEE Main 24 January 2025 Shift 1

CHEMISTRY QUESTION PAPER WITH ANSWER KEY

Q.No.	Questions	Answers
1	Which of the following is the strongest oxidising agent?	Ce ⁴⁺
2	The difference in melting point and boiling point of oxygen and sulphur can be explained by	Atomicity
3 4 5	Ribose present in DNA is (A) It is a pentose sugar (B) Present in pyranose form (C) α anomeric carbon is present (D) Present in D configuration (E) It is reducing sugar in free form Choose the correct statements. If the K _{sp} of Cr(OH) ₃ is 1.6 * 10 ⁻³⁰ M ⁴ . The molar solubility of salt in water is 1.56 * 10 ^{-x} , then value of x is Find the most stable carbocation among the following carbocations.	(A), (D) & (E) only
7	Which of the following is most reactive towards nucleophilic addition reaction? In H ₂ O, NH ₃ and CH ₄ (A) All central atoms are sp ³ hybridised	Para-nitro benzaldehyde A, B and D only
	 (A) An echtar atoms are spinyonaised (B) Order of dipole moment is CH₄ < NH₃ < H₂O (C) NH₃ in H₂O is basic in nature, NH₃ and H₂O are Bronsted-Lowry acid and bases respectively 	

	(D) Bond angle of H ₂ O, NH ₃ and CH, respectively are 104.5°, 107° and 109.5°	
8	Which of the following is most reactive towards aq. HBr? CH ₃ (P) (Q) (R) CH ₃ (S)	(P)
9	At the freezing point of water, the process is non-spontaneous, at boiling point it becomes spontaneous (Temperature varies linearly with pressure). The correct option is	$\Delta H = +ve$ $\Delta S = +ve$
10 11 Di	In the preparation of potassium permanganate from pyrolusite ore (MnO ₂), the fusion of the pyrolusite ore is done with an alkali metal hydroxide like KOH in the presence of air or an oxidising agent like KNO ₃ , which first produces. Statement 1: Duma's method is used for estimation of nitrogen Statement 2: In Duma's method N present in compound is converted to (NH ₄) ₂ SO ₄	Statement 1 is correct but Statement 2 is incorrect
12	$Fe^{2+} + Ag^{+} \rightarrow Fe^{3+} + Ag; E_{net}^{0} ?$ $Ag^{+} + e^{-} \rightarrow Ag; E^{\circ} = x$ $Fe^{2+} + 2e^{-} \rightarrow Fe; E^{\circ} = y$ $Fe^{3+} + 3e^{-} \rightarrow Fe; E^{\circ} = z$ The value of $E_{net}^{0} = ?$	x + 2y - 3z
13	Consider the given reactions and choose proper solvent.	Statement-I: polar aprotic, Statement-II: polar aprotic

	Statement-I: $CH_3 - CH_2 - CH_2 - CH_2 - CI \xrightarrow{OH^-} CH_3 - CH_2 - CH_2 - CH_2 - OH_3$ Statement-II: $CH_3 - CH_2 - CH_2 - CH_2 - CI \xrightarrow{R_3N} CH_3 - CH_2 - CH_2 - CH_2 - CH_3 -$	
14	$2.32 \times 10^3 \text{ kg of Fe}_3\text{O}_4 \text{ reacts with } 2.8 \times 10^3 \text{ kg of CO}$ according to the following reaction: $\text{Fe}_3\text{O}_4 + \text{CO} \rightarrow \text{CO}_2 + \text{Fe}$ If x kg of Fe is formed. Find the value of x?	1680 kg
15	Consider the following reaction $CH_3 - C \equiv CH \xrightarrow{(i) Hg^{2+}/H_2SO_4} P$ $\xrightarrow{(ii) HCN}$ $(iii) H_2/Ni$	OH CH ₃ — C—CH ₂ — CH ₃
16	When x g of Benzoic acid reacts with NaHCO ₃ , 11.2 L of CO ₂ is released at 273 K and 1 atm pressure, calculate mass of benzoic acid in gram?	61 gm
17 D i	How many of the following cation shows characteristic coloured ppt. with K ₄ [Fe(CN) ₆]? Cu ²⁺ , Ca ²⁺ , Ba ²⁺ , Fe ³⁺ , Zn ²⁺ , Mg ²⁺ , Mn ²⁺	chieve
18	Cocl ₃ ·5NH ₃ $\xrightarrow{\text{H}_2\text{O}}$ Total 3 moles of ion AgNO ₃ soln 2 moles of AgCl precipitated	[Co(NH ₃) ₅ Cl] Cl ₂
	The formula of complex is	

19	Consider the following plots of vapour pressure of a solution containing non-volatile solute versus temperature in K and choose the correct graph which represents depression in freezing of solvent.	V.P. Frozen Solvent So
20	A student synthesised the compound given below By using one of the following compounds available in the lab and using following reagants:	CH ₃
<u>21</u> Di	Reactant \xrightarrow{NBS} $\xrightarrow{Me_3CO^-K^+}$ $\xrightarrow{(i)}$ $\xrightarrow{B_2H_6/THF}$ $\xrightarrow{Me_3COH}$ $\xrightarrow{(ii)}$ $\xrightarrow{H_2O_2/OH}$ Select the incorrect statement about the modern periodic table.	Physical and chemical properties of elements are based on their atomic weight